超微电极电化学研究表面活性剂水溶液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂分子具有既亲水又亲油的“双亲”特性,目前已被广泛地应用各个领域,成为工业生产和日常生活中不可或缺的一种剂。近年来,新一代表面活性剂Gemini,正逐渐成为相关领域的研究热点。它改变了传统表面活性剂的结构,具有更优良的性能。对它的研究从开始的结构设计、合成和分析,逐步扩展到界面行为、聚集体性质、协同效应及应用等方面。因此继续开发新的方法来更好的研究各种表面活性剂性能、作用规律和原理具有非常重要的意义。
     本论文在前人工作基础上,主要应用超微电极研究了CTAB水溶液胶束性质并且首次探索了其在Gemini表面活性剂水溶液性质研究中的应用。通过用超微电极测量胶束扩散系数变化,重点研究了添加剂对表面活性剂水溶液性质的影响,涉及到界面张力和胶束形状、大小、扩散、相互作用等多方面的内容,讨论了相关的规律和机理,加深了对胶束的微观结构变化和一些重要性质的理解。
     主要研究内容及其结果如下:
     1.用超微电极循环伏安法测量CTAB胶束的扩散系数,用时间分辨荧光法得到CTAB的胶束聚集数,根据这两种方法得到的实验结果,计算其他的胶束参数如有效半径(a)、胶束的表面积(S)、单个CTAB分子所占的面积(A)和排列参数(P),研究邻苯二酚对CTAB水溶液中胶束大小和形状的影响。结果表明:邻苯二酚的加入能够加速胶束变大,促进胶束形状变化,即由球形转变为棒状。
     2.用旋滴法测定烷基苯磺酸盐Gemini表面活性剂Ia水溶液与烷烃的界面张力,用超微电极循环伏安法测量Ia水溶液中胶束的扩散系数,研究NaCl对Ia水溶液性质的影响。结果发现:NaCl的加入能够使Ia胶束的扩散系数变大,界面张力降低,这些变化是因为NaCl的加入增强了静电屏蔽作用,降低了Ia离子头基之间的静电斥力,使得Ia分子排列更加紧密,从而使胶束形状变小,更有效的降低油水的界面张力,同时胶束表面电荷得到中和,胶束的静电斥力相应减小,胶束流动性相应的增加,表现出较大的胶束扩散系数。
Surfactants are widely used in various fields and becoming necessary additive in industrial production and people’s daily life due to their unique properties. In recent years, the new generation of surfactant, Gemini surfactant, is becoming the researching hotspot of relative fields. The Gemini surfactant improves the structure of traditional surfactant and performs better property than the traditional surfactant. The research ranges from its structure design, composition and analysis to interface activity, quality of the congeries, cooperating effect and application, etc. Therefore, it’s importance to develop new researching methods to study the performance, functioning rule and principle of the surfactants.
     Based on the existing researches, this work enlarges the application of the ultamicroelectrode voltammetry in the surfactant system, mainly its application in research of the quality of traditional surfactants and Gemini surfactant. The ultamicroelectrode voltammetry is used to measure the diffusion coefficient change of micelle, the effect of the additives on the quality of the surfactant solution is specially studied. The study includes interface tension, micelle shape, size, diffuse and interaction, relative rules and mechanism are discussed, and a deeper comprehension of the microcosmic structure change of the congeries and some important property is realized.
     The main contents and the results are as follows:
     1. The effects of catechol on the change of cetyltrimethylammonium bromide (CTAB) micelles in aqueous solutions have been studied by Ultramicroelectrode (UME) cyclic voltammetry and Time-Resolved Fluorescence Quenching (TRFQ). It has been shown that the diffusion coefficient decreases and the micelle aggregation number increases with the addition of catechol. In order to analyze the change of the micelles, other micelle parameters like the effective radius (a), surface area of micelle (S), area of single CTAB molecule (A) and packing parameter (P) were calculated. All the results show that catechol can accelerate the increase of the aggregate size and sphere-to-rod morphology change of CTAB micelles even with lower concentration of CTAB.
     2. The effects of NaCl on the properties of alkylbenzene sulfonate Gemini surfactant have been investigated by spinning drop method and Ultramicroelectrode (UME) cyclic voltammetry. Spinning drop method and UME are used to measure the interfacial tension between Gemini Ia aqueous solution and heptane, the diffusion coefficient of Ia in aqueous solutions. It has been shown that the interfacial tension decreases and the diffusion coefficient increases with the addition of Nacl. This is because that electrostatic force reduces the electrostatic repulsion forces between ionic groups of Ia, which leads to a tighter arrangement of Ia and then reduces the interfacial tension and diminishes the size of micelles; micelles surface charge has been neutralized, so the electrostatic repulsion force between micelles decreases and the mobility of the micelles increases, which shows a larger diffusion coefficient.
引文
[1]程铸生,精细化学品化学(修订版),上海:华东理工大学出版社,2002, 186-251.
    [2]赵国玺,分子有序组合体,物理化学学报,1992 (8) 136-144.
    [3] M. H. Gehlen, M. V. Auweraer, S. Reekmans, M. G. Neumann, F. C. De Schryver, Stochastic model for fluorescence 1uenching in monodisperse micelles with probe migration, J. Phys. Chem. 1991 (95) 14, 5684-5689.
    [4] A. M. Petra, V. Koppen, P. R. Kemper, T. B. Michael , Reactions of state-selected cobalt(+) with propane, J. Am. Chem. Soc. 1992 (114) 3, 1083-1084.
    [5]刘程,表面活性剂应用大全,北京,北京工业大学出版社,1997.
    [6]赵国玺,表面活性剂物理化学,北京,北京大学出版社,1991.
    [7] R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv in Colloid Interface Sci. 2002 (97) 205-253.
    [8]赵剑曦,新一代表面活性剂:Gemini,化学进展1999 (11) 348-357.
    [9] C. A. Bunton, L. Robinson, J. Schaak, M. F. Stam Catalysis of nucleophilic substitutions by micelles of dicationic detergents, J. Org. Chem. 1971 (36) 2346-2350.
    [10] Y. P. Zhu, A. Masuyama, M. Okahara, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. J. Am. Oi1 Chem. Soc. 1990 (67) 459-463.
    [11] M. J. Rosen, Gemini: a new generation of surfactants, Chemtech. 1993 (23) 31-33.
    [12] E. Alami, G. Beinert, P. Marie, R. Zana, Alkanediyl-α,ω-bis (dimethylalkylammonium bromide)surfactants. 3. Behavior at the air-water interface, Langmuir. 1993 (9) 1465-1467.
    [13] F. M. Menger, C. A. Littau, Gemini surfactants: synthesis and properties, J. Am. Chem. Soc. 1991 (113) 4, 1451-1452.
    [14] E. Alami, H. Levy, R. Zana, A. Skoulios, Alkanediyl-α,ω-bis (dimethylalkyl ammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in thepresence of water. Langmuir. 1993 (9) 940-944.
    [15]赵剑曦,Gemini表面活性剂的研究与发展方向,研发前沿。2008 (16) 2, 14-19.
    [16] D. Wu, Y. Feng, G. Xu, Y. Chen, X. Cao,Y. Li, Dilational rheological properties of gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) at air/water interface. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007 (299) 117-123.
    [17] X. Cui, H. Chen, X. Yang, A. Liu, S. Mao et al. Aggregation behavior of quaternary ammonium dimeric surfactant C14-s-C14·2Br micelles, Acta Physico-Chimica Sinica. 2007 (23) 3, 317-321.
    [18]王文波,刘玉芬,申书昌,表面活性剂是用仪器分析,北京:化学工业出版社,2003年。1-36.
    [19] A. Maldonado, C. Nicot, M. Waks, R. Ober, W. Urbach, D. Langevin, Confined diffusion in a sponge phase, J. Phys. Chem.B 2004 (108) 9, 2893-2897.
    [20] C. Cabaleiro-Lago, M. Nilsson,O. Soderman, Self-diffusion NMR studies of the host-guest interaction betweenβ-Cyclodextrin and alkyltrimethylammounium bromide surfactants, Langmuir. 2005 (21) 25, 11637-11644.
    [21] A. B. Mandal, B. U. Nair, Cyclic voltammetric technique for the determination of the critical micelle concentration of surfactants, self-diffusion coefficient of micelles, and partition coefficient of an electrochemical probe, J. Phys. Chem. 1991 (95) 22, 9008-9013.
    [22] [法]R.赞恩主编,唐善彧,程绍进译,陈立滇审校,表面活性剂溶液研究新方法,北京:石油工业出版社,1992年。
    [23] S. H. Tung, Y. E. Huang, S. R. Raghavan, Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles, Langmuir, 2007 (23) 2, 372-376.
    [24] S. S., Soni, N. V. Sastry, J. George, H. B. Bohidar, Dynamic light scattering and viscosity studies on the association behavior of silicone surfactant in aqueous solutions, J. Phys. Chem.B. 2003 (107) 22, 5382-5390.
    [25] Ch. Hahn, A. Wokaun, Diffusion in surfactant systems studied by forced rayleighscattering, Langmuir. 1997 (13) 3, 391-397.
    [26] S. S. Atik, J. K. Thomas, Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another, J. Am. Chem. Soc. 1981 (103) 12, 3543-3550.
    [27] P. Pimenta, E. E. Pashkovski, Rheology of viscoelastic mixed surfactant solutions: effect of scisson on nonlinear flow and rheochaos, Langmuir, 2006 (22) 9, 3980-3987.
    [28] D. Varade, C. Rodriguez-Abreu, L. K. Shrestha, K. Aramaki, Wormlike micelles in mixed surfactant systems: effect of cosolvents, J. Phys. Chem. B. 2007 (111) 35, 10438-10447.
    [29] K. Edwards, M. Almgren, J. Bellare, W. Brown, Effects of triton X-100 on sonicated lecithin vesicles, Langmuir, 1989 (5) 473-478.
    [30] A. B. Groswasser, R. Zana, Y. Talmon, Microstructures in aqueous solutions of mixed dimeric surfactants: vesicle transformation into networks of tread-like micelles, J. Phys. Chem. B. 2000 (104) 12192-12201.
    [31] S. Rossi, G. Karlsson, S. Ristori, G. Martini, K. Edwards, Aggregate structures in a dilute aqueous dispersion of a fluorinated/hydrogenated surfactant system. A cryo-transmission electron microscopy study, Langmuir. 2001 (17) 2340-2345.
    [32] Y. Zheng, Z. Lin, J. L. Zakin, Y. Talmon, H. T. Davis, L. E. Scriven, Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles, J. Phys. Chem. B. 2000 (104) 5263-5271.
    [33] H. Sakai, W. Yokoyama, J. F. Rathman, M. Abe, Nanoscale patterning of adsorbed amphiphile films with an atomic force microscope probe, Langmuir. 2003 (19) 2845-2850.
    [34] J. Dong, G. Mao, Direct study of C12E5 aggregation on mica by atomic force microscopy imaging and force measurments, Langmuir. 2000 (16) 6641-6647.
    [35] B. A. Simmons, C. E. Taylor, F. A. Landis, V. T. John, G. L. Mcpherson, D. K. Schwartz, R. Moore, Microstructure determination of AOT + Phenol organogels utilizing small-angle x-ray scattering and atomic force microscopy, J. Am. Chem.Soc. 2001 (123) 2414-2421.
    [36]肖衍繁,李文斌,物理化学,天津:天津大学出版社,1997.6(2003.8重印),P342.
    [37]傅献彩,沈文霞,姚天扬,(南京大学物理化学教研室),物理化学(下册)(第四版),北京:高等教育出版社,1990.10, (1991年2月第2次印刷),918-933; 1031-1032.
    [38]朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996.9,61-68; 84-90.
    [39]赵国玺,朱步瑶,表面活性剂作用原理,北京:中国轻工业出版社,2003, 18-22; 27-60;225-242.
    [40] [阿根廷]德鲁·迈尔斯(Draw Myers)著,吴大诚,朱谱新,王罗新,高绪珊等译,表面、界面和胶体——原理及应用(第二版),北京:化学工业出版社,200.8,16-28; 274-301.
    [41] [瑞典]K.霍姆博格,B.琼森,B.科隆博格,B.林德曼著,韩丙勇,张学军译,水溶液中的表面活性剂和聚合物(原著第二版),北京:化学工业出版社,2005.2,2-4;32-54;179-204.
    [42]江龙,胶体化学概论,中国科学院研究生教学丛书,127-158.
    [43]肖进新,赵振国,表面活性剂应用原理,北京:化学工业出版社,2003.
    [44]赵国玺,表面活性剂物理化学,第二版,北京:北京大学出版社,1993.
    [45] G. Bai, J. Wang, H. Yan, Z. Li, R. K. Thomas, Thermodynamics of molecular self-assembly of cationic gemini and related double chain surfactants in aqueous solution, J. Phys. Chem. B. 2001 (105) 3105-3108.
    [46] R. Zana, Comments on fluorescence study of premicellar aggregation in cationic gemini surfactants, Langmuir. 2002 (18) 7759-7760.
    [47] X. Wang, J. Wang, Y. Wang, H. Yan, P. Li, R. K. Thomas, Effect of the nature of the spacer on the aggregation properties of gemini surfactants in an aqueous solution, Langmuir. 2004 (20) 53-56.
    [48] G. Bai, H. Yan, R. K. Thomas, Microcalorimetric studies on the thermodynamic properties of cationic gemini surfactants, Langmuir. 2001 (17) 4501-4504.
    [49] S. De, V. K. Aswal, P. S. Goyal, S. Bhattacharya, Characterization of new geminisurfactant micelles with phosphate headgroups by SANS and fluorescence spectroscopy, Chem Phys Lett. 1999 (303) 3-4, 295-303.
    [50] S. De, V. K. Aswal, P. S. Goyal, S. Bhattacharya, Novel gemini micelles from dimeric surfactants with oxyethylene spacer chain. Small angle neutron scattering and fluorescence studies, J. Phys. Chem. B. 1998 (102) 6152-6160.
    [51] D. A. Jaeger, E. L. G. Brown, Double-chain surfactants with two carboxylate head groups that form vesicles, Langmuir. 1996 (12) 1976-1980.
    [52] P. Renouf, D. Hebraultb, J. R. Desmursb, J. M. Mercierc, C. Mioskowskia, L. Lebeau, Synthesis and surface-active properties of a series of new anionic gemini compounds, Chemistry and Physics of Lipids. 1999 (99) 1, 21-32.
    [53] A. V. Peresypkin, F. M. Menger, Zwitterionic geminis. Coacervate formation from a single organic compound. Org. Lett. 1999 (1) 9, 1347-1350.
    [54] J. Eastoe, P. Rogueda, B. J. Harrison, A. M. Howe, A. R. Pitt, Properties of a dichained“sugar surfactant’’, Langmuir. 1994 (10) 4429-4433.
    [55] A. Espert, R. V. Klitzing, P. Poulin, A. Colin, R. Zana, D. Langevin, Behavior of soap films stabilized by a cationic dimeric surfactant, Langmuir. 1998 (14) 4251-4260.
    [56] F. Kern, F. Lequeux, R. Zana, S. J. Candau, Dynamical properties of salt-free viscoelastic micellar solutions, Langmuir. 1994 (10) 1714-1723.
    [57] K. Shinoda, The significance and characteristics of organized solutions, J. Phys. Chem. 1985 (89) 11, 2429-2431.
    [58] A. Barraud, Super molecular engineering by the Langmuir-Blodgett method, Thin Solid Films. 1989 (175) 73-80.
    [59] Z. Zhou, Z. Li, Y. Ren, M. A. Hillmyer, T. P. Lodge, Micellar shape change and internal segregation induced by chemical modification of a tryptych block copolymer surfactant, J. Am. Chem. Soc. 2003 (125) 34, 10182-10183.
    [60] F. Bockstahl, G. Duplatre, Effect of 1-Pentanol on size and shape of sodium dodecyl sulfate micelles as studied by positron annihilation lifetime spectroscopy, J. Phys. Chem. B. 2001 (105) 13-18.
    [61] R. Ranganathan, M. Reric, R. Medina, U. Garcia, B. L. Bales, M. Almgren, Size, hydration, and shape of SDS/Heptane micelles investigated by Time-resolved fluorescence quenching and electron spin resonance, Langmuir. 2001 (17) 22, 6765-6770.
    [62] R. G. Alargova, K. D. Danov, J. T. Petkov, P. A. Kralchevsky, G. Broze, A. Mehreteab, Sphere-to-Rod transition in the shape of anionic surfactant micelles determined by surface tension measurements, Langmuir. 1997 (13) 5544-5551.
    [63] J. N. Israelachvili, D. J. Mitchell, B. W. Ninhem, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans 2, 1976 (72) 1525.
    [64] W. Guo, B. M. Fung, S. D. Christian, NMR study of cyclodextrin inclusion of fluorocarbon surfactants in solution, Langmuir. 1992 (8) 2, 446-451.
    [65] N. Funasaki, S. Ishikawa, S. Neya, Proton NMR study ofα-Cyclodextrin inclusion of short-chain surfactants, J. Phys. Chem. B. 2003 (107) 37, 10094-10099.
    [66] J. Xia, P. L. Dubin, Y. Kin, Complex formation between poly(oxyethylene) and sodium dodecyl sulfate micelles: light scattering, electrophoresis, and dialysis equilibrium studies, J. Phys. Chem. 1992 (96) 16, 6805-6811.
    [67] P. Baglioni, E. Rivara-Minten, L. Dei, E. Ferroni, ESR study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions: effect of urea, J. Phys. Chem. 1990 (94) 21, 8218-8222.
    [68] E. Feitosa, W. Brown, M. Swanson-Vethamuthu, Interaction of the nonionic surfactant C12E8 with high molar mass poly(ethylene oxide) studied by dynamic light scattering and fluorescence quenching methods Langmuir. 1996 (12) 25, 5985-5991.
    [69] P. J. Missel, N. A. Mazer, G. B. Benedrk, M. C. Carey, Influence of chain length on the sphere-to-rod transition in alkyl sulfate micelles, J. Phys. Chem. 1983 (87) 7, 1264-1277
    [70] R. Dorshow, J. Briggs, C. A. Bunton, D. F. Nicoli, Dynamic light scattering fromcetyltrimethylammonium bromide micelles. Intermicellar interactions at low ionic strengths, J. Phys. Chem., 1982 (86) 13, 2388-2395.
    [71] R. Zana, J. Lang, Recent developments in fluorescence probing of micellar solutions and microemulsions, Colloids and Surfaces. 1990 (48) 153-171.
    [72] D. D. Miller, D. F. Evans, Fluorescence quenching in double-chained surfactants. 1. Theory of quenching in micelles and vesicles, J. Phys. Chem. 1989 (93) 1, 323-333.
    [73] K. Kalyanasundaram, Pyrene fluorescence as a probe of fluorocarbon micelles and their mixed micelles with hydrocarbon surfactants, Langmuir. 1988 (4) 4, 942-945.
    [74] V. K. Aswal, P. S. Goyal, P. Thiyagarajan, Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions, J. Phys. Chem. B. 1998 (102) 2469-2473.
    [75] D. Qiu, C. A. Dreiss, T. Cosgrove, Small-angle neutron scattering study of concentrated colloidal dispersions: the interparticle interactions between sterically stabilized particles, Langmuir. 2005 (21) 22, 9964-9969.
    [76] L. L. Brasher, E. W. Kaler, A small-angle neutron scattering (SANS) contrast variation investigation of aggregate composition in catanionic surfactant mixtures, Langmuir. 1996 (12) 6270-6276.
    [77] J. J. Donohue, D. A. Buttry, Adsorption and micellization influence the electrochemistry of redox surfactants derived from ferrocene, Langmuir. 1989 (5) 3, 671-678.
    [78] A. B. Mandal, Self-diffusion studies on various micelles using ferrocene as electrochemical probe, Langmuir. 1993 (9) 7, 1932-1933.
    [1] [美]阿伦. J.巴德,拉里. R.福克纳著,邵元华,朱果逸,董献堆,张柏译。电化学方法原理和应用(第二版)。北京:化学工业出版社教材出版中心P1.
    [2]古宁宇,董绍俊,超微电极的新进展。大学化学2001 (16) 1, 26-31.
    [3] R. M. Wightman, D. O. Wipf, Voltammetry at Ultramicroelectro-des, in Electroanalytical Chemistry, Ed. By A. J. Bard, Marcel Dekker, Inc., New York and Basel, 1989, Vol. 15, pp. 267.
    [4] S. Pons, M. Fleischmann, The behavior of microelectrodes, Anal. Chem. 1987 (59) 24, 1391A-1399A.
    [5] R. M. Wightman, Microvoltammetric electrodes, Anal. Chem. 1981 (53) 9, 1125A-1134A..
    [6]谢锦春,崔志力,薛峰,张晔晖,徐晓洁,超微电极技术与应用,分析测试技术与仪器。2004 (10) 101-106.
    [7]张剑荣,昝宇,杨曦,张祖训,超微电极研究——支持电解质浓度对准稳态伏安分析的影响,分析化学。1995 (23) 12, 1469.
    [8]张祖训,超微电极电化学。北京:科学出版社,1998,P1.
    [9] [美]阿伦. J.巴德,拉里. R.福克纳著,邵元华,朱果逸,董献堆,张柏译。电化学方法原理和应用(第二版)。北京:化学工业出版社教材出版中心P119.
    [10]角谷忠昭,宫崎宽,池田正人,微电极伏安法及其在体内分析中的应用(日文),Bunseki. 1986 (143) 11, 778-786.
    [11] M. Fleischmann, S. Pons, D R. Rolison, P. P. Schmidt, Ultramicroelectrodes, Datateche Systems, Inc. Science Publishers, 1987.
    [12] P. Sun, Z. Zhang, J. Guo, Y. Shao, Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy, Anal. Chem.. 2001 (73) 21, 5346-5351.
    [13]黄卫华,吴文展,庞代文,王宗礼,程介克,超微电极电化学及咸味荧光成像时空监测单细胞释放,高等学校化学学报。2004 (25) 175-176.
    [14]周华方,董绍俊,用超微电极研究二茂铁等物质在聚电解质聚乙二醇·高氯酸锂中的伏安行为,分析化学研究报告。1997 (25) 382-386.
    [15]梁汉璞,赵燕,张亚利,纳米微电极研究进展,青岛大学学报。2003 (16) 2, 76,86,96; 07,17,27,37.
    [16] B. B. Katemann, W. Schuhmann, Fabrication and Characterization of Needle-Type Pt-Disk Nanoelectrodes, Electroanalysis. 2002 (14) 1, 22-28.
    [17] Y. Lee, A. J. Bard, Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments, Anal. Chem.. 2002 (74) 15, 3626-3633.
    [18] S. G. Lemay, D. M. Broek, A. J. Storm, D. Krapf et al., Fabricated nanopore-based electrodes for electrochemistry, Anal. Chem. 2005 (77) 1911-1915.
    [19] C. G. Zoski, Ultramicroelectrodes: design, fabrication, and Characterization, Electroanalysis. 2002 (14) 1041-1051.
    [20] K. R. Wehmeyer, M. R. Deakin, R. M. Wightman, Electroanalytical properties of band electrodes of submicrometer width,Anal. Chem. 1985 (57) 9, 1913-1916.
    [21] Y. Lee, S. Amemiya, A. J. Bard, Scanning electrochemical microscopy. 41. theory and characterization of ring electrodes, Anal. Chem. 2001 (73) 10, 2261-2267.
    [22] W. Miao, Z. Ding, A. J. Bard, Solution viscosity effects on the heterogeneous electrontransfer kinetics of ferrocenemethanol in dimethyl sulfoxide?water mixtures, J. Phys. Chem. B. 2002 (106) 6, 1392-1398.
    [23]张祖训,超微电极电化学。北京:科学出版社,1998,379-386.
    [24]王赪胤,刘清秀,邵晓秋,胡效亚,碳纤维纳米圆盘电极和金超微电极的制备,扬州大学学报(自然科学版)。2006 (9) 2, 21-25.
    [25]朱明智,蒋庄德,微纳加工技术在超微电极制备中的应用,分析化学评述与进展。2006 (34) 12, l794-1800.
    [26]庆伟霞,王勇,赵东保,刘绣华,刘快之,碳纳米管修饰碳纤维超微圆柱电极的研制与应用,分析试验室。2008 (27) 6, 87-100.
    [27] A. Russell, K. Repka, T. Dibble, J. Ghoroghchian, J. J. Smith, M. Fleischmann, C. H. Pitt, S. Pons, Determination of Electrochemical Heterogenious Electron-Transfer Reaction Rates from Steady-State Measurements at Ultramicroelectrode, Anal. Chem. 1986 (58) 14, 2961-2964.
    [28] C. Demaille, M. Brust, M. Tsionsky, A. J. Bard, Fabrication and Characterization of Self-Assembled Spherical Gold Ultramicroelectrodes, Anal. Chem. 1997 (69) 13, 2323-2328.
    [29] K. R. Wehmeyer, R. M. Wightman, Cyclic voltammetry and anodic stripping voltammetry with mercury ultramicroelectrodes, Anal. Chem. 1985 (57) 9, 1989-1993.
    [30] J. Golas, Z. Galus, J. Osteryoung, Iridium-based small mercury electrodes, Anal. Chem. 1987 (59) 3, 389-392.
    [31] G. P. Kittlesen, H. S. White, M. S. Wrighton, Chemical derivatization of microelectrode arrays by oxidation of pyrrole and N-methylpyrrole: fabrication of molecule-based electronic devices, J. Am. Chem. Soc. 1984 (106) 24, 7389-7396.
    [32]孙冬梅,薛宽宏,蔡称心,孔景临,徐士民,姚建林,任斌,田中群,纳米阵列铂电极的样模法制备与应用,分析化学仪器装置与实验技术。2000 (28) 10, l308-13l2.
    [33]吴志斌,张祖训,线性扫描伏安法研究(III):超微盘电极上同时受扩散的电极反应速率控制的准稳态电流理论,高等学校化学学报。1992 (13) 4, 454-458.
    [34] Z. Yang, Y. Lu, J. Zhao, Q. Gong, X. Yin, Z. Yang, Ultramicroelectrode Voltammetric Investigation of Intermicellar Interaction and Micellar Growth of Sodium Dodecyl Sulfate in Aqueous NaCl Solutions, J. Phys. Chem. B. 2004 (108) 22, 7523-7527.
    [35] Y. Shao, M. V. Mirkin, G. Fish, S. Kokotov, D. Palanker, A. Lewis, Nanometer-sized electrochemical sensors, Anal. Chem. 1997 (69) 8, 1627-1634.
    [36] J. V. Macpherson, P. R. Unwin, Combined scanning electrochemical-atomic force microscopy, Anal.Chem. 2000 (72) 2, 276-285.
    [37]张祖训,超微电极电化学。北京:科学出版社,1998,16-20.
    [38]卫应亮,张路平,邵晨,纳米材料修饰电极的制备及在电化学分析中的应用综述,郑州轻工业学院学报(自然科学版)。2008 (23) 5, 8-11.
    [39] S. Lijima, Helical mincrotubules of graphitic carbon, Nature. 1991, (54) 6348, 56-58.
    [40]庆伟霞,王勇,赵东保,刘绣华,刘快之,碳纳米管修饰碳纤维超微圆柱电极的研制与应用,分析试验室。2008 (27) 6, 97-100.
    [41] X. Liu, Keith H. R. Baronian, A. J. Downard, Patterned arrays of vertically aligned carbon nanotube microelectrodes on carbon films prepared by thermal chemical vapor deposition, Anal. Chem. 2008 (80) 22, 8835-8839.
    [42] M. A. Makos, Y. Kim, K. Han, M. L. Heien, A. G. Ewing, In vivo electrochemical measurements of exogenously applied dopamine in drosophila melanogaster, Anal. Chem. 2009 (81) 5, 1848-1854.
    [43]王月荣,胡坪,梁琼麟,罗国安,王义明,碳纳米管修饰电极在生命电分析化学中的应用进展,分析化学。2008 (36) 8, 1011-1016.
    [44]姜灵彦,刘蕾,罗旭,牛俊玲,陆光汉,碳纳米管修饰电极及其在环境分析中的应用,化工时刊。2007 (21) 4, 64-67.
    [45] M. Morita, M. L. Longmire, R. W. Murray, Solid-state voltammetry in a three-electrode electrochemical cell-on-a-chip with a microlithographically defined microelectrode, Anal. Chem., 1988 (60) 24, 2770-2775.
    [46] T. Hatazawa, R. H. Terrill, R. W. Murray, Room temperaturemelt of an oligo(ethylene glycol)-tailed viologen, Anal. Chem. 1996 (68) 4, 597-603.
    [47] N. Gu, S. Dong, Electron self-exchange reaction of viologen and its derivatives in poly_ethylene glycol, Electrochemistry Communications. 2000 (2) 713-716.
    [48] H. Zhou, N. Gu, S. Dong, Studies of ferrocene derivative diffusion and heterogeneous kinetics in polymer electrolyte by using microelectrode voltammetry, Journal of Electroanalytical Chemistry. 1998 (441) 153-160.
    [49] S. Dong, N. Gu, H. Zhou, A study on the diffusion of quinhydrone in polymer electrolyte, Journal of Electroanalytical Chemistry. 1998 (441) 95-101.
    [50] C. Amatore, S. Arbault, M. Guille, and F. Lemaitre, Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress, Chem. Rev. 2008 (108) 7, 2585-2621.
    [51] T. M. Olefirowicz, A. G. Ewing, Capillary electrophoresis in 2 and 5μm diameter capillaries: application to cytoplasmic analysis, Anal. Chem., 1990 (62) 17, 1872-1876.
    [52]毛兰群,徐琦,金利通。WO3超微电极及其在心肌细胞分析中的应用,华东师范大学学报(自然科学版)。1998 (4) 68-72.
    [53] A. J. Bard, F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy. Introduction and principles, Anal. Chem., 1989 (61) 2, 132-138.
    [54] J. West, M. Becker, S. Tombrink, A. Manz, Micro total analysis systems: latest achievements, Anal. Chem. 2008 (80) 12, 4403-4419.
    [55] D. Lee, J. C. Hutchison, J. M. DeSimone, R. W. Murray, Diffusive transport of micelles and monomeric solutes in supercritical CO2, J. Am. Chem. Soc. 2001 (123) 34, 8406-8407.
    [56] T. L. Ferreira, O. A. El Seoud, M. Bertotti, A microelectrode voltammetric study of the diffusion of CTABr aggregates in aqueous solutions, Electrochimica Acta 2004 (50) 1065–1070.
    [57] I. D. Charlton, A. P. Doherty, Simultaneous observation of attractive interaction, depletion forces, and“sticky”encounters between AOT reverse micelles in isooctane using microelectrode voltammetry, J. Phys. Chem. B. 2000 (104) 8061-8067.
    [58]胡纪华,杨兆禧,郑忠,胶体与界面化学。广州:华南理工大学出版社,1997. 3 (2002.7重印) 433-425.
    [59] [瑞典] K.霍姆博格,B.琼森,B.科隆博格,B.林德曼著,韩丙勇,张学军译,水溶液中的表面活性剂和聚合物(原著第二版)。北京:化学工业出版社材料科学与工程出版中心,2005. 3.
    [60] J. W. Chen, J. Georges, Application of carbon-fiber microelectrodes to the study of non-conductive inverse microemulsions: Interpretation of the diffusion coefficients, Journal of Electroanalytical Chemistry. 1986 (210) 24, 205-211.
    [61] Z. Wang, A. Owlia, J. F. Rusling, Reduction of methyl viologen in a resistive water-in-oil microemulsion,Journal of Electroanalytical Chemistry. 1989 (270) 407-413.
    [62] E. Garcia, S. Song, L. E. Oppenheimer, B. Antalek, A. J. Williams, J. Texter, Cosurfactant-induced electron transfer in highly resistive microemulsions, Langmuir. 1993 (9) 11, 2782-2785.
    [63] P. G. Molina, J. J. Silber, N. M. Correa, L. Sereno, Electrochemistry in AOT reverse micelles. A powerful technique to characterize organized media, J. Phys. Chem. C. 2007 (111) 4269-4276.
    [64] L. Li, Y. Lu, X. Du, Z. Yang, Z. Yang, Study on the structure transition of CTAB/1-Butanol/Heptane/Water microemulsions by Pt ultramicroelectrode, Z. Phys. Chem. 2006 (220) 723-734.
    [65] T. L. Ferreira, O. A. El Seoud, M. Bertotti, Effects of KBr and n-Decanol on the properties of cetyltrimethylammonium bromide micelles in aqueous solutions: A microelectrode voltammetric study, Journal of Electroanal. Chem. 2007 (603) 275-280.
    [66] Z. Yang, J. Zhao, Z. Yang, Ultamicroelectrode Voltammetry Investigation of The Hydrodynamic Radii and Shear Plane of Micellar Particles for Sodium Dodecyl Sulfonate in Aqueous NaCl Solutions Chem. Phys. 307(2004)71-75.
    [67] L. Li, X. Du, Y. Lu, Z. Yang, Study on the first-step adsorption of dodecyltrimethylammounium bromide solutions on silica wafer surfaces by ultramicroelectrode voltammetry, Electrochemistry Communications. 2007 (9) 2308-2314.
    [68] L. Li, L. Wang, X. Du, Y. Lu, Z. Yang, Adsolubilization of dihydroxybenzenes into CTAB layers on silica particles, J. Colloid and Interface Sci. 2007 (315) 671-677.
    [69] L. Li, X. Du, J. Kou, X. Liu, Y. Lu, Z. Yang, Study on the interaction between dihydroxybenzenes and DTAB by ultramicroelectrode voltammetry, Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008 (322) 219-224.
    [1] J. Zhang, Z. Ge, X. Jiang et al., Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, J. Colloid Interf. Sci. 2007 (316) 796-802.
    [2] R. A. Thaku, A. A. Dar, G. M. Rather, Investigation of the micellar growth of 1-dodecylpyridinium chloride in aqueous solution of phenol, J. Mol. Liq. 2007 (136) 83-89.
    [3] C. J. Huang, P. H. Chiu, Y. H. Wang et al., Electrochemical formation of crooked gold nanorods and gold networked structures by the additive organic solvent, J. Colloid Interf. Sci. 2007 (306) 56-65.
    [4] D. Attwood, A. Terreros, E. Lopez-Cabarcos and P.A. Galera-Gomezy, Shape Transition in Micelles of Undecylammonium Chloride in the Presence of Sodium Chloride and n-Butanol: A Study by Dynamic Light Scattering, J. Colloid Interf. Sci. 2001 (235) 247-250.
    [5] T. Asakawa, H. Sunagawa, S. Miyagishi, Diffusion Coefficients of Micelles Composed of Fluorocarbon Surfactants with Cyclic Voltammetry, Langmuir. 1998 (14) 7091-7094.
    [6] R. Oda, L. Bourdieu, M. Schmutz, Micelle to Vesicle Transition Induced by Cosurfactant: Rheological Study and Direct Observations, J. Phys. Chem. B. 1997 (101) 5913-5916.
    [7] V. Subramanian, W.A. Ducker, Counterion Effects on Adsorbed Micellar Shape: Experimental Study of the Role of Polarizability and Charge, Langmuir. 2000 (16) 4447-4454.
    [8] R. Ranganathan, M. Peric, R. Medina et al., Size, Hydration, and Shape of SDS/Heptane Micelles Investigated by Time-Resolved Fluorescence Quenching and Electron Spin Resonance, Langmuir. 2001 (17) 6765-6770.
    [9] N. C. Christov, N. D. Denkov, P. A. Kralchevsky et al., Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer. 1. Empty and Swollen Micelles, Langmuir. 2002 (18) 7880-7886.
    [10] F. Bockstahl, G. Duplare, Effect of 1-Pentanol on Size and Shape of Sodium Dodecyl Sulfate Micelles as Studied by Positron Annihilation Lifetime Spectroscopy, J. Phys. Chem. B. 2001 (105) 13-18.
    [11] T. M. Alam, S. K. McIntyre, Self-Assembly and Magnetic Alignment in Cetyltrimethylammonium Bromide/Sodium Perfluorooctanoate Surfactant Mixtures Investigated Using H Nuclear Magnetic Resonance Spectroscopy, Langmuir. 2008 (24) 24 13890-13896.
    [12] R. A. Mackay, S. A. Myers, L. Bodalbhai, A. B. Toth, Microemulsion structure and its effect on electrochemical reactions, Anal. Chem. 1990 (62) 1084-1090.
    [13] L. Li, L. Wang, X. G. Du, Y. Lu et al., Adsolubilization of dihydroxybenzenes into CTAB layers on silica particles, J. Colloid Interf. Sci. 2007 (315) 671-677.
    [14] Z. Yang, Y. Lu, J. Zhao, Q. Gong, X. Yin, Z. Yang, Ultramicroelectrode Voltammetric Investigation of Intermicellar Interaction and Micellar Growth of Sodium Dodecyl Sulfate in Aqueous NaCl Solutions, J. Phys. Chem. B. 2004 (108) 22, 7523-7527.
    [15] Q. Zhong, D. A. Steinhurst, E. E. Carpenter and J. C. Owrutsky, Fourier Transform Infrared Spectroscopy of Azide Ion in Reverse Micelles, Langmuir. 2002 (18) 7401-7408.
    [16] P. C. Griffiths and A. Paul, R. K. Heenan and J. Penfold, R. Ranganathan and B. L. Bales, Role of Counterion Concentration in Determining Micelle Aggregation: Evaluation of the Combination of Constraints from Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, and Time-Resolved Fluorescence Quenching, J. Phys. Chem. B 2004 (108) 3810-3816.
    [17] R. Zana, W. Binana-Limbele, N. Kamenka and B. Lindman, Ethyl(hydroxyethyl)cellulose-Cationic Surfactant Interactions: Electrical Conductivity, Self-Diffusion, and Time-Resolved Fluorescence QuenchingInvestigations, J. Phys. Chem. 1992 (96) 5461-5465.
    [18] D. Costa, P. Hansson, S. Schneider et al., Interaction between Covalent DNA Gels and a Cationic Surfactant, Biomacromolecules. 2006 (7) 1090-1095.
    [19] M. J. Suarez, H. Levy, J. Lang, Effect of Addition of Polymer to Water-in-Oil Microemulsions on Droplet Size and Exchange of Material between Droplets, J. Phys. Chem. 1993 (97) 9808-9816.
    [20] E. Dickinson, Annu. Rep. Prog. Chem. C. 1983, p.3.
    [21] T. L. Ferreira, A. O. Seoud, M. Bertotti, A microelectrode voltammetric study of the diffusion of CTABr aggregates in aqueous solutions, Electrochim. Acta. 2004 (50) 1065-1070.
    [22] T. L. Ferreira, O. A. Seoud, M. Bertotti, Effects of KBr and n-decanol on the properties of cetyltrimethylammonium bromide micelles in aqueous solutions: A microelectrode voltammetric study, J. Electroanal. Chem. 2007 (603) 275-280.
    [23] T. Saji, K. Hoshino, Y. Ishii, M. Goto, Formation of Organic Thin Films by Electrolysis of Surfactants with the Ferrocenyl Moiety, J. Am. Chem. Soc. 1991 (113) 450-456.
    [24] G.X. Zhao, B.Y. Zhu, Principles of Surfactants Action, China Light Industry Press, Beijing, 2003, p. 231.
    [25] J. N. Israelachvili, D. J. Mitchell, B. W. Ninhem, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J. Chem. Soc. Faraday Trans 2. 1976 (72) 1525 -1568.
    [26] C. Tanford, The Hydrophobic Effect, Academic Press, New York, p. 1074.
    [27] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
    [28] T. S. Davies, A. M. Ketner, S. R. Raghavan, Self-Assembly of Surfactant Vesicles that Transform into Viscoelastic Wormlike Micelles upon Heating, J. Am. Chem. Soc. 2006 (128) 6669-6675.
    [29] P. Hansson, B. Johnsson, C. Strom, O. J. Soderman, Determination of Micellar Aggregation Numbers in Dilute Surfactant Systems with the FluorescenceQuenching Method, J. Phys. Chem. B. 2000 (104) 3496-3506.
    [30] S. S. Atik, M. Nam, L. A. Singer, A. Lawrence, Transient studies on intramicellar excimer formation. A useful probe of the host micelle, Chem. Phys. Lett. 1979 (67) 1 75-80.
    [31] P. P. Infelta, M. J. Gratzel, Statistics of solubilizate distribution and its application to pyrene fluorescence in micellar systems. A concise kinetic model, J. Chem. Phys. 1979 (70) 1 p.179
    [32] D.D. Miller, D.F. Evans, Fluorescence Quenching in Double-Chained Surfactants. 1. Theory of Quenching in Micelles and Vesicles, J. Chem. Phys. 1989 (93) 323-333.
    [1] R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv in Colloid Interface Sci., 2002 (97) 205-253.
    [2] C. A. Bunton, L. Robinson, J. Schaak, M. F. Stam, Catalysis of nucleophilic substitutions by micelles of dicationic detergents, J. Org. Chem. 1971 (36) 2346-2350.
    [3] A. Masuyama, T. Okano, M. Okahara, Preparation and surface active properties of alcohol ethoxylates with an amide oxime terminal group, J. Am. Oi1 Chem. Soc. 1988 (65) 11, 1830-1833.
    [4] P. Y. Zhu, A. Masuyama, M. Okahara, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains, J. Am. Oi1 Chem. Soc. 1990 (67) 7, 459-463.
    [5] P. Y. Zhu, A. Masuyama, M. Okahara, Preparation and surface-active properties of new amphipathic compounds with two phosphate groups and two long-chain alkyl groups, J. Am. Oi1 Chem. Soc. 1991 (68) 4, 268-271.
    [6] P. Y. Zhu, A. Masuyama, Y. Kirito, M. Okahara, Preparation and properties of double- or triple-Chain surfactants with two sulfonate groups derived from N-Acyldiethanolamines, J. Am. Oi1 Chem. Soc. 1991 (68) 7, 539-543.
    [7] F. M. Menger, C. A. Littau, Gemini-Surfactants: synthesis and properties, J. Am. Chem.Soc. 1991 (113) 1451-1452.
    [8] M. J. Rosen, Gemini: a new generation of surfactants, Chemtech. 1993 (23) 31-33.
    [9] E. Alami, G. Beinert, P. Marie, R. Zana, Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) surfactants. 3. Behavior at the air water interface, Langmuir. 1993 (9) 1465-1467.
    [10] E. Alami, H. Levy, R. Zana, A. Skoulios, Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water, Langmuir. 1993 (9) 940-944.
    [11]赵剑曦,新一代表面活性剂: Gemini,化学进展。1999 (11) 4, 348-357.
    [12]朱森,程发,郑宝江,于九皋,Gemini阴离子表面活性剂水溶液的聚集性质,物理化学学报。2004 (20) 10, 1245-1248.
    [13]游毅郑,欧邱羽,韩国彬等,Gemini阳离子表面活性剂的合成及其胶束生成,物理化学学报。2001 (17) 1, 74-78.
    [14]朱森,程发,郑宝江,于九皋,Gemini阴离子表面活性剂水溶液的界面性,应用化学。2005 (22) 7, 792-795.
    [15]李晨,杨继萍,陈功,磺酸型Gemini表面活性剂的合成及表面活性,应用化工。2007 (36) 5, 425-427;456.
    [16]赵剑曦,Gemini表面活性剂的研究与发展方向,研发前沿。2008 (16) 2, 14-19.
    [17] X. G. Du, Y. Lu, L. Li et al., Synthesis and unusual properties of novel alkylbenzene sulfonate gemini surfactants. Colloids and Surfaces A: Physicochem. Eng. Aspects 2006 (290) 132-137.
    [18] X. G. Du, L. Li, Y. Lu et al., Fluorescence investigation of aggregation behaviors of novel anionic Gemini surfactants, Z. Phys. Chem. 2007 (221) 873-879.
    [19]杜西刚,路遥,李玲等,烷基苯磺酸盐Gemini表面活性剂与非离子表面活性剂C10E6混合溶液的胶团化,物理化学学报。2007 (23) 2, 173-176.
    [20]朱步瑶,赵振国,界面化学基础。北京:化学工业出版社,1996年9月,145-153.
    [21] E. Dickinson, Annu. Rep. Prog. Chem. C. 1983, p. 3.
    [22] T. L. Ferreira, A. O. Seoud, M. Bertotti, A microelectrode voltammetric study of the diffusion of CTABr aggregates in aqueous solutions, Electrochim. Acta. 2004 (50) 1065-1070.
    [23] R. A. Mackay, S. A. Myers, L. Bodalbhai, A. B. Toth, Microemulsion structure and its effect on electrochemical reactions, Anal. Chem. 1990 (62) 1084-1090.
    [24] T. L. Ferreira, O. A. Seoud, M. Bertotti, Effects of KBr and n-decanol on the properties of cetyltrimethylammonium bromide micelles in aqueous solutions: A microelectrode voltammetric study, J. Electroanal. Chem. 2007 (603) 275-280.
    [25] T. Saji, K. Hoshino, Y. Ishii, M. Goto, Formation of Organic Thin Films by Electrolysis of Surfactants with the Ferrocenyl Moiety, J. Am. Chem. Soc. 1991 (113) 450-456.
    [26] Z. Y. Yang, J. S. Zhao, Z. Y. Yang et al. Ultramicroelectrode voltammetric measurement of the hydrodynamic radii and shear plane of micellar particles for sodium dodecylsulfonate in aqueous NaCl solution, Chemical Physics. 2004 (307) 71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700