施肥对川中丘陵区紫色土微生物活性及N_2O排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究不同施肥处理对川中丘陵区紫色土微生物活性及N20排放的影响,对建立川中丘陵区最佳施肥制度,提高肥料利用率,降低紫色土N20排放及准确估算紫色土农业生态系统中N20排放量具有重要的意义。
     本研究选取川中丘陵区小麦-玉米轮作制度下紫色土耕地,通过6种施肥处理即:猪厩肥(OM)、猪厩肥+氮磷钾肥(OMNPK)、秸秆+氮磷钾肥(RSDNPK)、氮磷钾肥(NPK)、氮肥(N)和不施肥(CK),研究了玉米生育期内(2010年5月至9月)土壤微生物的数量和生物量、土壤呼吸强度、代谢熵、土壤酶活性及N20排放通量。其结果如下:
     (1) OMNPK、OM、RSDNPK和NPK处理能显著提高玉米各生育期中土壤细菌、真菌、放线菌、氨氧化细菌、硝化细菌和反硝化细菌数量,其中,OMNPK处理对提高其土壤细菌、真菌、放线菌和氨氧化细菌数量的效果最显著,较CK提高了93.62%、98.71%、121.42%和275.64%;N处理对土壤氨氧化细菌、硝化细菌和反硝化细菌及真菌数量有一定程度提高,同时明显降低其细菌和放线菌数量,较CK降低了11.92%和36.61%。玉米整个生育期,不同施肥处理土壤微生物数量变化趋势基本一致,玉米拔节期是土壤硝化细菌数量最大值出现期,其余微生物数量达最大值则出现在玉米灌浆期。
     (2)整个玉米生育期,不同施肥处理土壤微生物量碳、氮变化趋势一致,均在玉米灌浆期达到最大值。OMNPK、OM、RSDNPK和NPK处理显著提高玉米各生育期中土壤微生物量碳、氮含量,其中以OMNPK处理最大,RSDNPK处理次之,N处理最小。
     (3)施肥明显提高玉米各生育期中土壤呼吸强度,其顺序依次为OMNPK >OM>RSDNPK>NPK>N>CK,不同施肥处理土壤呼吸强度最大值均出现在玉米灌浆期。施肥明显降低玉米各生育期中代谢熵,其顺序依次为CK>N>OM >RSDNPK>NPK>OMNPK,不同施肥处理代谢熵最大值均出现在玉米拔节期。
     (4)施肥显著提高玉米各生育期中土壤脲酶、碱性磷酸酶、转化酶、蛋白酶、硝酸还原酶、羟胺还原酶和亚硝酸还原酶活性,其中以OMNPK处理最显著,RSDNPK处理次之;施肥降低了土壤过氧化氢酶活性,其中以OM和OMNPK处理降幅最大,单施氮肥最小。玉米整个生育期,不同施肥处理土壤脲酶、碱性磷酸酶、羟胺还原酶和过氧化氢酶的活性最大值均出现在玉米灌浆期,土壤转化酶和硝酸还原酶活性均在玉米拔节期达最大值,而土壤蛋白酶和亚硝酸还原酶活性高峰则出现在玉米苗期。
     (5)施肥明显提高了玉米各生育期中土壤铵态氮和硝态氮含量,进而显著增加了玉米生育期土壤N2O排放通量及总量,其土壤N2O平均排放通量为40.86-156.43 ug.m-2.h-1,排放总量为0.46-1.75 kg.hm-2,占当季肥料施用量的0.91%-1.17%,其中以OM处理最大,RSDNPK处理最小。土壤铵态氮和硝态氮含量的变化趋势与土壤N2O排放通量变化趋势基本一致,这显示土壤铵态氮和硝态氮是玉米生育期土壤N2O排放的主要限制因子。
     (6)施肥能显著提高玉米产量,其中OMNPK和RSDNPK处理提高玉米产量明显优于NPK、OM、N和CK,其大小顺序为OMNPK>RSDNPK>NPK> OM>N>CK,较CK提高1843.54%、1841.19%、1660.43%、1506.59%和663.41%。
Effects of fertilization on soil microbial activity and N2O emission of Purple Soil in Central Sichuan Hilly Areas were studied, which aimed to establish the best fertilization system in central Sichuan hilly area, improve fertilizer use efficiency, reduce the purple soil N2O emission and accurately assess the N2O emission in the purple soil agro-ecosystem.
     Six different treatments, including pig manure (OM), pig manure+N, P, K fertilizers(OMNPK), straw+N, P, K fertilizers (RSDNPK), and the treatment of N, P, K fertilizers (NPK), N fertilizer (N) and no fertilizers (CK), were applied to the purple soil of wheat- maize rotation cropland in central Sichuan hilly areas. Soil microbial quantity, soil microbial biomass, soil respiration intensity, metabolic quotient, soil enzyme activities and N2O emission at different maize growth stages (from May to September,2010) were studied. The main results were as follows:
     (1)The quantities of soil microbes (bacteria, fungus, ammonia-oxidizing bacteria,actinomycetes, nitrifying bacteria and denitrifying bacteria) were improved significantly by OMNPK, OM, RSDNPK and NPK treatments at different maize growth stages. OMNPK treatment had the best effect, and increased the quantities of bacteria, fungus, actinomycetes and ammonia-oxidizing bacteria by 93.62%,98.71%,121.42% and 275.64% respectively, compared with CK. The quantities of ammonia-oxidizing bacteria, nitrifying bacteria and denitrifying bacteria were increased at some extent, while the quantities of bacteria and actinomycetes were reduced by 11.92% and 36.61% compared with CK. The change of soil microbes quantity showed the same trendency in different treatments at the whole maize growth stage, the maxima of actinomycetes quantity were appeared in maize jointing stage, and the maxima of the other soil microbes quantity were appeared in maize filling stage.
     (2) In the whole maize growth stages, soil microbial biomass C and N showed the same chang trendency in all the treatments, and the maxima of soil microbial biomass C and N were all in the maize filling stage. OMNPK, OM, RSDNPK and NPK treatments significantly increased the soil microbial biomass C and N in maize growth stages, and the OMNPK treatment had the best effect, then followed by the RSDNPK treatment, while the N treatment had the minimun value.
     (3) Fertilization treatments significantly affected the soil respiration intensity, and the soil respiration intensity order was OMNPK>OM>RSDNPK> NPK>N>CK, the maxima of the soil respiration intensity were all in the maize filling stage, while all the treatments significantly decreased the soil metabolic quotient, the soil metabolic quotient order was CK>N>OM>RSDNPK> NPK>OMNPK, and the maxima of the soil metabolic quotient of all the treatments appeared in the maize jointing stage.
     (4) Fertilization treatments significantly increased the activities of the soil urease, alkaline phosphatase, invertase, protease, hydroxylamine reductase, nitrite reductase and nitrate reductase. The OMNPK had the best effects, followed by the RSDNPK. While all the treatments reduced the catalase activity, the best decreasing effects were the OM and OMNPK, while the N treatment reduced the catalase activity least. In all the maize growth stages, the maxima of soil urease, alkaline phosphatase, hydroxylamine reductase and catalase activities appeared in the maize filling stage,but the maxima of soil invertase and nitrate reductase activities appeared in the jointing stage, and the maxima of the soil protease and nitrite reductase appeared in the seedling stage.
     (5) Fertilization treatments significantly increased the soil ammonium nitrogen and nitrate nitrogen contents, and then increased the soil N2O emission flux and total contents in the maize growth stages as well, and the maximum ammonium nitrogen and nitrate nitrogen contents appeared in the OM, and the minimum apperared in the RSDNPK. In all the treatments, the average soil N2O emission fluxs were 40.86-156.43ug.m-2.h-1, and the average soil N2O emission total contents were 0.46-1.75 kg.hm-2, which were 0.91%-1.17% of the fertilizing amount of the current season. The soil ammonium nitrogen and nitrate nitrogen contents showed the same change tendengcy as the soil N2O emission flux, which indicated that soil ammonium nitrogen and nitrate nitrogen were the main limiting factors of the soil N2O emission in the maize growth stages in hilly areas of the central Sichuan.
     (6) Fertilization treatments significantly increased the maize yields. OMNPK and RSDNPK treatments both had higher yields than the NPK, OM, N and CK. And the order of the maize yields in all the treatments was OMNPK>RSDNPK>NPK>OM>N>CK. Compared with the CK,the maize yields of the OMNPK, RSDNPK, NPK, OM and N increased by 1843.54%, 1841.19%,1660.43%,1506.59% and 663.41% respectively.
引文
[1]Mckenney D J.Wade D L.Rate of N2O evolution from N-fertilized soil[J].Geophysical Research Letters, 1978,5(9):777-780.
    [2]IPCC.Climate change 2007[M].Cambridge:Cambridge University Press.2007,1-3.
    [3]黎宁,李华兴,朱凤娇,等.菜园土壤微生物生态特征与土壤理化性质的关系[J].应用生态学报,2006,17(2):285-290.
    [4]中国科学院成都分院土壤研究室.《中国紫色土(上篇)》[M].北京:科学出版社,1991.
    [5]Joergensen R G, Emmerling C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, an diversity in agricultural soils[J]. Journal of Plant Nutrition an Soil Science,2006,169(3): 295-309.
    [6]李桂花.不同施肥对土壤微生物活性、群落结构和生物量的影响[J].中国农学通报,2010,26(14):204-208.
    [7]Ndayeyamiye A,Cote D.Effect of long-term pig slurry and solid cartle manure application on soil chemical land biological properties[J].Canadian Journal of Soil Science,1989,69(l):39-47.
    [8]Toyota K,Kuninaga S.Comparison of soil microbial community between soils amended with or without farmyard manure[J].Applied Soil Ecology,2006,33(I):39-48.
    [9]王立民.培肥方式对黑土氮素转化影响的研究[D].华北农业大学,2008.
    [10]辜运富,云翔,张小平,等.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响[J].中国农业科学,2008,41(12):4119-4126.
    [11]张信娣,曹慧,徐冬青,等.光合细菌和有机肥对土壤主要微生物类群和土壤酶活性的影响[J].土壤,2008,40(3):443-447.
    [12]Hatch D J,Lovell R D,Antil R S,et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung[J]. Biol Fertil Soils,2000,30:288-293.
    [13]张恩平,高巍,张淑红,等.长期施肥条件下菜田土壤微生物特征变化[J].生态学杂志,2009,28(7):1288-1291.
    [14]严君,韩晓增,王守宇.黑土不同植被覆盖与施肥下土壤微生物的变化特征[J].土壤通报,2009,40(2):240-24
    [15]张雷,许艳丽,李春杰,等.不同水肥条件对农田土壤细菌生理菌群的影响[J].大豆科学,2009,28(2):251-255.
    [16]Nanda S K,Das P K,Behera B.Effects of continuous manuring on microbial population,ammonification and CO2 evolution in a rice soil[J].Oryza,1988,25(4):413-416.
    [17]常影.耕作和施肥对黑土氮素转化菌影响的初步研究[D].吉林农业大学.2005.
    [18]韩琳,王殳屹,史奕,等FACE环境下不同秸秆与氮肥管理对稻田土壤硝化和反硝化菌的影响[J].土壤,2006,38(6):762-767.
    [19]Katayama A,Hu,H Y,et al.Long-term changes in microbial community structure in soils subjected to different fertilizing practices revealed by quinine profile analysis[J].Soil Science and Plant Nutrition,1998,44(4):559-569.
    [20]Wang J G, Lars R, Bakken. Competition for nitrogen during mineralization of plant residues in soil:microbial response to C and N availability[J].Soil Biology and Biochemistry,1997,29:163-170.
    [21]李秀英,赵秉强,李絮华,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
    [22]文顺元,王伯仁,李冬初,等.长期不同施肥对红壤微生物生长影响[J].中国农学通报,2010,26(22):206-209.
    [23]李伟群,王爽,王英,等.不同施肥处理对大豆生育期内土壤微生物的影响[J].大豆科学,2007,26(6):922-925.
    [24]姬兴杰,熊淑萍,李春明,等.不同肥料类型对土壤酶活性与微生物数量时空变化的影响[J].水土保持学报,2008,22(1):123-127.
    [25]Jenkinson D S,Ladd J N.Microbial biomass in soil:measurement and turnover[J].Soil biochemistry,1981, 5:415-417.
    [26]Vance E D,Brookes P C, Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology Biochemistry,1987,19:703-707.
    [27]Broockes P C,Mcgrath S P.Effects of metal toxicity on the size of the soil microbial biomass[J].Journal of Soil Scienee,1984,35:341-346.
    [28]Sparling G P.Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J].Australian Journal of Soil Research,1992,30:195-207.
    [29]Vig K,Megharaj M.Sethunathan N,et al.Bioavailability and toxicity of cadmium to microorganisms and their activities in soil[J].Advances in Environmental Research,2003.8:121-135.
    [30]Plaza C,Hernadez D,Garca-Gil J C,et al.Microbial activity in pig slurry-amended soils under semiarid conditions[J].Soil Biology and Biochemistry,2004(36):1577-1585.
    [31]Tessier L,Gregorich E QTopp E.Spatial variability of soil microbial biomass measured by the fumigation extraction method and KEC as affected by depth and manure application[J].Soil Biology Biochemistry, 1998,30:1369-1377.
    [32]Bossio D A,Scow K M,Cunapala N,et al.Determinants of microbial communities:effects of agricultural management,season,and soil type on phospholipid fatty acid profiles[J].Microbial Ecology,1998,36:1-12.
    [33]Witter E,Martnsson A M,Garica F V.Size of the soil biomass in a long-term experiment as affected by different N-fertilizers and organic manures[J].Soil Biol&Biochem,1993,25:659-669.
    [34]Kautz T,Wirth S,Ellmer F.Microbial activity in a sandy arable soil is governed by the fertilization regime[J]. European Journal of Soil Biology,2004,40:87-94.
    [35]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):126-182.
    [36]刘恩科,梅旭荣,赵秉强,等.长期不同施肥制度对土壤微生物生物量碳、氮、磷的影响[J].中国农业大学学报,2009,14(3):63-68.
    [37]王光华,齐晓宁,金剑,等.施肥对黑土农田土壤全碳、微生物量碳及土壤酶活性的影响[J].土壤通报,2007,38(4):661-665.
    [38]Acton D F,Gregorich L J.The Health of Our Soils:Toward Sustainable Agriculture in Canada[M].Ottawa: Agriculture Agri-Food Canada,CDR Unit,1995.
    [39]Goyal S,Mishra M M,Hooda I S,et al.Organic marter-microbial biomass relationships in field experiments under tropical conditions:effects of inorganic fertilization and organic amendments[J]. Soil Biology and Biochemistry,1992,24:1081-1084.
    [40]Masto R E, Chhonkar P K, Singh D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J].Soil Biology and Biochemistry,2006,38,1577-1582.
    [41]Wu Tianyun,Jeff J,Schoenau,et al.Infuence of cultivation and fertilization on total organic carbon and carbon fractionsin soils from the Loess Plateau of China[J].Soil&Tillage Research,2004,77:59-68.
    [42]李东坡,陈利军,武志杰,等.不同施肥黑土微生物量氮变化特征及相关因素[J].应用生态学报,2004,15(10):1891-1896.
    [43]周礼恺主编.土壤酶学[M].北京:科学出版社,1987.
    [44]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [45]Lovell R D,Jarvis S C.Soil microbial biomass and activity in long-term grassland:effects of management changes[J].Soil Biology and Biochemistry,1995,27(7):969-975.
    [46]陈吉,赵炳梓,张佳宝,等.长期施肥处理对玉米生长期潮土微生物生物量和活度的影响[J].土壤学报,2010,47(1):122-129.
    [47]王继红,刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报,2004,18(1):35-38.
    [48]张明,白震,张威,等.长期施肥农田黑土微生物量碳、氮季节性变化[J].生态环境,2007,16(5):1498-1503.
    [49]李娟,赵秉强,李秀英,等.长期不同施肥条件下土壤微生物量及土壤酶活性的季节变化特征[J].植物营养与肥料学报,2009,15(5):1093-1099.
    [50]Doran J W,Parkin T B.Defining and assessing soil quality[J].Soil Science Society of America,1994,3-4.
    [51]Irvinc R L,Eurley J P,Kehrberger G J.Bioremediation of soils contaminated with bis-(2-ethylhexyl) Phthalate (DEHP) in a Soil Sludge Sequencing Batch Reaetor[J].Environ Prog,1993,12(1):39-44.
    [52]Gareia Gil J C,Plaza C,Soler Rovira P,et al.Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J].Soil Biology and Biochemistry,2000,32(13):1907-1913.
    [53]王灿,王德建,孙瑞娟,等.长期不同施肥方式下土壤酶活性与肥力因素的相关性[J].生态环境,2008,17(2):688-692.
    [54]王树起,韩晓增,乔云发,等.不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响[J].植物营养与肥料学报,2009,15(6):1311-1316.
    [55]王娟,刘淑英,王平,等.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化[J].土壤通报,2008,39(2):299-303.
    [56]邱现奎,董元杰,万勇善,等.不同施肥处理对土壤养分含量及土壤酶活性的影响[J].土壤,2010,2010,42(2):249-255.
    [57]曾玲玲,张兴梅,洪音,等.长期施肥与耕作方式对土壤酶活性的影响[J].中国土壤与肥料,2008(2):27-30.
    [58]马宁宁,李天来,武春成,等.长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J].应用生态学报,2010,21(7):1766-1771.
    [59]张继光,秦江涛,要文倩,等.长期施肥对红壤旱地土壤活性有机碳和酶活性的影响[J].土壤,2010,42(3):364-371.
    [60]Bandick A K,Dick R P.Field management effects on soil enzyme activities[J].Soil Biol&Biochem, 1999.31:1471-1479.
    [61]孙瑞莲,赵秉强,,朱鲁生,等.长期定位施肥田土壤酶活性的动态变化特征[J].生态环境,2008,17(5):2059-2063.
    [62]Tadano T,Ozawa K,Sakai H,et al.Secretion of acid phosphatase by the roots of crop plants under p-deficient conditions and some properties of the enzyme secreted by lupin root[J].Plant Soil,1993,(155):95-98.
    [63]Zantua M I,Bremner J M.Stability of urease in soils[J].Soil Biology and Biochemistry,1977,9(2):135-140.
    [64]刘春生,曹亚梅,李红光.不同培肥措施对潮土酶活性影响的研究[J].山东农业大学学报,1998,29(3):365-369.
    [65]和文祥,来航线,武永军,等.培肥对土壤酶活性影响的研究[J].浙江大学报(农业与生命科学版),2001(3):265-268.
    [66]路磊,李忠佩,车玉萍,等.不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响[J].十壤,2006,38(3):309-314.
    [67]徐晶,陈婉华,孙瑞莲,等.不同施肥处理对湖南红壤中微生物数量及酶活性的影响[J].土壤肥料,2003(5):8-11.
    [68]侯彦林,王曙光,郭伟.尿素施肥量对土壤微生物和酶活性的影响[J].土壤通报,2004,35(3):303-306.
    [69]Liu B, Jia G, Chen J,et al. A review of methods for studying microbial diversity in soils[J].Pedosphere,2006, 16,18-24.
    [70]Hopkins A, Del Prado A. Implications of climate change for grassland in Europe:impacts, adaptations and mitigation options:a review[J].Grass and Forage Science,2007,62(2):118-126.
    [71]Smith K A,Thomson P E,Clayton H.Effeets of temperature,water content and nitrogen fertilization on emissions of nitrous oxide by soils[J].Aimos Environ,1998,32:3301-3309.
    [72]张光亚.设施栽培土壤氧化亚氮(N2O)释放和甲烷(CH4)氧化及其微生物学机理的研究[D].浙江大学,,2002.
    [73]王家玲.环境微生物学[M].北京:高等教育出版社.2004.
    [74]刘志培,刘双江.硝化作用微生物的分了生物学研究进展[J].应用与环境生物学报,2004,10(4):521-525.
    [75]孙建光,高俊莲,马晓彤,等.反硝化微生物分子生态学技术及相关研究进展[J].中国土壤与肥料,2007(2).
    [76]翟茜,汪苹.李秀婷.等.活性污泥中好氧反硝化菌的富集筛选及鉴别[J].环境科学与技术.2007,30(1):11-13.
    [77]Eichner M J.Nitrous oxide emissions from fertilized soil:Summary of available data[J].J Environ Qual,1990. 19:272-280.
    [78]Gregorich E G,Rochette P,Vanden Bygaart A J,et al.Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada[J].Soil and Tillage Research.2007,94(1):262-263.
    [79]李梦雅,徐明岗,王伯仁,等.长期不同施肥下我国旱地红壤N2O释放特征及其对土壤性质的响应[J].农业环境科学学报,2009,28(12):2645-2650.
    [80]杨劲峰,韩晓日,战秀梅,等.不同施肥处理对棕壤N2O排放量的影响[J].生态环境,2007,16(2):560-563.
    [81]Luo Tianxiang, Li Huixin, Wang Tong, et al.Influence of nematodes and earthworms on the emissions of soil trace gases (CO2,N2O)[J]. Acta Ecological Sinica,2008,28(3):993-999.
    [82]蔡延江,王连峰,温丽燕,等.培养实验研究长期不同施肥制度下中层黑土氧化亚氮的排放特征[J].农业环境科学学报,2008,27(2):617-621.
    [83]黄晶,刘宏斌,王伯仁.长期施肥下红壤旱地CO2、N2O排放特征[J].中国农学通报,2009,25(24):428-433.[84]张仲新,李玉娥,华珞,等.不同施肥量对设施菜地N20排放通量的影响[J].农业工程学报,2010,26(5):269-273.
    [85]邹建文,黄耀,宗良纲,等.稻田不同种类有机肥施用对后季麦田N2O排放的影响[J].环境科学,2006,27(7):1264-1268.
    [86]Meng L,Ding W X,Cai Z C.Long-term application of organic manure and nitrogen fertilizer on N2O emissions,soil quality and crop production in a sandyloam soil[J].Soil Biol Biochem,2005,37:2037-2045.
    [87]黄益宗,张福珠,刘淑琴,等.化感物质对土壤N20释放影响的研究[J].环境科学学报,1999,19(5):478-482.
    [88]Dobbie K EmTaggart I P,Smith K A.Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons,key driving variables,and mean emission factors[J].Journal of Geophysical Research,1999,104(D21):26891-26899.
    [89]Kusa K, Sawamoto T, Hatano R. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan[J]. Nutrient Cycling in Agroecosystems,2002,63(2/3):239-247.
    [90]Hiroko Akiyama,Hamo Tsuruta.Effect of chemical fertilizer form on N2O,NO and NO2 fluxes from Andisol field[J]. Nutrient Cycling in Agroecosystems,2002,63:219-230.
    [91]Phillips F A,Leuning R,Baigent R.Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques[J].Agricultural and Forest Meteorology,2007,143(1):92-105.
    [92]MA Jing,LI Xiang-lan,XU Hua,et al.Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field[J].Australian Journal of Soil Research,2007,45:359-367.
    [93]白东升,杨治平,王永亮,等.不同施肥管理方式下潮褐土区夏玉米N2O排放量研究[J].现代农业科学,2008,15(11):47-49.
    [94]Akiyama H.,Tsuruta H.,Watanabe T. N2O and NO emissions from soils after the application of different chemical fertilizers [J].Chemosphere-Global Change Science,2000,313-320.
    [95]Breitenbeck G A,blackmer A M,Bremner J M.Effects of different nitrogen fertilizers on emission of nitrous oxide from soil [J].Geophysical Research Letters,1980,7:85-88.
    [96]丁洪,王跃思,项虹艳,等.灰泥土中不同氮肥品种反硝化损失与N2O排放量的差异[J].生态环境,2004,13(4):643-645.
    [97]项虹艳,朱波,况福虹,等.氮肥施用对紫色土-玉米根系系统N2O排放的影响[J].环境科学学报,2007,27(3):413-420.
    [98]梁东丽,李生秀,吴庆强,等.玉米生长期黄土区土壤氧化亚氮产生和排放及其影响因子研究[J].西北农林科 技大学学报,2007,35(2):131-137.
    [99]张中杰,朱波,项红艳.氮肥施用对西南地区紫色图冬小麦N2O释放和反硝化作用的影响[J].农业环境科学学报,2010,29(10):2033-2040.
    [100]叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征[J].农业环境科学学报,2005,24(6):1186-1191.
    [101]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996,36,305-308.
    [102]Vance E D,Chpainn F S.Substrate limitations to microbial activity in taiga forest floors[J].Soil Biology and Biology,2001,23:173-188.
    [103]Menyaidov,Lehmann J,Cravo M S,et al.Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon[J].Brazil Biology and Fertility of Soil,2003,38:1-9.
    [104]关松荫主编.土壤酶及其研究法[M].北京:农业出版社,1986.
    [105]鲍士旦主编.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [106]于亚军,朱波,王小国,等.成都平原水稻-油菜轮作系统氧化亚氮排放[J].应用生态学报,2008,19(6):1277-1282.
    [107]陈旸,李忠佩,周立祥,等.不同施肥处理对红壤水稻土微生物生物量及呼吸强度的影响[J].土壤,2008,40(3):437-442.
    [108]时亚南.不同施肥处理对水稻土微生物生态特性的影响[D].浙江大学,2007.
    [109]沈萍.微生物学[M].北京:高等教育出版社,,2001.
    [110]邓婵娟.长期施肥对稻田土壤氮素转化特征及酶活性的影响[D].华中农业大学,2008.
    [111]Edgerton D L,Harris J A,Brich P. Linear relationship between aggregate stability and microbial in three restored soil[J].Soil Biol&Biochem,1995,27:1499-1501.
    [112]刘海.有机肥与化肥配施对作物产量和紫色土肥力的影响[D].西南大学,2010.
    [113]吕小红,陈温福.施氮水平对水稻植株形态及硝化-反硝化生理特性的影响[J].北方水稻,2008,38(3):43-45.
    [114]袁玲.杨邦俊,郑兰君,等.长期定位施肥对土壤酶活性和氮、磷养分的影响[J].植物营养与肥料学报,1997,3(4):300-306.
    [115]Grego S,Kennedy A Y.Effect of ammonitrate and stabilized farm yard manure on microbial biomass and metablic quotient of soil under Zeamaysl[J].Agric.Mediterrance,1989,128:132-137.
    [116]张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其熵值(qMB,qCO2)[J],生态学杂志,2003,22(2):28-31.
    [117]Claire P, Swiney M C, Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zeamays L.) cropping system[J].Global Change Biology,2005,11:1712-1719.
    [118]代光照,李成芳,曹凑贵,等.免耕施肥对稻田甲烷与氧化亚氮排放及其温室效应的影响[J].应用生态学报,2009,20(9):2166-2172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700