结构优化中的模拟退火算法研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构优化设计不仅可以降低结构重量和材料成本,而且能够改进结构的强度、刚度、振动特性、屈曲稳定性等性能,是计算力学以及现代设计制造领域的重要研究方向。结构优化方法,大致有优化准则法、数学规划法、混合法、随机搜索法等。其中,遗传算法、模拟退火算法等新的随机搜索方法,在处理全局优化、离散变量、多连通可行区等困难问题中,具有传统结构优化算法不可比拟的优势。虽然它们的计算效率很低,但是在计算机计算速度不断提高的条件下,具有不可低估的发展潜力和重要的研究价值。
     本文的研究工作由两部分组成:1.在研究分析基本的模拟退火算法原理和综合近期关于模拟退火算法研究进展的基础上,针对结构优化问题的特殊性质和要求,对模拟退火算法提出了若干改进措施。2.在若干类型的结构优化问题中应用本文改进的模拟退火算法,通过大量算例的数值试验和算法比较表明,模拟退火算法在结构优化的某些困难问题中具有其特点,本文的改进措施是可行和有效的。
     各章节的内容安排如下:
     第一章首先论述了模拟退火算法的研究进展。内容包括首先概述本文研究课题的背景及其意义;接着模拟退火算法的发展历史和特点、理论的研究、国内外研究概况及发展趋势等;最后概述了本文的研究工作。
     第二章介绍了模拟退火算法的基本过程及其基本原理。首先介绍模拟退火算法的物理基础。然后介绍了模拟退火算法的基本过程及其数学基础。最后介绍了模拟退火算法的有限时间实现及其参数选择原则。
     第三章提出了对模拟退火算法的改进,是本文理论算法研究的重要部分。在研究分析模拟退火算法原理和综合近期关于模拟退火算法研究进展的基础上,本文针对结构优化问题的特殊性质和要求,对模拟退火算法提出了若干改进措施。主要包括:
     (1)通过一种自适应的函数变换方法,使初始温度的确定与具体问题无关,使算法具有更强的通用性和的适应性:
     (2)在算法中设置了一个记忆器,使之成为有记忆的模拟退火算法;
     (3)新解的确定方法结合了成功一失败法,使偏移量的产生更加有效;在连续函数中并且为了加强局部的趋化性搜索能力,在精细搜索阶段采用变尺度方法缩小搜索区间;
     (4)提出了一种以相对精度为基础的结束准则,同时考虑了降温次数和可行解的个数,以提高算法的健壮性和鲁棒性;
     (5)采用多目标规划的思想,将离散变量优化和连续变量优化结合起来,较好解决了离散变量优化设计时的难点。
     给出了改进的模拟退火算法在一些传统优化方法难以解决的数学函数优化问题中的应用算例。
     第四章研究了模拟退火算法在桁架结构连续变量尺寸优化、离散变量尺寸优化和形状优化中的应用。对连续变量的桁架尺寸优化问题,通过一组经典算例,比较了模拟退
    
    大连理工大学硕士学位论文
    火算法与遗传算法和传统方法的优化结果,表明本文算法能够得到比较满意的优化结
    果,其改进方法可行、有效,计算效率和计算精度均优于遗传算法。对离散变量的析架
    尺寸优化问题,本文提出了采用多目标规划的思想、将离散变量优化和连续变量优化结
    合起来的求解方法。对于混合变量的析架形状优化问题,本文进一步改进了解的产生方
    式。大量的算例表明,模拟退火算法能够得到问题的全局最优解,本文的改进模拟退火
    算法在这些结构优化问题中比较有效,具有优于传统优化算法和遗传算法的某些特点。
     第五章总结全文的工作,并展望了进一步的研究工作。
     本文的研究工作是国家重点基础研究发展规划项目“大规模科学计算研究”课题“大
    规模计算工程软件系统的基础理论和实施,,(编号G1999032805)和国家自然科学基金重
    点项目“藕合系统的多学科优化设计理论与数值方法”(编号10032030)的部分内容。
By means of structural optimization, not only the weight of structures can be reduced, but also the strength, stiffness, vibration behavior, buckling stability, and other performances of structures can be improved efficiently. Structural optimization is an important research direction in the computational mechanics and modern design field.
    The research work in the dissertation consists of two major parts. The first part proposes several improved measures on SA based on the analysis of the SA's theory and recent research of SA according to special property and requirements of structural optimization problems. The second part describes application of improved SA in some types of structural optimization problems. The numerical test and algorithmic comparison show that improved measures on S A are feasible and efficient.
    The research work will be introduced as follows:
    In chapter 1, the research developments of SA are surveyed, which include the questions for discussion of background and signification summarized in the first section, and then the history of development and characteristic for SA, research of the theory, a survey of internal and external research and the trend of development, the main contents of the research in this dissertation are presented in the last section.
    In chapter 2, the process and fundament of simple SA are introduced. The basic of physics are presented firstly. Then the process and the basic mathematics of SA are given. Finally, implementation of SA in a limit time and the principle of choosing parameter in SA are described.
    In chapter 3, improvements on SA are investigated, which is important substantial about academic algorithm of the dissertation. An improved SA is proposed by several methods being put forward. By introducing a method of adaptive conversion function, the determination of initial temperature, usually a difficult problem in SA has been solved and becomes independent to the practical problems solved. A memory is set up in order to becoming a memorial SA. Combined with the success-failure method and the variable metric method, the conception of effective shift-increment is proposed to improve the method generating new solutions. On the basis of the newly defined relative precision, a termination criterion is proposed to make better balance between the computational efficiency and the solution accuracy, and then, enhance the efficiency and robustness of the SA algorithm. Joined up optimization of continuous variable and discrete variable, the difficult was solved by using the idea of multi-objections.
    The contents of the following chapter show that the improvements in this dissertation are feasible and effective by some kinds of typical examples.
    In chapter 4, SA is applied to sizing optimization of truss with continuous, discrete variables and configuration optimization of truss with mixed variables. In sizing optimization of truss with continuous variables, solutions among SA, GA and the traditional methods are compared, which reveals that satisfying solutions are achieved, and that improved SA are feasible and effective, better computational efficiency and solution accuracy achieved. In sizing optimization of truss with discrete variables, joined up optimization of continuous variable and discrete variable, the idea of multi-objections is used. In configuration optimization of truss with mixed variables, the method generating new solutions is improved.
    
    
    
    The numerical examples show that the improved SA in the dissertation are feasible and effective.
    In chapter 5, the main contributions of the dissertation are summarized and the further work is suggested.
    The research of this dissertation is supported by the Special Funds for National Key Basic Research of China (No. G1999032805) and the Special Funds for National Key Research of China in natural science (No. G10032030).
引文
1 钱令希,工程结构优化设计,北京:水利电力出版社,1983
    2 孙焕纯,柴山,王跃方,离散变量结构优化设计,大连:大连理工大学出版社,1995
    3 樊重俊,王浣尘,遗传算法的改进与应用,上海交通大学学报,1998,32(12):128-131
    4 Svanberg K., On Local and Global Optimal in Structural Optimization, in New Directions in Optimum Design, Atrek E and alt (ed.) John Wiley, 1984
    5 Kirkpatrick S., Gelatt C. and Vecchi M., Optimization by Simulated Annealing, Science 1983, (220): 671-680
    6 Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E., Equations of State Calculation by Fast Computing Machines, The Journal of Chemical Physics, 1953, (21): 1087-1092
    7 German S., German D., Stochastic relaxation, Gibbs distribution and Bayesian restoration in images, IEEE Trans. Patt. Anal. Mac. Int. 1984, 6(6), 721-741
    8 Cerny V., Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm, Journal of Optimization Theory and Applications, 1985, (45): 41-45
    9 Szu H., Non-Convex Optimization, Proc. SPIE, 1986, (698): 59-65
    10 Szu H., and Hartley P., Fast Simulated Annealing, Physics Letter A, 1987, (122): 157-162
    11 Corana A., Marchesi M., Martini C. and Ridella S., Minimizing Multimodal Functions for Continuous Variables with the "Simulated Annealing" Algorithm, ACM Transactions on Mathematical Software, 1987, (13): 262-280
    12 Laarhoven P. and Aarts E., Simulated Annealing: Theory and Applications, D. Reidel Publishing Company, Dordrecht, 1987
    13 徐雷,一种改进的模拟退火组合优化法,信息与控制,1990,(3)
    14 Aarts E. and Korst J., Simulated Annealing and Boltsmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, 1989
    15 Charnes A. and Wolfe M., Extended Pincus theorems and convergence of simulated annealing, Int. J. Systems Sci. 1989, 20(8), 1521-1533
    16 Deck G., Scheuer T., Threshold accepting: A general purpose optimization algorithm appearing uperior to simulated annealing. Journal of Computational Physics, 1990, 90(1): 161-175
    17 Laarhoven P., Aarts E., Lenstra J. Jobshop scheduling by simulated annealing, Ops. Res., 1992, 40(1): 113—125
    18 Ingber L., Rosen B., Genetic algorithms and very fast simulated annealing: A comparison. Mathematical Computer Modeling, 1992, 16(11): 87-100
    19 Kirkpatrick S., Optimization by simulated annealing, Science, 1993, 220, 671-680
    
    
    20 Lin E, Kao C., Hsu C., Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Trans on SMC, 1993, 23(6): 1752-1767
    21 康立山,谢云等,非数值并行算法(第一册),科学出版社,1994
    22 Tarek M., Nabhan A., lbert Y., Zomaya A., parallel simulated annealing algorithm with low communication over head, IEEE Transactionson Paralleland Distributed Systems, 1995, 6(12): 1226-1233
    23 Ali M., Storey C., Aspiration based simulated annealing algorithms, Journal of Global Optimization 1997, 181~191
    24 胡山鹰,陈丙珍,何小荣,沈静珠,非线性规划问题全局优化的模拟退火法,清华大学学报(自然科学版),1997,37,6,5~9
    25 张玉祥,王玉浚,采矿工程全局最优化设计问题模拟退火算法求解,煤矿设计,1998,3,3-5
    26 蔡文学,程耿东,桁架结构拓扑优化设计的模拟退火算法,华南理工大学学报(自然科学版),1998,1(26)
    27 王子才,张彤,王宏伟,基于混沌变量的模拟退火优化方法,控制与决策,1999,14 (4)
    28 王雅琳,桂卫华,阳春华,黄泰松,模拟退火算法改进及工业应用,中南工业大学学报,1999,30(6),638-641
    29 向阳,龚新高,推广模拟退火方法及其应用,物理学进展,2000,20(3),319-334
    30 席自强,单纯形-模拟退火算法,湖北工学院学报,2000,15(1),27-29
    31 都志辉,李三立,吴梦月,李树有,朱静,混合SPMD模拟退火算法及其应用,计算机学报,2001,24(1)
    32 江加和,宋子善,沈为群,邱力为,模拟退火算法在连续变量全局优化问题中应用,北京航空航天大学学报,2001,27(5),556-559
    33 杨庆之,李歧强,无约束优化问题模拟退火算法的改进,高等学校计算数学学报,2001,19,(3),49-55
    34 高齐圣,张嗣瀛,潘德惠,刘晓华,参数设计的模拟退火并行计算法,系统工程理论与实践,2002,8,41-44
    35 耿平,刘静,曾梅光,多变元非线性复杂系统的优化与模拟退火算法,东北大学学报(自然科学版),2002,23(3),270-272
    36 王凌,智能优化算法及其应用,清华大学出版社,2001
    37 李静,列车编组计划及其模拟退火算法,华北工学院计算机应用专业,2001
    38 杨若黎,顾基发,一种高效的模拟退火全局优化算法,系统工程理论与实践,1997, 17(5),30-33
    39 樊叔维,张兴志,全局优化算法:自适应模拟退火一遗传算法的研究[J],光学精密
    
    工程,1998,4,16-21
    40 潘正君,康立山等,演化计算[M],清华大学出版社,1998年7月第一版:69—75
    41 李敏强,寇纪松等,遗传算法的基本理论与应用[M],科学出版社,2002年3月第一版:213—398
    42 Ingber L., Simulated Annealing: Practice versus Theory. Mathematical and Computer Modelling, 1993, 18, 29-57
    43 Schmit L., Farshi B., Some Approximation Concepts for Structural Synthesis, AIAA Journal, 1974, 12, 231-233
    44 武金瑛,遗传算法及其在结构优化中的应用[硕士学位论文],大连:大连理工大学, 2000
    45 唐文艳,结构优化中的遗传算法研究和应用[D],大连理工大学工程力学系,2002
    46 Schmit L, Miura H., Approximation Concepts for Efficient Structural Synthesis, NASA Contrator Report, 1976, NASA-CR-2552
    47 Ghasemi M., Hinton E., Wood R., Optimization of Trusses Using Genetic Algorithms for Discrete and Continuous Variables, Engineering Computations, 1999, 16(3): 272-301
    48 钱令希,钟万勰,结构优化设计的一个方法,大连工学院学报,1,1979
    49 Khan M., Willmert K., Thornton W., New Optimality Criterion Method for Large Scale Structures, AIAA/ASME 19th Struct. Dyn. & Materials Conf. 1978, 47-58
    50 Gallatly R., Berke L., Optimal Structural Design, 1971, AFFDL-TR-70-165
    51 Zhou M., Rozvancy G., DCOC: an optimality criteria method for large systems [J]. Structural Optimization, 1993 (6): 250-262
    52 Rajeev S., Krishnamoorthy, Discrete Optimization of Structures Using Genetic Algorithms, Journal of Structural Engineering, 1992, 118(5): 1233-1250
    53 Galante M., Genetic Algorithms as an Approach to Optimize Real-world Trusses, International Journal Numerical Methods in Engineering, 1996, 39, 361-382
    54 简士杰,以遗传算法作离散断面之桁架钢结构最优化设计[硕士学位论文],中国台湾:中华工学院,1984
    55 Wu S., Chow R, Steady-state Genetic Algorithms for Discrete Optimization of Trusses, Computers & Structures, 1995, 56(6): 979-991
    56 Zhu D., An Improved Templeman's Algorithm for Optimum Design of Trusses with Discrete Member Sizes. Engineering Optimization, 1986, 9:303-312
    57 叶怡成,以遗传算法作结构之离散最佳化,台湾私立中华工学院土木工程系,专题研究报告,NSC85-2211-E-216-002
    58 Zhou M., Rozvancy G., DCOC: an optimality criteria method for large systems [J]. Structural Optimization, 1993(6): 250-262
    59 Fleury C., Schmit L., Structural Synthesis by Combining Approximation Concepts and
    
    Dual Methods [J]. AIAA J., 1980,18,1761-1783
    60 Berke L., Khot N., Use of Optimality Criteria Method for Large Scale Systems [R], AGARD Lecture Series No.70, 1-29
    61 Arora J., Govil A., An Efficient Method for Optimal Structural Design by Substructuring [J]. Computers and Structures, 1977, 7, 507-515
    62 Cai J., Thierauf G., Discrete Structural Optimization Using Evolution Strutegies, technical report: Department of Civil Engineering, University of Essen, German (1993)
    63 Duan B., Ye S., A Mixed Method for Shape Optimization of Skeletal Structures, Eng. Opt., 1986, 10(3): 183-197
    64 隋允康,由衷,具有两类变量的空间桁架分层优化方法,计算结构力学及其应用,1991,7(4):82-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700