钢—混凝土结合梁桥动力性能及损伤识别的理论分析与模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢—混凝土结合梁桥是继钢结构桥梁与混凝土桥梁之后兴起的一种新型结构,它通过抗剪连接件将钢梁和混凝土板连接在一起,使二者形成组合作用,共同受力,充分发挥钢(抗拉)和混凝土(抗压)两种不同材料的特点。正是由于这种优点,钢—混凝土结合梁在公路、市政、轨道交通和铁路桥梁领域应用日益广泛。虽然钢—混凝土结合梁具有上述明显的优势,但由于材料和结构本身的限制,也不可避免地存在着一些问题,如负弯矩区混凝土容易开裂,收缩和徐变问题会导致结合梁挠度加大以及混凝土板裂缝,连接性能在长期荷载作用下容易劣化,动力作用下结合梁的受力和滑移机理不明确等问题。本文结合国家重点基础研究发展计划973项目、国家自然科学基金项目以及铁道部科技研究开发计划资助项目,以钢—混凝土结合梁桥为研究对象(文中简称为结合梁桥),通过理论推导、数值分析和模型试验,重点研究结合梁桥的动力行为,对其自振特性、外力荷载激励下的响应、车桥动力相互作用分析和损伤识别进行了深入的研究。主要工作和结论如下:
     (1)建立了考虑钢梁与混凝土板之间相对滑移、阻尼的简支直线钢—混凝土结合梁的基本振动方程。运用直接平衡法,考虑了阻尼对结构响应的影响,把钢梁和混凝土板均视作Euler-Bernoulli梁,建立了简支直线钢—混凝土结合梁的基本振动方程,针对一定的边界条件进行求解,重点研究钢梁与混凝土板之间的相对滑移对结合梁桥自振特性的影响,分析其与单一材料梁的区别。在此基础上,得到了结合梁的质量、刚度和阻尼矩阵的正交条件,为下文的车桥动力相互作用分析提供了理论基础。
     (2)给出了考虑滑移、简谐荷载共同作用的结合梁挠度通用表达式。通过本文建立的结合梁基本动力理论,得到了集中荷载(或其它形式的荷载)作用下结合梁静挠度的通用级数表达式,通过一定的变换,使其符合级数求和条件;将其相应的Bernoulli函数和Bernoulli数代入,即可得到与静力方法一致的结合梁挠度通用表达式,且能体现滑移引起的附加挠度以及简谐力的影响,为求解结合梁的挠度通用表达式提供了一种思路。
     (3)根据结合梁的动力特性,提出了钢—混凝土简支结合梁的“动力刚度折减系数”和“频率折减系数”的概念。通过理论推导,得到了结合梁的动力刚度折减系数的表达式,并与《钢结构设计规范》(GB50017-2003)中的公式进行了比较。对静力刚度折减系数的取值进行了分析,研究了其与动力刚度折减系数的联系和区别及应用的范围。结果表明,在结合梁的动力计算中,不能直接套用静力计算的公式来计算结合梁的等效刚度,否则会引起较大的误差。
     (4)建立了钢—混凝土结合梁桥车桥动力相互作用分析模型。考虑铁路桥梁的行车特点、车—桥耦合特征以及结合梁桥的构造特点,对移动荷载作用下结合梁桥的动力响应进行了分析,推导了移动质量、简谐荷载、簧上质量、车辆作用下结合梁的振动方程,并进行了求解,重点分析移动荷载作用下钢梁与混凝土板之间的相对滑移对结合梁桥动力响应的影响。本文的理论分析结果表明,通过本文的结合梁动力理论所得到的结果与试验结果吻合良好,在某些条件下可以从结合梁的动力理论得到集中荷载作用下结合梁的挠度通用表达式。
     (5)根据铁路结合梁桥实桥的构造特点,对6片钢—混凝土结合梁进行了动力特性的模型试验研究,其中包括两种连接刚度(完全连接、部分连接),对结合梁的自振特性、模型车辆移动荷载作用下梁的响应、简谐荷载持续作用下钢梁与混凝土板之间的相对滑移规律等进行了重点研究;并预设了6种栓钉损伤工况,针对栓钉连接件发生不同程度损伤时的动力特性进行测试。根据试验现象和结果,与理论分析、数值分析相互验证,进一步深入揭示铁路结合梁桥在静、动力荷载下的受力机理。结果表明结合梁的连接刚度对其动力特性产生重大影响,小范围损伤对其自振特性的影响甚微。
     (6)进行了钢—混凝土结合梁桥状态评估与损伤识别研究。针对钢—混凝土结合梁桥的构造特点,基于现有的结构损伤识别方法,对常见的损伤识别方法应用在结合梁损伤识别中的适用性进行了评估,尤其是针对栓钉局部损伤的有效识别方法进行了研究和探讨。分析结合梁的刚度特点,找到了适合于结合梁桥的损伤识别方法,并以某钢—混凝土简支结合试验梁为例,应用曲率模态分析方法,对抗剪连接件进行了损伤识别方法研究。结果表明:由于结合梁栓钉抗剪连接件的存在,结合梁的整体刚度是不连续的,呈阶段性分布;以自振频率和自振模态等整体动力参数为识别指标的损伤识别方法效果并不理想,无法对损伤位置和程度进行量化;对结合梁的前3阶曲率模态进行综合分析,可以很好地识别混凝土板和钢梁之间的栓钉布置情况、栓钉的损伤位置。
     本文共有图109幅,表40个,公式259个,参考文献146篇。
The steel-concrete composite beam (short for "composite bridge") bridge, which is composed of steel girder and concrete slab integrated by shear connectors, is a new-type bridge arose after steel and concrete bridges. By combining the advantages of steel (tensile) and concrete (compressive) members, composite bridges are widely applied in highway, urban road, rail transit and railway bridges. However, there are inevitably some obvious problems owing to the material and structure limitation, such as cracking in negative moment regions, bigger deflection and cracks due to concrete shrinkage and creep, connection performance degradation under long duration loads, uncertainty of slip and mechanical behaviors under dynamic loads, etc. In this paper, the dynamic behaviors of composite bridges, including natural vibration characteristics, dynamic responses of external force load excitation, vehicle-bridge interaction dynamic analysis and damage identification are investigated, by theoretical derivation, numerical analysis and model test. The research is sponsored by the State Fundamental Research Funds "973" Program, the National Nature Science Foundation of China and the Scientific Research and Development Projects of Ministry of Railways of China. The main work and conclusions are as follows:
     (1) By employing the direct equilibrium method and treating the steel girder and concrete slab as Euler-Bernoulli beams, the fundamental motion equations of simply-supported straight composite bridge are established, considering relative slip at the interface of steel girder and concrete slab, as well the damping, and the equations are solved for certain boundary conditions. The effect of relative slip on the natural vibration characteristics of the composite bridge is analyzed. On this basis, the orthogonality conditions for the mass, stiffness and damping matrices are obtained, which provides a theoretical basis for further vehicle-bridge interaction analysis.
     (2) By the established fundamental theory, and considering the relative slip and harmonic load, the general series expressions of composite beam displacement under concentrated forces (or other types) are derived. Then a certain transformation is conducted to meet the summation conditions of the series. By substituting the corresponding Bernoulli functions and Bernoulli numbers to the above expressions, the general displacement expression of simply-supported composite beam is obtained, which is consistent with that derived by static methods, and can reflect the influences of slip and harmonic load, providing an analytical method for solving the displacement of composite beams.
     (3) The concepts "dynamic stiffness reduction factor (DSRF)" and "frequency reduction factor (FRF)" are proposed based on the mechanical behaviors of composite beams. The DSRF expression is obtained by theoretical derivation, and compared with the expression in the Code for steel structures (GB50017-2003). The valuing range of static stiffness reduction factor, the connection and difference, and the application area are analyzed. It shows when conducting dynamic calculations, the static expression cannot be directly applied to the equivalent stiffness of composite beam, for it will lead to obvious error.
     (4) The dynamic analysis model of the composite bridge concerning vehicle-bridge interaction is established. In views of the characteristics of train running, dynamic interaction between vehicle and composite beam structure, the equations of motion of composite beams under moving loads, harmonic load, sprung mass and vehicles are derived and solved. Especially, the relative slip effect on the dynamic responses of composite beams under moving loads is analyzed. The theoretical results agree well with the test results. Under certain conditions, the general deflection expression of composite beams under concentrated force can be obtained using the proposed dynamic theory.
     (5) The dynamic test was conducted on six composite beam models with full and partial connection stiffnesses, in which the natural characteristics, dynamic responses under model vehicle, slip law under impact load, etc., are studied. In the test, the dynamic responses of the composite beams are measured for six pre-set damage conditions with different damage degrees of shear connectors. The results from the test, theoretical analysis and numerical calculation verify well each other, which further reveals the mechanical behaviors of railway composite beams under static and dynamic loads. It shows the connection stiffness has a significant impact on the dynamic behaviors of composite beams, while localized damage has little impact.
     (6) The dynamic assessment and damage identification of composite beams are studied. Aimed at the structural features, the applicability of existing damage identification methods in composite beams is assessed and studied, especially for the identification method for local damage of studs. Through analysis on the stiffness characteristics of composite beams, a suitable identification method is proposed. Taking a model composite beam as an illustrative case study, the curvature model method is employed to analyze the identification method for connector damage. The results show that due to shear connectors, the integral stiffness of composite beam is discontinuous and distributed in a staged form; the identification methods based on global indices such as natural frequencies and modes are unsatisfactory and difficult to position and qualify the damage; by comprehensive analysis on the first3curvature modes, the stud distribution and damage position can be well identified.
     Altogether there are109figures,40tables,259equations and146references in this paper.
引文
[1]聂建国,余志武.钢—混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
    [2]黄侨.桥梁钢—混凝土组合结构设计原理[M].北京:人民交通出版社,2004.
    [3]项海帆.世界桥梁发展中的主要技术创新[J].广西交通科技,2003,28(5):1-7.
    [4]叶梅新,张晔芝.桁梁结合梁及其剪力联结器试验研究[J].铁道学报,1999,21(1):67-71.
    [5]聂建国,陶慕轩,吴丽丽,聂鑫,李法雄,雷飞龙.钢-混凝土组合结构桥梁研究新进展[J].土木工程学报,2012,45(6):110-122.
    [6]Schmitt Victor, Seidl Guenter. Eisenbahnbrucken in Stahlverbundbauweise (Railway bridges using steel-concrete composite structures). STAHLBAU,2010,79(3):159-166.
    [7]Taly N. Design of modern highway bridges [M]. McGraw-Hill Companies. Inc, New York, 1998.
    [8]Theodore V. Galambos. Recent research and design developments in steel and composite steel-concrete structures in USA. Journal of Constructional Steel Research,2000(55):289-303.
    [9]Brozzett J. Design development of steel-concrete composite bridges in France [J]. Journal of Constructional Steel Research.2000,55,229-243.
    [10]杨义东,李涛编译.钢一混凝土组合结构桥在日本的发展趋势[J].国外桥梁.1998,(4):39-42.
    [11]辛学忠,张晔芝.我国铁路钢—混凝土结合梁桥技术发展思考[J].桥梁建设,2007,5:12-16.
    [12]聂建国.钢—混凝土组合梁结构—试验、理论及应用[M].科学出版社,北京:2005
    [13]Richard Yen J.Y., Lin Yiching, Lai M.T. Composite beams subjected to static and fatigue loads [J]. J. Struct. Engrg.1997,123(6):765-771
    [14]刘玉擎.组合结构桥梁[M].人民交通出版社,北京:2005,21-23.
    [15]胡夏闽.欧洲规范4钢—混凝土组合梁设计方法(6)——剪力连接件[J].工业建筑,1996,26(4):50-53.
    [16]Slutter R G, Driscoll G C. Flexural strength of steel-concrete composite beams [J]. Journal of the Structural Division, ASCE,1984,91(2):71-99.
    [17]American Association of State Highway Officials. Standard Specification for Highway Bridges [S].7th Edn, Div.1, Sect.9, Washington,D.C,1957
    [18]CP 117-1. Composite construction in structural steel and concrete:Part 1:Simply-supported beams in buildings [S]. London, British Standards Institution,1965.
    [19]BS 5400-5. Steel, concrete and composite bridges:Part 5:Code of practice for design of composite bridges, London, British Standard Institution,1979.
    [20]BS 5950-3. Structural use of steelwork in buildings:Part 3:Section 3.1:Code of practice for design of simple and continuous composite beams [S]. London, British Standard Institution, 1990.
    [21]Eurocode 4. Part 1. General Rules and Rules for Buildings [S]. Revised draft,1991.
    [22]Maeda, Y. Research and development of steel-concrete composite constructions in Japan from 1950 to 1986. Proc. Composite Construction Ⅲ [M]. New York, The Engineering Foundation, 1996.
    [23]Stephen, Graham Couchman. The shear resistance and ductility requirements of headed studs used with profiled steel sheeting [J]. Composite Construction in Steel and Concrete,2006, 511-523.
    [24]胡夏闽,刘子彤,赵国藩.钢与混凝土组合梁栓钉连接件的设计承载力[J].南京建筑工程学院学报.2000(4):1-10.
    [25]聂建国,沈聚敏,袁彦声,林伟,王文辉.钢—混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1996,17(2):21-28.
    [26]崔玉萍,石中柱.钢—混凝土组合梁中栓钉连接件实际抗剪承载能力的计算[J].中国市政工程,1997,(3):21-26
    [27]Ollgaard J, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete [J]. Engineering Journal of American Institute of Steel Construction, 1971,8(2):55-64.
    [28]Pil-Goo Lee, Chang-Su Shim, Sung-Pil Chang. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges [J]. Journal of Constructional Steel Research, 2005,(61):1270-1285.
    [29]Stephen, Graham Couchman. The shear resistance and ductility requirements of headed studs used with profiled steel sheeting [J]. Composite Construction in Steel and Concrete,2006, 511-523.
    [30]Oehlers D. J. The shear stiffness of stud shear connections in composite beams [J]. Construct Steel Research,1986, (6):273-284.
    [31]Gsttesco N., Giuriani E. Experiment study on stud shear connectors subjected to cyclic loading. [J]. J. Construct Steel Research,1996,38(1):1-21.
    [32]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报(自然科学版),1999,27(6):61-66.
    [33]侯文崎,叶梅新.桁梁结合梁栓钉疲劳承载力的试验研究[J].长沙铁道学院学报,1999,17(4):46-50.
    [34]叶梅新,吏林山.混凝土受拉状态下钢—混凝土组合结构中栓钉的承载力的研究[J].长沙铁道学院学报,2003,21(1):8-12.
    [35]唐琎,叶梅新.钢—混凝土组合结构中密集型剪力钉群的受力状态[J].长沙铁道学院学报.1999,17(4):68-73.
    [36]罗如登,叶梅新.组合梁钢与混凝土板相对滑移及栓钉受力状态研究[J].铁道学报,2002,24(3):57-61.
    [37]叶梅新,罗如登.群钉钢—混凝土组合件栓钉受力状态研究[J].钢结构,1999,14(45):39-42.
    [38]Push-out Tests on Studs in High Strength and Normal Strength Concrete [J]. J. Construct. Steel Res,1996,36(1):15-29.
    [39]聂建国,谭英,王洪全.钢—高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版),1999,39(12):94-97.
    [40]Chang-Su Shim, Pil-Goo Lee, Sung-Pil Chang. Design of shear connection in composite steel and concrete bridges with precast decks [J]. Journal of Constructional Steel Research,2001, (57):203-219.
    [41]戴益民,廖莎.钢—混凝土预制板组合梁栓钉连接件的试验研究[J].建筑技术开发,2005,32(5):27-29.
    [42]Michel Thomann, Jean-Paul Lebet. A mechanical model for connections by adherence for steel-concrete composite beams [J]. Engineering Structures,2007,03(016):1-11, Thomann M, Lebet J-P.
    [43]Andrews E.S. Elementary principles of reinforced concrete construction [J]. Scott, Greenwood and Sons,1912.
    [44]中华人民共和国国家标准.钢结构设计规范(GB 50017-2003).中华人民共和国建设部,2003.
    [45]王力,杨大光.钢—混凝土组合梁滑移及掀起的理论分析方法[J].哈尔滨建筑大学学报,1998,31(1):37-42.
    [46]Newmark N M, Siessc P, Viest I M. Test and analysis of composite beams with incomplete interaction [C]. Proc. Society for Experimental Stress Analysis, New York,1951,9(1):75-92.
    [47]Johnson R.P., Willmington R.T. Vertical shear strength of compact composite beams [J]. Proc. Instn. Civ. Engrs.Suppl,1972(1):1-16.
    [48]Johnson R.P., May I.M. Partial-interaction design of composite beams [J]. The Structural Engineer,1975,53(8).
    [49]聂建国,崔玉萍,石中柱等.部分剪力连接钢—混凝土组合梁受弯极限承载力的计算[J].工程力学,2000,17(3):37-42.
    [50]Ashraf Ayoub. A force-based model for composite steel-concrete beams with partial interaction [J]. Journal of Constructional Steel Research,2005,61(3):387-414.
    [51]Ranzi G, Zona A. A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component [J]. Engineering Structures,2007,29(11): 3026-3041.
    [52]陈玉骥,叶梅新.钢—混凝土结合梁在温度作用下的响应分析[J].中国铁道科学,2001,22(5):48-53.
    [53]叶梅新,刘明,陈玉骥.高速铁路连续结合梁的线形研究[J].桥梁建设,2003(2):12-15.
    [54]Sieffert Yannick, Michel, Gerard, Ramondenc Philippe, Jullien Jean-Francois. Effects of the diaphragm at midspan on static and dynamic behaviour of composite railway bridge:A case study [J]. Engineering Structures,2006(28):1543-1554.
    [55]Hou Wen-qi, Ye Mei-xin. Design methods of headed studs for composite decks of through steel bridges in high-speed railway [J]. J. Cent. South Univ. Technol.,2011(18):946-952.
    [56]Francisco Virtuoso, Ricardo Vieira. Time dependent behaviour of continuous composite beams with flexible connection [J]. Journal of Constructional Steel Research,2004 (60):451-463.
    [57]RI Gilbert, M A Bradford. Time-dependent behavior of continuous composite beams at service loads [J]. Journal of Structural Engineering,1995,121(2):319-327.
    [58]胡夏闽.欧洲规范4钢—混凝土组合梁设计方法(9)——组合梁的挠度和裂缝控制[J].工业建筑,1996,26(5):47-50.
    [59]M A Bradford, R I Gilbert. Non-linear behavior of composite beams at service loads [J]. The Structural Engineer,1989,67(14):263-268.
    [60]A M Tarantino, L Dezi. Creep effects in composite beams with flexible shear connectors [J]. Journal of Structural Engineering,ASCE,1992,118(8):2063-2081.
    [61]Claudio Amadiao and Massimo Fragiacomo. Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams [J]. Journal of Structural Engineering,1997, 123(9):1153-1162.
    [62]W M Sebastian, R E McConnel. Nonlinear FE analysis of steel-concrete composite structures [J]. Journal of Structural Engineering, ASCE,2000,126(6):662-674.
    [63]聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报,1997,18(2):13-19.
    [64]中华人民共和国铁道部标准.铁路结合梁设计规定(TBJ 24-89)[S].北京:中华人民共和国铁道部,1989:2.
    [65]聂建国,沈聚敏,袁彦声.钢—混凝土简支组合梁变形计算的一般公式[J].工程力学,1994年3月,11(1):21-27.
    [66]Nie Jianguo, Cai C.S. Steel-concrete composite beams considering shear slip effects [J]. J. Structural Engineering-ASCE,2003:495-506.
    [67]聂建国,沈聚敏,余志武.考虑滑移效应的钢一混凝土组合梁变形计算的折减刚度法[J].1995,28(2):11-17.
    [68]聂建国,李勇,余志武,陈宜言.钢-混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998,38(10):38-41.
    [69]蒋丽忠,余志武,李佳.均布荷载作用下钢—混凝土简支梁界面滑移理论及变形计算[J].工程力学,2003,20(2):133-137.
    [70]余志武,蒋丽忠,李佳.集中荷载作用下钢—混凝土简支梁界面滑移理论及变形计算[J].土木工程学报,2003,36(8):1-6.
    [71]聂建国,张眉河.钢—混凝土组合梁负弯矩区板裂缝的研究[J].清华大学学报(自然科学版),1997,(6):25-29
    [72]聂建国,张眉河,沈聚敏,袁彦声,乔海文,邱慈英.组合梁负弯矩区混凝土板的裂缝宽度[J].哈尔滨工业大学学报(增刊),1995,28(5):226-233.
    [73]聂建国,樊健生,王挺.钢-压型钢板混凝土组合梁裂缝的试验研究[J].土木工程学报,2002,2,35(1):15-20.
    [74]刘鹏辉,杨宜谦,董振升,杨平.钢—混凝土连续结合梁动力性能试验研究[J].铁道建筑,2009,8:36-39.
    [75]K. Liu, E. Reynders, G. De Roeck, G. Lombaert. Experimental and numerical analysis of a composite bridge for high-speed trains [J]. Journal of Sound and Vibration,2009,320: 201-220.
    [76]Sung Ⅱ Kim, Jungwhee Lee and Sungkon Kim. Dynamic behavior comparison of steel-composite and concrete high speed railway bridges [J]. INTERNATIONAL JOURNAL OF STEEL STRUCTURES,2011,11(4):445-455.
    [77]张晔芝.高速铁路连续结合梁的响应分析[J].中国铁道科学,2005,26(4):7-10.
    [78]冯星梅,陈庆中,史永吉.高速列车与铁路简支组合梁动力相互作用仿真分析[J].中国铁道科学,2005,26(4):7-10.
    [79]K.Liu, G.De Roeck, G.Lombaert. The effect of dynamic train-bridge interaction on the bridge response during a train passage [J]. Journal of Sound and Vibration,2009,325:240-251.
    [80]H. Xia, G. De Roeck and Jose M. Goicolea. Bridge vibration and control [M]. New York:Nova science publishers, inc,2012.
    [81]郭向荣,曾庆元.高速铁路结合梁桥与列车系统振动分析模型[J].华中理工大学学报,2000,28(3):60-62.
    [82]张晔芝.高速铁路连续结合梁的响应分析[J].铁道学报,2002,24(6):84-88.
    [83]冯星梅,陈庆中,史永吉.高速列车与铁路简支组合梁动力相互作用仿真分析[J].中国铁道科学,2005,26(4):7-10
    [84]Rongqiao Xu, Yufei Wu. Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory [J]. Int. J. Mech. Sci.,2007,49(10) 1139-1155.
    [85]C. W. Huang and Y. H. Su. Dynamic characteristics of partial composite beams [J]. Int. J. Struct. Stab. D.,2008,8(4):665-685.
    [86]戚菁菁,蒋丽忠,张传增,余志武.界面滑移、竖向掀起及剪切变形对钢-混凝土组合连续梁动力性能的影响[J].中南大学学报:自然科学版,2010,41(6):2334-2343.
    [87]Gianni Biscontin, Antonino Morassi and Pia Wendel. Vibrations of Steel-Concrete Composite Beams [J]. Journal of Vibration and Control,2000,6:691-714.
    [88]J.R. Banerjee, H.Su, C. Jayatunga. A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings [J]. Computers and Structures,2008, (86): 573-579.
    [89]Faruk Firat Calim. Free and forced vibrations of non-uniform composite beams [J]. Composite Structures,2009, (88):413-423.
    [90]Ulf Arne Girhammar, Dan H. Pan, Anders Gustafsson. Exact dynamic analysis of composite beams with partial interaction [J]. Int. J. Mech. Sci.,2009,51(8):565-582.
    [91]Mahir Ulker-Kaustell, Raid Karoumi. Application of the continuous wavelet transform on the free vibrations of a steel-concrete composite railway bridge [J]. Engineering Structures,2011, (33):911-919.
    [92]Mahir Ulker-Kaustell, Raid Karoumi. Influence of non-linear stiffness and damping on the train-bridge resonance of a simply supported railway bridge [J]. Engineering Structures,2012, (41):350-355.
    [93]蒋丽忠,丁发兴,余志武.钢—混凝土连续组合铁路桥梁综合动力性能试验研究[J].中国铁道科学,2006,27(5):60-65.
    [94]Louis Lorieus. Analysis of train-induced vibrations on a single-span composite bridge [D]. Master thesis 263, Structural Design & bridges, Royal Institute of Technology (KTH), Stockholm, Sweden,2008.
    [95]刘鹏辉,杨宜谦,董振升,杨平.钢—混凝土连续结合梁动力性能试验研究[J].铁道建筑,2009,8:36-39.
    [96]K.Liu, G. De Roeck, GLombaert. The effect of dynamic train-bridge interaction on the bridge response during a train passage [J]. Journal of Sound and Vibration,2009,325:240-251
    [97]K. Liu, E. Reynders, G. De Roeck, G. Lombaert. Experimental and numerical analysis of a composite bridge for high-speed trains [J]. Journal of Sound and Vibration,2009,320:201-220
    [98]K.Liu, G. De Roeck. Parametric study and fatigue-life-cycle design of shear studs in composite bridges [J]. Journal of Constructional Steel Research,2009(65):1105-1111.
    [99]Chellini Giuseppe, Nardini Luca, Salvatore Walter. Dynamical identification and modelling of steel-concrete composite high-speed railway bridges [J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING,2011,7(11):823-841.
    [100]李琦.基于环境激励的刚构-连续组合梁桥的模态分析与损伤识别[D].大连理工大学硕士学位论文,大连,2010:1-2.
    [101]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J].力学进展,2004,34(2):215-223.
    [102]A. Morassi. Vibrations of steel-concrete composite beams with damaged connection [C]. PROCEEDINGS OF ISMA 2002:INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS 1-5,2002:357-366.
    [103]Michele Dilena. Experimental modal analysis of steel concrete composite beams with partially damaged connection [J]. JOURNAL OF VIBRATION AND CONTROL,2004 (10): 897-913.
    [104]叶梅新,黄琼.高速铁路钢—混凝土组合梁的损伤识别[J].中南大学学报:自然科学版,2005,36(4):704-709.
    [105]Yong Xia, Hong Hao, Andrew J. Deeks. Dynamic assessment of shear connectors in slab-girder bridges [J]. Engineering Structures,2007(29):1475-1486.
    [106]Wei-Xin Ren, Zeng-Shou Sun, Yong Xia, Hong Hao and Andrew J. Deeks. Damage Identification of Shear Connectors with Wavelet Packet Energy:Laboratory Test Study [J]. JOURNAL OF STRUCTURAL ENGINEERING,2008,134(5):832-841.
    [107]K.Liu, G. De Roeck. Damage Detection of Shear Connectors in Composite Bridges [J]. Structural Health Monitoring,2009(8):345-356.
    [108]X.Q. Zhu, H. Hao, B. Uy, Y. Xia and O. Mirza. Dynamic Assessment of Shear Connection Conditions in Slab-Girder Bridges by Kullback-Leibler Distance [J]. Advances in Structural Engineering,2012,15(4):771-780.
    [109]Ansourian P. Experiments on continuous composite beams [J]. Proc. Instn Civ. Engrs, Part 2, 1981,71(12):25-71.
    [110]Hyung-Keun Ryu, Chang-Su Shim, Sung-Pil Chang, Chul-Hun Chung. Inelastic behaviour of externally prestressed continuous composite box-girder bridge with prefabricated slabs [J]. Journal of Constructional Steel Research,2004, (60):989-1005.
    [111]陈听.损伤识别理论在桥梁中的应用及存在问题[J].公路,2005,(4):156-158.
    [112]王孝军,霍正存,马山明.钢混混合桥梁结构等效阻尼比的推算[J].公路工程,2009,34(1):81-83.
    [113]R.克拉夫,J.彭津(王光远等译校).结构动力学第二版(修订版)[M].北京:高等教育出版社,2006:184.
    [114]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005..42,304.
    [115]张彦玲.钢—混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究[D].北京交通大学博士学位论文:北京,2009:127-128.
    [116]L. B. W. JOLLEY, M.A. (CANTAB.), M.I.E.E.. SUMMATION OF SERIES (SECOND REVISED VERSION) [M]. DOVER PUBLICATIONS, INC., New York,2005:106,138.
    [117]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J],1995,28(6):11-17.
    [118]中华人民共和国建设部.钢结构设计规范(GB50017-2003)[S].中华人民共和国国家标 准.北京,2003:117-124.
    [119]聂建国,李勇,余志武,陈宜言.钢—混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998,38(10):38-41.
    [120]聂建国,沈聚敏,余志武.考虑滑移效应的钢—混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [121]中华人民共和国建设部.钢结构设计规范(GB50017-2003)[S].中华人民共和国国家标准.北京,2003:124
    [122]朝泽刚,徐华,闻德华.考虑刚度方法的组合梁动力特性研究[J].科协论坛.2009,2:12.
    [123]Huang C. W. and Su Y. H. Dynamic characteristics of partial composite beams [J]. International Journal of Structural Stability and Dynamics,2008,8(4):665-685.
    [124]N.Gattesco. Analytical modeling of nonlinear behavior of composite beams with deformable connection [J]. Journal of Constructional Steel Research,1999,52:195-218
    [125]向俊,龚凯,毛建红,曾庆元.高速列车运行安全性与桥梁防撞墙受力分析[J].铁道学报,2011,33(12):83-87.
    [126]王君杰,陈诚.超桥墩在船舶撞击作用下的损伤仿真研究[J].工程力学,2007,24(7):156-160.
    [127]肖建春,毛家意.冲击荷载作用下钢-混凝土组合梁的动力性能研究[J].贵州科学,2007,25(增刊):209-213.
    [128]张炎圣,陆新征,宁静,江见鲸.超高车辆撞击组合结构桥梁的仿真分析[J].交通与计算机,2007,25(3):65-69.
    [129]杨涛春,李国强,王开强.接触爆炸作用下钢-混凝土组合梁的波传播分析[J].结构工程师,2009,25(6):29-34.
    [130]程文壤,康谷贻,颜德姐.混凝土结构设计原理[M].北京:中国建筑工业出版社,2002.
    [131]中华人民共和国住房和城乡建设部,GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [132]全国钢标准化技术委员会.GB/T228-2002金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [133]李运生,阎贵平,钟铁毅,王元清.铁路实体桥墩横向振动规律[J].北京交通大学学报,2009,32(1):77-80.
    [134]中华人民共和国铁道部.铁路桥梁检定规范(铁运函[2004]120号)[Z].中华人民共和国国家标准.北京,2004.
    [135]中华人民共和国铁道部.新建时速200公里客货共线铁路设计暂行规定(铁建设函[2003]49号)[S].中华人民共和国国家标准.北京,2003.
    [136]中华人民共和国铁道部.铁道机车动力学性能试验鉴定方法及评定标准(TB/T2360-1993)[S].中华人民共和国铁道行业标准.北京,1993.
    [137]中华人民共和国国家标准局.铁道车辆动力学性能评定和试验鉴定方法规范(GB5599-85)[S].中华人民共和国国家标准.北京,1985.
    [138]Ansourian P. Experiments on continuous composite beams [J]. Proc. Instn Civ. Engrs, Part 2, 1981,71(12):25-71.
    [139]Dilena M., Morassi A. and Perin M. Dynamic identification of a reinforced concrete damaged bridge [J]. Mech. Syst. Signal. Pr.,2011,25,2990-3009.
    [140]Chen W.H., Lua Z.R. and Lin W., et al.Theoretical and experimental modal analysis of the Guangzhou New TV Tower [J]. Eng. Struct.,2011,(33):3628-3646.
    [141]Morassi A. and Rocchetto L. A Damage Analysis of Steel-Concrete Composite Beams Via Dynamic Methods:Part Ⅰ. Experimental Results [J]. J. Vib. Control,2003(9):507-527.
    [142]Dilena M. and Morassi A. A Damage Analysis of Steel-Concrete Composite Beams Via Dynamic Methods:Part Ⅱ. Analytical Models and Damage detection [J]. J. Vib. Control, 2003(9):529-565.
    [143]张晔芝.高速铁路连续结合梁的响应分析[J].中国铁道科学,2005,26(4):7-10.
    [144]K.Liu, G.De Roeck, G.Lombaert. The effect of dynamic train-bridge interaction on the bridge response during a train passage [J]. Journal of Sound and Vibration,2009,325:240-251
    [145]李德葆,秦权.承弯结构的曲率模态分析[J].清华大学学报:自然科学版,2002,42(2):224-227.
    [146]顾培英,陈厚群,李同春,邓昌.基于应变模态差分原理的直接定位损伤指标法[J].振动与冲击,2006,25(4):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700