海洋石油平台大直径超长桩贯入特性及原位测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对海洋石油、天然气资源的大力开发,在浅海中应用十分广泛的固定式导管架石油平台的建设方兴未艾。导管架平台钢管桩基础呈现出大直径、超长桩身、深贯入度、单桩承载力大的发展趋势,这样的基础结构设计可以节省桩基的用钢量,降低平台基础造价。但同时也加大了施工中的打桩难度。近年来,在渤海湾进行的石油平台桩基打桩过程中多次出现拒锤现象,造成了巨大的经济损失。这凸显出目前海洋石油平台桩基工程中,以桩基的可打入性分析为核心的亟待解决的诸多问题,主要有:第一,目前可打入性分析中只进行了桩基连续贯入条件下的模拟计算,对由于接桩需要而停锤,间隔一定休止期后的重新打桩(Restart)环节没有考虑,然而Restart是整个打桩过程中拒锤风险最大的环节;第二,缺乏能够降低桩基拒锤风险的有效工程对策。设计中进行的可打入性分析很难兼顾到海上施工中受到的诸如气象、海浪以及施工机械故障等因素对打桩进程的影响,因此,通过可打入性分析研究提出能够降低拒锤风险的工程措施是十分重要的;第三,缺少针对海上平台桩基承载力的检测方法。无论是桩基被顺利贯入到设计深度,还是打桩过程中出现了拒锤,最根本的问题是桩基承载力是否能够满足设计要求。本文密切结合海上平台打桩工程实践,研究和分析实测打桩记录,通过室内土性模拟试验研究及现场原位测试,力图建立更加完善和符合实际的桩基可打入性分析方法。并在此基础上,对出现的拒锤现象进行分析研究,提出能有效降低桩基拒锤风险的工程对策,并用于指导工程实践。本文的主要研究内容和成果如下:
     (1)在模拟桩基连续贯入的可打入性分析中,桩周土的疲劳效应是影响计算结果的关键。通过室内动三轴试验模拟连续打桩的往复作用使得桩周粘性土发生大应变塑性变形,研究了粘性土因疲劳效应而产生强度衰减的机理。并与砂性土做了对比分析研究。在此基础上提出了改进的模拟连续打桩过程中桩周土体疲劳效应的计算方法。
     (2)进行了国内首次完整的针对海洋石油平台桩基的高应变动测打桩过程监控试验,以及检测桩基承载力的高应变复打测试。通过与现场高应变实测结果对比,验证了可打入性分析计算的准确性。建立了通过打桩结束一周后的复打测试结果复核桩基设计承载力的方法,在此基础上研究并提出了停锤后桩周土强度随时间的增长变化规律。
     (3)在一维波动方程有限差分解答理论的基础上,建立了模拟打桩过程中拒锤风险最大的接桩、停锤一定时间的后继打桩Restart时的计算方法。该方法采用本文提出的改进的桩周土疲劳效应模拟方法对桩基连续打桩进行可打入性分析。同时,还能考虑打桩过程中接桩,停锤一定时间的后继打桩Restart时桩周土中超孔压消散和强度恢复对可打入性的影响。
     (4)利用本课题的研究成果,对渤海湾某建设中的油田发生打桩拒锤的工程进行了分析研究,在此基础上提出了通过改变桩基结构设计降低打桩中拒锤风险的工程对策,并为工程单位所采用,已取得了良好的效果。
With the rapid exploitation of the offshore oil and gas resources, the constructionof the fixed jacket platforms that have been widely used in the shallow sea is in theascendant. Pile foundations of the jacket platform are taking on some new characters,such as larger diameter, longer length and deeper penetration. These characters canreduce the steel consumption in foundation structure and decrease the cost, but at thesame time, they make the pile driving more difficult. Recent years, several pile refusalcases have been reported during the pile driving of the platform construction in BohaiGulf, and caused enormous economic losses. This highlights three essential problemswith the pile drivability analysis, which need urgent concern in the pile construction ofthe offshore oil platform. Firstly, the conventional pile drivability analysis methodsfocus on the situation when the pile is driven continuously, without considering therestarting drivability after assembling pile segments, while pile refusal is more likely toocure at this period of time. Secondly, there is lack of effective measures to ease therisk of pile refusal during construction. Such as weather, waves and mechanical failurescan intermit the successive pile penetration for some time on the sea, and that will raisethe feasibility of refusal greatly. It is hardly possible to consider those unexpectablefactors in the pile drivability analysis in the design stage. Therefore, the effectivemeasures to relieve the likelihood of pile refusal are quite important for the pile drivingon the sea. Thirdly, there is no field testing method to evaluate the bearing capacity ofthe offshore platform pile in domestic up to now. Either driving to the designpenetration or refusing during the penetration, the key to pile foundation is whether thepile bearing capacity can satisfy the design requirement. In this thesis engineeringpractices and the driving records were discussed; laboratory simulation tests and fieldtests were carried out in order to establish an improved pile driving analysis program.Based on the improved program, the causes of pile refusal was analyzed andengineering measures to low the risk of pile refusal were suggested. Also theengineering practice in Bohai Gulf has proved the adopted measures very effective.The content of the thesis covers the following aspects:
     (1) The simulation of soil fatigue in analyzing the pile driving continuously canaffect the results greatly. Based on laboratory dynamic triaxial tests, the mechanism of strength fatigue decrease of clay soil around the pile caused by pile driving is studied.The comparative theoretic analysis for sandy soil is also studied. Based on this, animproved method for simulating soil fatigue during the pile continuously driving is putforward.
     (2) The high strain tests are carried out in an offshore platform project to monitorthe process of the pile drivability and check the bearing capacity by re-strike. The piledrivability analysis results can be verified by the high strain testing results during piledriving. The pile bearing capacity is checked through re-strike a week after penetrating.Based on this, strength changes of soil surrounding the pile after penetrating arestudied.
     (3) Based on the method of finite difference on one-dimentional wave equations, asimulation model for the restarting drivability analysis after pile segments assemblingis proposed. A complete pile drivability analysis program is presented, it can analyzethe drivability of driving continuously with the improved soil fatigue simulationmethod, and consider soil strength recovery after pile segments assembling caused bythe dissipation of excess pore water pressure.
     (4) Pile refusal case study is carried out. The prediction analysis of pile drivabilityfor one refused pile is performed with the pile drivability analysis program proposed bythis thesis. And the causation of pile refusal is analyzed by the pile drivability analysisprogram. The measures to low risk of refusing by changing the structure of the pile areintroduced. And these measures have been applied to other platforms in the same areaand approved very effective.
引文
[1]苏斌,冯连勇,王思聪等,世界海洋石油工业现状和发展趋势,中国石油企业,2006(增1):138-141
    [2]USGS.U.S. Geological Survey Fact Sheet2008-3049:Circum-Arc tic Resource Appraisal:Estimates of Undiscovered Oil and Gas North of the Arctic Circle [http://pubs. usgs. Gov/fs/2008/3049/]
    [3]Kyuho P, RODRIGO S, JUNHWAN L, et al. Behavior of open-and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(4):296-306.
    [4]张晓健,开口桩和闭口桩性状研究与分析,工业建筑,2007,37(增):883-885.
    [5]Chow, F. C.(1997). Investigations in the behaviour of displacement piles for offshore foundations. PhD thesis, Imperial College, London.
    [6]PAIK K, SALGADO R, LEE J, et al. Behaviour of open-and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvirornental Engineering,2003,129(4):296-306.
    [7]陈仲颐,周景星,王洪瑾,土力学,北京:清华大学出版社,1994.274-277
    [8]罗小艳,刘伟平,基于统一强度理论的管桩挤土效应分析,水利水运工程学报,2011,No.2:60-64
    [9]闫澍旺,张锡治,刘润,海洋石油平台桩基拒锤现象,天津大学学报,2007,11(40):1271-1276
    [10]Dunham C. W., Foundations of structures, McGraw-Hill Book Company, New York,1962.
    [11]Lowery L.L., Hirsch T.J. et al打桩分析一发展现状评述.海洋石油.波动理论在桩基工程中的应用专题译文集,1978,No.4:13-103
    [12]Hiley A.. Pile-driving calculations with notes on driving forces and ground resistances, Structural Engineer, London, Vol.8,1930
    [13]Issacs D.V., Reinforced concrete pile formulas, Transaction of the Institution of Engineers, Australia,1931,Ⅻ:312-323.
    [14]Smith E. A. L., Pile driving impact, Proceedings, Industrial Computation Seminar, September,1950, International Business Machines Crop., New York, N. Y.,1951, P.44
    [15]Smith E. A. L., Impact&longitudinal wave transmission, Trans.ASME,1955, p.963~973.
    [16] Smit h E. A. L., Pile driving analysis by the wave equation, Journal ofthe Soil Mechanics&Foundat ions Division, Proceedings of theAmerican Society of Civil Engineers, Aug.1960,86(SM4), P.35~61
    [17] Smit h E. A. L., Pile driving analysis by the wave equat ion,Transact ion,ASCE, Vol.127,1962, Part, P.11~45.
    [18] Forhand P.W. et. al.. Prediction of pile capacit y by the wave equation. J.Soil Mech. Found. Div., ASCE. Vol.86. Aug.1960
    [19] Davisson M.T.. Design pile capacit y. Proc. Conf. Des. Install. PileFound. Cell Struc.. Lehigh Univ.,1970, P.75~86
    [20] Vijayvergiya V.N., Focht John A. Jr.. A new approach to predictcapacit y of piles in clay. OTC1718,1972,865~874
    [21] Bowles J.E.. Analyt ical and computer methods in foundatio nengineering. NewYork,McGram-Hill,1974
    [22] Smit h I.M., Chow Y.K.. Three-dimensional analysis of pile driveabilit y.2ndInt. Conf. On Numer. Methods in Offshore Piling. Apr.1982
    [23] Lowery, L.L., Jr., Hirsch, T.J., Samson, C.H., Jr.,.“Piling AnalysisWave Equation Computer Program Utilization Manual” TexasTransportation Institute Research Report33-11, Texas A&M Universit y,1968.
    [24] Carr, L., Hirsch, T.J., and Lowery, L.L., Jr.,“Pile Analysisy-WaveEquation Computer Program User’s Manual(TTIProgram)”(OCEANWAVE), April,1976.
    [25] Jansa, J.W., Voitus van Hamme, G.E.J.S.L., Gerritse, A., and Bomer, H.,“Controlled Pile Driving Above&Under Water a Hydraulic Hammer”Eighth Annual Offshore Technology Conference, Paper No.3477, May,1976.
    [26] Cox, B.E., and Christ y, W.W.,“Under-Water Pile Driving Test OffshoreLouisiana” Proceedings Eighth Annual Offshore TechnologyConference, Paper No.2478, May,1976
    [27] TNO Building and Construction Research. Foundation pile diagnost icsystem TNOWAVE impact hammer pile driving predict ion(User’sguide, version1.0).
    [28] Goble G.G., Rausche F. Dynamic Studies on the Bearing Capacit y o fPiles. Case Western Reserve Universit y, Cleveland, Ohio, U.S.1970
    [29] Goble G.G., Likins.G, Rausche F. Bearing Capacit y of Piles fro mDynamic Mearments. Final Report, Case Western Reserve Universit y,Cleveland, Ohio, U.S. March,1975
    [30]Goble G.G., Rausche F.. Wave equation analysis of pile driving-WEAP program, prepared for the U.S. Department of Transportation, Federal Highway Administration, Implementation Division, Office of Research and Development,1976
    [31]Goble G.G., Rausche F., Wave equation analysis of pile foundation. WEAP87Program. Oct.1987
    [32]Rausche F., Goble G.G., Rausche F., Likins G.E.J.. Recent WEAP developments. Third International Conference about Application of Stress-wave Theory to Piles. Ottwa, Canada, May,1988, P.164-173
    [33]Thendean G. et. al.. Wave equation correlation studies. Proc. of the Fifth International Conference on Application of Stress-wave Theory to Piles. Orlando, FL,1996, P.144-162
    [34]Rausche F.et al., Soil resistance predictions from pile dynamics, Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98, No. SM9.
    [35]Smith I.M., Chow Y.K.. A numerical model for the analysis of pile driveability. Proc. of the Second International Conference on Application of Stress-wave Theory to Piles. Rotterdam,,1984, P.319-325
    [36]王靖涛著,桩基应力波检测理论及工程应用,北京:地震出版社1999.1-10
    [37]唐念慈,刘楚凡等人,渤海12号平台钢管桩试验研究报告集之一—动力试验研究报告,海洋石油,1979,No.3:1-100
    [38]陈波,海洋桩基平台大直径超长桩的可打入性研究:[博士学位论文],天津;天津大学,2002
    [39]黄建川,海洋平台桩基的打桩分析:[硕士学位论文],天津;天津大学,2010
    [40]李飒,韩志强等,海洋平台大直径超长桩成桩机理研究,工程力学,2010,Vol.27,No.8:241-245
    [41]刘润,禚瑞花等,大直径钢管桩土塞效应的判断和沉桩过程分析,海洋工程,2005,Vol.23,No.2:71-76
    [42]刘润,董伟等,土体疲劳对打桩分析的影响,海洋技术,2005,Vol.24,No.4:68-72
    [43]Holloway, D.M."Pile Driving Analysis Using the One-Dimensional Wave Equation" Technical Report S-75-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Ms.,1975.
    [44]闫澍旺,董伟等,海洋采油平台打桩工程中土塞效应研究,岩石力学与工程学报,2009,Vol.28,No.4:703-709
    [45]盛俊文,何高奇等,基于ArcGIS的燃气行业信息管理系统,计算机工程,2011,Vol.37,No.6:253-255
    [46]谢小蕙,向南平,基于ArcGIS Engine的开发原理和方法的探讨,城市勘测,2006,2(2):46-48
    [47]D.Solomon, R.Rankins. SQL Server6.5开发指南,北京:清华大学出版社,1998.1-5
    [48]田原,李素若,文斌,C#程序设计,北京:清华大学出版社,2005.1-5
    [49]ESRI Corp. ArcGIS Engine Developer Guide for ArcGIS[R]. California: ESRI,2004.1-6
    [50]唐泽圣,刘九如,王珊等,数据库应用与开发SQL Server2000,北京:电子工业出版社,2002.5-10
    [51]ESRI Corp. ArcGIS Engine Developer Guide[R]. California,2004.1-10
    [52]巫细波,胡伟平,基于.NET反射技术的插件式GIS软件设计原理与实现,地理与地理信息科学,2009,25(6):41-44
    [53]Mickey Williams, Visual c#. NET技术内幕,冉晓曼,罗邓,郭炎译,北京:清华大学出版社,2003.
    [54]赵亮,海洋平台打桩分析研究及辅助信息数据库系统的开发:硕士学位论文,天津;天津大学,2009
    [55]曹学军,杨炳益,侯金林,平湖油气田钻采平台海上安装,中国海上油气(工程),1999,Vol.11,No.1:11-13
    [56]Holloway, D.M., Clough, G.W. and Vesic, A.S.,"The Mechanics of Pile-Soil Interaction in Cohesionless Soil"(Final) Contract Report S-75-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Ms.,1975.
    [57]刘兴录编著,桩基工程与动测技术200问,中国建筑工业出版社,2000.20-50
    [58]Smith, E.A.L.(1960)."Pile driving analysis by the wave equation" Journal of soil mechanics and foundations divisioin, ASCE, Vol.86,SM4, August,1960
    [59]祝龙根等,地基基础测试新技术,北京:机械工业出版社,1999.163-165
    [60]CAPWAP/C Description and Development. Stockholm. Sweden. PDA User's Day.1984.
    [61]PDI-Pile Dynamics, Inc.(2006)."CAPWAP Background Report". Pile Dynamics, Inc., www.pile.com
    [62]钱家欢,殷宗泽主编,土工原理与计算(第二版),中国水利水电出版社,1996.44-45
    [63]王幼清,张克绪,桩波动分析土反力模型研究,岩土工程学报,1994,Vol.16,No.2:92-97
    [64]同济大学工程地质教研室,静力触探侧壁摩阻力与桩侧摩阻力的试验研究,同济大学科技情报站.1979
    [65]ROBERT L, KONDNER R. Hyperbolic stress-strain response: Cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1963,2:115-143.
    [66]Duncan J.M., Chang C.Y.. Nonlinear analysis of stress and strain in soils, J. SMFD.ASCE,Vol.96(SM5).1970. P.1629-1653
    [67]张忠苗,软土地基超长嵌岩桩的受力特性,岩土工程学报,2001,Vol.23,No.5:552-556
    [68]Masing G.. Eigenspannungen und verfestigung beim messing. Proc.2Int. Congress Applied Mechs.1926, P332-335
    [69]Pyke R.M.. Nonlinear soil models for irregular cyclic loading. J. GED, ASCE. Vol.105, No.GT6,1979
    [70]Bowles J.E著,胡人礼,陈太平译,基础工程结构分析及程序(Analytical and Computer Methods in Foundation Engineering, McGraw-Hill Book Company1974),中国铁道出版社.1982
    [71]钱家欢,殷宗泽主编,土工原理与计算(第二版),北京:中国水利出版社,1996.628-631
    [72]赵少汴,抗疲劳设计,北京:机械工业出版社,1994.1-151
    [73]李莹,公路钢桥疲劳性能及可靠性研究:[博士学位论文],哈尔滨;哈尔滨工业大学,2008
    [74]Rahman M M, Ariffin A K. Effects of surface finish and treatment on the fatigue behaviour of vibrating cylinder block usingfrequency response approach[J]. Journal of Zh-iang University Science A,2006。7(3):352-360
    [75]陈艳华,朱庆杰,石志飞,钢筋混凝土界面疲劳裂纹扩展模拟研究,北方交通大学学报,2003,27(4):36-40.
    [76]宋玉普,朱劲松,疲劳荷载作用下混凝土的边界面模型研究,哈尔滨工业大学学报,2005,Vol.37,No.1:74-79
    [77]商德仲,动力沉桩中土体疲劳的计算方法探讨,中国港湾建设,2007,1:20-22
    [78]刘利民,舒翔,熊巨华编著,桩基工程的理论进展与工程实践,中国建材工业出版社,2002
    [79]俞峰,杨峻,砂土中钢管桩承载力的静力触探设计方法,岩土工程学报,2011,Vol.33,Supp.2:349-354
    [80]刘润,闫澍旺,大直径超长桩打桩过程中桩周土体的疲劳与强度恢 复,岩土力学,2009,30(2):452-456
    [81]BISHOP A W. The principle of efective stress[J]. TekniskUkeblad,1959,106(39):113-143
    [82]Vesic A S., Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Divison.1972,98(31):265-290
    [83]Kirby, R. C.&Esrig, M. I.(1979). Further development of ageneral effective stress method for prediction of axial capacityfor driven piles in clay. Proceedings of the conference on recentdevelopments in the design and construction of piles, London, pp.335-344.
    [84]孙更生,郑大同,软土地基与地下工程,北京:中国建筑工业出版社,1984
    [85]王育兴,孙均,打桩施工对周围土性及孔隙水压力的影响,岩石力学与工程学报,2004,23(1):153-158
    [86]施明雄,多向振动下砂土动力特性试验研究:[硕士学位论文],浙江杭州;浙江大学,2008
    [87]刘飞禹,交通荷载作用下软土地基动力特性及加筋道路动力响应研究:[博士学位论文],浙江杭州;浙江大学,2007
    [88]王艳玲,循环荷载作用下地铁隧道-土层的动力稳定性研究:[硕士学位论文],上海;同济大学,2002
    [89]唐益群,刘冰洋,赵书凯等,高压沼气对浅部砂质粉土工程性质的影响,同济大学学报(自然科学版),2004,32(10):1316-1319
    [90]谢定义,土动力学,西安:西安交通大学出版社,1988
    [91]杨熙章,土工试验与原理,上海:同济大学出版社,1993
    [92]土工试验规程(SL237-1999),中国水利水电出版社,1999,262-276
    [93]Huang Wen-Xi. Investigation on stability of saturated sand foundation and slope against liquefaction[J]. Proceeding of the5th International Conference on Soil Mechanics and Foundation Engineering, Vol II,1961.
    [94]封晓伟,波浪循环荷载作用下防波堤—地基稳定性研究:[博士学位论文],天津;天津大学,2009
    [95]Lehane, B. M., Jardine, R. J., Bond, A. J.&Frank, R.(1993). Mechanisms of shaft friction in sand from instrumented pile tests.[J]. Geotech. Engng Div., ASCE119, No.1:19-35.
    [96]钱家欢,殷宗泽,土工原理与计算(第二版),北京:中国水利水电出版社,1996.290-291
    [97]American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design[S]. Washington, D.C.:API Publishing Services, DECEMBER, 2000.
    [98]TNO Building and Construction Research. Foundation pile diagnostic system TNOWAVE impact hammer pile driving prediction(User's guide, version1.0).
    [99]高峰,桩基下程动测技术与方法,徐州:中国地质大学出版社,1997
    [100]徐攸在,桩的动测新技术,北京:建筑工业出版社,2002
    [101]Glanville W.H.et al.,An investigation of the stresses in reinforced concrete piles during driving, British Building Research Board, Technical Paper No.20, London,1938.
    [102]Housel W.S., Michigan study of pile driving hammers, Proc. Of the American Society of Civil Engineers,1965, vol.91:33-64.
    [103]Goble G.G.et al., Bearing capacity of piles from dynamic measurements, Final Report, Department of Civil Engineering, Case Western Reserve University,1975.
    [104]Goble G.G.et al., Dynamic studies on the bearing capacity of piles, Phase Ⅲ, Report No.48Division of solid Mechanics, Structure and Mechanical Design, Case Western Reserve University,1970.
    [105]Goble G.G.et al., Dynamic studies on the bearing capacity of piles, vol. Ⅰ and Ⅱ, Case Institute of Technology,1967.
    [106]Goble G.G.et al., Dynamic studies on the bearing capacity of piles, Phase Ⅱ, vol. Ⅰ and Ⅱ, Report No.31, Division of Solid Mechanics, Structure and Mechanical Design, Case Western Reserve University,1968.
    [107]交通部第三航务工程局科学研究所.桩基动测译文集(第三届“应力波理论在桩基工程中的应用”国际会议论文).1991
    [108]Rausche F.et al., Soil resistance predictions from pile dynamics, Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98, No.SM9.
    [109]周光龙,桩基参数动测法,中国土木工程学会第三届土力学及基础工程学会会议论文选集,北京:中国建筑工业出版社,1981
    [110]唐念慈,渤海近海平台的打桩分析,南京工学院学报,1980,No.1:48-55
    [111]梁守信等,输入实测力波的波动分析法确定单桩承载力,建筑结构学报,1979,No.3:68-78
    [112]江礼茂等,一个以波动理论为基础的计算单桩承载力的计算程序,岩土工程学报,1990,Vol.12,No.4:42-48.
    [113]陈凡,FEIPWAPC特征线桩基波动分析程序,岩土工程学报,1990,Vol.12,No.5:65-75.
    [114]袁建新,朱国甫,桩的大应变法波动分析优化计算法程序,岩土工程学报,1990,Vol.12,No.6:1-11
    [115]中国建筑科学研究院,基桩高应变动力检测规程,JGJ106-97,北京:中国建筑工业出版社,1997
    [116]李廷,基桩高应变锤桩土相互作用机理及其模拟试验研究:[博士学位论文],长沙;中南大学,2010
    [117]陈剑,人工挖孔灌注桩应变动力检测,建筑技术开发,2003,30(3):40-41
    [118]沈晓鹏,刘明,侯金林,旅大32—2生产储油平台桩基方案设计,中国造船,2011,Vol.52,Special2:197-201
    [119]唐世栋,王永兴,叶真华,饱和软土地基中群桩施工引起的超孔隙水压力,同济大学学报,2003,31(11):1290-1294
    [120]TNO Building and Construction Research. Foundation pile diagnostic system TNOWAVE impact hammer pile driving prediction(User's guide, version1.0).
    [121]曹宇春,吴世明,高广远,桩基动力检测技术的现状及存在的问题,上海地质,2002,81:43-45
    [122]唐念慈,西德土力学基础工程学会AK5分会关于桩的动测的建议,港口工程,1989,49-56
    [123]黄理兴,动测桩身完整性的新理念,岩石力学与工程学报,2002,21(3):454-456
    [124]胡琦,蒋军,严细水等,回归法分析预应力管桩单桩极限承载力时效性,哈尔滨工业大学学报,2006,Vol.38,No.4:602-612
    [125]徐建平,潘树林,典型施工作用下的土体性质变异研究,华中科技大学学报(城市科学版),2002,19(1):25-69
    [126]Randolph M.F.(2003). Science and empiricism in pile foundation design, Geotechnique53(10):847-875.
    [127]Massarsch K R. New aspects of soil fracturing in clay[J], Journal of the Geotechnical Engineering Division, ASCE,1978,104(GT8):1109-1123
    [128]赵亮,闫澍旺等,高应变动测技术在海洋石油平台桩基工程中的应用研究,工程力学,2011,Vol.28,No.5:219-225
    [129]Garland Linkins "HELPFUL HINTS" FOR FIELD TESTING AND DATA INTERPRETATION USING THE PILE DRIVING ANALYZER[M]. Pile Dynamics, Inc.1996.
    [130]钱家欢,殷宗泽,土工原理与计算(第二版),北京:中国水利水电出版社,1996.199-212
    [131]章定文,刘松玉,土体中水力劈裂研究进展,水利水运工程学报, 2006,2:71-78
    [132]樊之夏,海上打桩拒锤风险分析,中国造船,2006,47(增刊):43-44
    [133]孙训方,方孝淑,关来泰,材料力学(第四版)Ⅰ,高等教育出版社,2002.294-306
    [134]A.P. Boresi, O. M. Sidebottom, F. B. Seely, J. O. Smith汪一麟,汪骏译Advanced Mechanics of Materials (third edition), John Wiley and Sons,1978高等材料力学.科学出版社.1987
    [135]Leonhard Euler. Elastic Curves (Des Curvie Elasticis, Lausanne and Geneva,1744),translated and annotated by W.A. oldfather, C. A. Ellis, and D. M. Brown, ISIS, No.58, Vol ⅩⅩ,1,Nove.1933
    [136]中国海洋石油天然气行业标准海上固定平台规划、设计和建造的推荐作法(SY/T4802—92):中华人民共和国能源部发布1992:25-30
    [137]丁皓江,何福保,弹性塑性力学中的有限单元法,北京:机械工业出版社,1989
    [138]董伟,海洋采油平台大直径超长桩动力沉桩分析方法研究:[博士学位论文],天津;天津大学,2009
    [139]朱以文,蔡元奇,徐晗,ABAQUS与岩土工程分析,香港:中国图书出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700