基于语义的异构三维CAD模型检索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来自不同学科、不同地域的工程师被临时组织在一起,协同完成项目工作已成为当代制造企业产品开发的常见模式。不同领域的工程师们使用不同的CAD系统进行产品设计,导致企业数据库中保存了多种异构CAD产品模型。工程师在进行新产品的开发时,如果能有效地找出便于进行设计重用的现有CAD模型,可以缩短开发周期,降低开发成本,提高开发效率。然而,在异构CAD模型库中搜索出真正满足工程师需要的CAD模型非常困难。为了解决这一问题,本文研究基于语义的异构三维CAD模型检索方法,主要工作包括:
     (1)提出基于语义的异构CAD模型检索方法
     该方法基于本体对异构CAD模型进行统一描述,采用本体映射生成异构CAD模型的统一语义描述符;使用深度学习技术对CAD模型库中的模型进行自动分类,形成层次式的索引结构,并对输入查询模型采用先分类,再检索的查询方式,以压缩搜索空间,改善检索性能;利用改进的VSM方法、启发式的图匹配方法对CAD模型进行多模式的相似性度量,以满足工程师多样化的检索需求。
     (2)构建层次式的CAD特征本体
     首先分析并总结领域本体的评价准则,并以此为规范构建CAD特征本体。构建的CAD特征本体使用分层表示的结构,由B-rep本体层、公共特征本体层、系统特征本体层组成。公共特征本体层分为公共特征本体核心版和公共特征本体扩展版。公共特征本体核心版参考STEP国际标准进行构建,以便具有领域专业性和权威性,可以满足CAD领域的多种应用需求;公共特征本体扩展版在核心版的基础上进行了扩展和修改,旨在能够有效支持针对异构CAD模型的语义检索。
     (3)提出基于本体的异构CAD模型统一语义描述生成方法
     基于CAD特征本体,利用本体映射技术和语义推理技术,生成能够统一描述异构CAD模型的语义描述符,用于CAD模型的相似性度量。在进行从系统特征本体到公共特征本体的映射时,考虑CAD领域特征概念的独特内外部结构,选择并构造多个映射器,从多方面对特征概念进行相似性评价,以提高本体映射的准确率以及识别出CAD领域特征概念之间的复杂对应关系的能力。为了保证描述符语义的准确性和内容的丰富性,通过将领域知识形式化为SWRL规则并以其为基础进行语义推理,实现对统一语义描述符的完善。
     (4)提出基于深度学习技术的CAD模型分类和索引建立方法
     首先选择并提取CAD模型中有区分意义的特征,并通过预处理将其转换为高维输入向量;然后通过模拟工程师人工进行三维零件分类的思考过程,构建深层神经网络并将其作为CAD模型分类器;最后适当地选取并组合多种训练策略对深层神经网络进行训练,以提高其泛化性能。该方法将深度学习用于CAD模型自动分类,并以其为基础建立异构CAD模型库的索引结构,能够提高模型分类的准确性和模型检索的效率。
     (5)提出多模式的CAD模型语义相似性度量方法
     将VSM (Vector Space Model)引入异构三维CAD模型语义检索,利用改进的VSM方法对CAD模型进行基于向量的相似性度量,以支持快速并具有高查全率的CAD模型语义检索;利用启发式的图匹配方法对异构CAD模型进行基于特征关系图的相似性度量,以支持更准确的CAD模型语义检索。多模式的CAD模型语义相似性度量方法有利于满足工程师对模型检索在效率、准确性、查全性等方面的的不同需求。
     基于以上研究成果,实现了一个多模式的异构三维CAD模型语义检索原型系统OB-HCMR,通过检索实例验证了本文方法的有效性。
It has become a common way in modern manufacturing enterprises to organize multi-disciplinary and geographically distributed engineers working together for product development temporally. These engineers use a variety of CAD systems to design products, thus a large number of heterogeneous CAD models are archived in enterprise databases. When developing new products, if proper CAD models can be found for design reuse, cost reduction and efficiency improvement can be achieved. However, it is difficult to search CAD models which meet engineers' requirements from heterogeneous CAD model database. This dissertation focuses on issues about semantic based retrieval for heterogeneous3D CAD models, with its main contents being as follows:
     (1) A semantic based retrieval approach for heterogeneous CAD models is proposed.
     The proposed approach uses ontology mapping techniques to generate the uniform representation as semantic descriptors for heterogeneous CAD models; and automatically classifies CAD models to form hierarchical index structure with the aid of deep learning techniques. CAD model retrieval driven by classification is achieved, therefore the searching space is narrowed down and the retrieval performance is improved. In addition, improved VSM method and heuristic graph matching method is used to measure similarities between CAD models in a multi-mode way. Therefore various kinds of retrieval requirements from engineers are met.
     (2) A layered CAD feature ontology is constructed.
     This paper analyzes and concludes evaluation criteria of domain ontology, then constructs a CAD feature ontology for meeting the evaluation criteria. A layered representation structure is used in the constructed CAD feature ontology, which consists of B-rep layer, common feature ontology (CFO) layer and application feature ontology (AFO) layer. The CFO layer is divided into core version and extended version. The core version of CFO is constructed by referencing international standard-STEP part Ⅲ, in order to be specialized and authorized, and satisfy a variety of application requirements in CAD domain; the extended version of CFO is extended and modified specifically for heterogeneous CAD model retrieval.
     (3) An ontology based uniform description generation method for heterogeneous CAD models is proposed.
     Based on CAD feature ontology, the proposed method uses ontology mapping techniques and semantic reasoning techniques to generate the uniform semantic descriptors of heterogeneous CAD models for similarity measurement. When conducting ontology mapping from AFO to CFO, considering the specific internal and external structure of feature concepts, the proposed method chooses and combines multiple mappers, and evaluates similarities from multiple facets. Therefore the accuracy of ontology mapping is improved and the complex correspondences between feature concepts are identified. In addition, for guaranteeing the correctness and abundance of the semantic descriptors, the proposed method carries out semantic reasoning by formalizing domain knowledge into SWRL rules. Therefore contents of the uniform descriptions for heterogeneous CAD models are richer and more correct.
     (4) A classification and indexing method for CAD model based on deep learning technique is proposed.
     The proposed method first selects and extracts distinctive features from CAD models, then preprocesses them as high-dimensional input vectors for category recognition. Furthermore, by analogy with the thinking process of engineers, a deep neural network classifier for3D CAD models is constructed with the aid of deep learning techniques. To get an optimal solution, multiple strategies are appropriately chosen and applied in the training phase, which makes the constructed classifier achieve better performance. The proposed method applies deep learning techniques to automatically classify CAD models. Based on classification, a hierarchical index structure in CAD model database is formed. Therefore the classification accuracies and retrieval efficiencies of CAD models are improved.
     (5) A multi-mode similarity measurement method for3D CAD model is proposed.
     The proposed method uses improved VSM technique to measure similarities between CAD models in a vector-based way, inclining to recall and the efficiency; also uses heuristic graph match technique to measure similarities in a graph-based way, inclining to precision. The proposed method can satisfy engineers with different kinds of retrieval requirements.
     Based on the above studies, a prototype system named OB-HCMR is developed. The experimental results are provided to validate the main ideas of the proposed approaches.
引文
[1]Berners-Lee T, Hendler J. Publishing on the semantic web[J]. Nature,2001, 410(6832):1023-1024.
    [2]Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. Scientific American, 2001,284(5):28-37.
    [3]陶松桥.面向设计的三维CAD模型搜索技术研究[D].华中科技大学,2012.
    [4]张开兴,张树生,李亮.基于蚁群算法的三维CAD模型检索[J].计算机辅助设计与图形学学报,2011,23(4):633-639.
    [5]潘翔,张三元,叶修梓.三维模型语义检索研究进展[J].计算机学报,2009,32(6):1069-1079.
    [6]郑伯川,彭维,张引,等.3D模型检索技术综述[J].计算机辅助设计与图形学学报,2004,16(7):873-881.
    [7]杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310.
    [8]Tangelder J W H, Veltkamp R C.A survey of content based 3D shape retrieval methods[J]. Multimedia Tools and Applications,2008,39(3):441-471.
    [9]Iyer N, Jayanti S, Lou K, et al. Three-dimensional shape searching:state-of-the-art review and future trends[J]. Computer-Aided Design,2005,37(5):509-530.
    [10]Cicirello V, Regli W C. Machining feature-based comparisons of mechanical parts[C]. Shape Modeling and Applications, SMI 2001 International Conference on IEEE,2001:176-185.
    [11]Cicirello V A, Regli W C. Resolving non-uniqueness in design feature histories[C]. Proceedings of the fifth ACM symposium on Solid Modeling and Applications. ACM,1999:76-84.
    [12]Li M, Fuh J Y H, Zhang Y F, et al. General and partial shape matching approaches on feature-based CAD models to support efficient part retrieval[C]. ASME,2008.
    [13]Bai J, Gao S, Tang W, et al. Design reuse oriented partial retrieval of CAD models[J]. Computer-Aided Design,2010,42(12):1069-1084.
    [14]Hu K M, Wang B, Yong J H, et al. Relaxed lightweight assembly retrieval using vector space model[J]. Computer-Aided Design,2012.
    [15]许香穗,蔡建国.成组技术[M].北京:机械工业出版社,2003.
    [16]Barton J, Love D. Retrieving designs from a sketch using an automated GT coding and classification system[J]. Production Planning & Control,2005,16(8): 763-773.
    [17]Zegtabab L, Roller D. Beyond similarity comparison:intelligent data retrieval for CAD/CAM designs[J]. Computer Aided Design and Application,2013, 10(5):789-802.
    [18]Albertoni R, Papaleo L, Pitikakis M, et al. Ontology-based searching framework for digital shapes[C]. On the Move to Meaningful Internet Systems 2005:OTM 2005 Workshops. Springer Berlin Heidelberg,2005:896-905.
    [19]Li Z, Peine W J, Ramani K. Engineering search by combining shape and ontology[C]. ASME,2008.
    [20]Mun D, Ramani K. Knowledge-based part similarity measurement utilizing ontology and multi-criteria decision making technique[J]. Advanced Engineering Informatics,2011,25(2):119-130.
    [21]Mun D, Cho J, Ramani K. A method for measuring part similarity using ontology and a multi-criteria decision making method[C]. Proc. DETC.2009,9.
    [22]Jeon S, Suh H. Automatic CAD model retrieval based on engineering document using semantic representation and ontology reasoning[C]. Asian Conference on Design and Digital Engineering,2013.
    [23]王新颖,王生生,吕天阳,等.Onto3D——一种基于本体的三维模型检索系统[J].计算机研究与发展,2007,2.
    [24]Wang X, Lv T, Wang S, et al. An ontology and SWRL based 3D model retrieval system[M]. Information Retrieval Technology. Springer Berlin Heidelberg,2008: 335-344.
    [25]Horrocks I. Ontologies and the semantic web[J]. Communications of the ACM, 2008,51(12):58-67.
    [26]秦飞巍,李路野,高曙明.面向异构参数化特征模型检索的本体映射方法[J].计算机集成制造系统,2013,19(7):1472-1483.
    [27]Lim S, Liu Y, Loh H. An exploratory study of ontology-based platform analysis under user preference uncertainty[C]. ASME,2012.
    [28]Cao D, Li Z, Ramani K. Ontology-based customer preference modeling for concept generation[J]. Advanced Engineering Informatics,2011,25(2):162-176.
    [29]Cao D, Ramani K, Li Z. Guiding concept generation based on ontology for customer preference modeling[C]. International Symposium Series on Tools and Methods of Competitive Engineering (TMEC), Ancona, Italy.2010.
    [30]Cao D X, Ramani K, Li Z, et al. Developing customer preferences for concept generation by using engineering ontologies[C]. Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference.2010.
    [31]Li Z, Anderson D C, Ramani K. Ontology-based design knowledge modeling for product retrieval[J]. Proc. of ICED 2005,2005,462.
    [32]Zhan P, Jayaram U, Kim O J, et al. Knowledge representation and ontology mapping methods for product data in engineering applications [J]. Journal of Computing and Information Science in Engineering,2010,10(6):021004-1.
    [33]Zhu L, Jayaram U, Jayaram S, et al. Ontology-driven integration of cad/cae applications:Strategies and comparisons[C]. ASME,2009.
    [34]Kim O J, Jayaram U, Jayaram S, et al. An ontology mapping application using a shared ontology approach and a bridge ontology[C]. ASME,2009.
    [35]Tessier S, Wang Y. Ontology-based feature mapping and verification between CAD systems[J]. Advanced Engineering Informatics,2013,27(1):76-92.
    [36]Hanayneh L, Wang Y, Wang Y, et al. Feature mapping automation for CAD data exchange[C].2008 ASME International Design Engineering Technical Conferences & The Computer and Information in Engineering Conference (IDETC/CIE2008)(DETC2008-49671).2008.
    [37]Altidor J, Wileden J, Wang Y, et al. Analyzing and implementing a feature mapping approach to CAD system interoperability[C]. Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2009) San Diego, California, USA.2009:695-707.
    [38]陈磊,叶修梓,潘翔,等.基于本体的产品数据语义互操作[J].计算机集成制造系统,2008,14(4):821-828.
    [39]陈磊,潘翔,叶修梓,等.基于本体的产品知识表达和检索技术研究[J].浙江大学学报:工学版,2008,42(12):2037-2042.
    [40]陈磊.异构CAD产品模型的数据分层表示及重用技术研究[D].浙江大学,2008.
    [41]Grosse I R, Milton-benoit J M, Wileden J C. Ontologies for supporting engineering analysis models[J]. AIE EDAM,2005,19(01):1-18.
    [42]Kanuri N. Ontologies and Methods for Interoperability of Engineering Analysis Models (EAMS) in an E-Design Environment[D]. Masters Theses,2007.
    [43]Witherell P, Krishnamurty S, Grosse I R. Ontologies for supporting engineering design optimization[J]. Journal of Computing and Information Science in Engineering,2007,7(2):141-150.
    [44]Sun W, Ma Q, Chen S. A Framework for automated finite element analysis with an ontology-based approach[J]. Journal of Mechanical Science and Technology, 2009,23(12):3209-3220.
    [45]Lim S C J, Liu Y, Lee W B. Product analysis and variants derivation based on a semantically annotated product family ontology[C]. ASME,2009.
    [46]Lim S C J, Liu Y, Lee W B. Faceted search and retrieval based on semantically annotated product family ontology[C]. Proceedings of the WSDM'09 Workshop on Exploiting Semantic Annotations in Information Retrieval. ACM,2009:15-24.
    [47]Johnson Lim S C, Liu Y, Lee W B. Multi-facet product information search and retrieval using semantically annotated product family ontology [J]. Information Processing & Management,2010,46(4):479-493.
    [48]Yang D, Dong M, Miao R. Development of a product configuration system with an ontology-based approach[J]. Computer-Aided Design,2008,40(8):863-878.
    [49]秦飞巍,李路野,高曙明.设计理性研究进展[J].计算机辅助设计与图形学 学报,2012,24(10):1283-1293.
    [50]李路野,秦飞巍,高曙明.有效支持设计知识检索和重用的扩展的设计理性表示[J].计算机辅助设计与图形学学报,2013,25(10):1514-1522.
    [51]张应中,罗晓芳,陈钎.产品设计原理语义表达[J].机械工程学报,2012,48(17):135-143.
    [52]Zhang Y, Luo X, Li J, et al. A semantic representation model for design rationale of products[J]. Advanced Engineering Informatics,2012.
    [53]Rockwell J, Grosse I R, Krishnamurty S, et al. A Decision Support Ontology for collaborative decision making in engineering design[C]. Collaborative Technologies and Systems,2009. CTS'09. International Symposium on. IEEE, 2009:1-9.
    [54]Li Z, Yang M C, Ramani K. A methodology for engineering ontology acquisition and validation[J]. AI EDAM (Artificial Intelligence for Engineering Design, Analysis and Manufacturing),2009,23(1):37-51.
    [55]Li Z, Raskin V, Ramani K. Developing engineering ontology for information retrieval[J]. Journal of Computing and Information Science in Engineering,2008, 8:011003-1.
    [56]Li Z, Raskin V, Ramani K. A methodology of engineering ontology development for information retrieval[C]. Proceedings of the 16th International Conference on Engineering Design (ICED'07).2007.
    [57]Nirenburg S, Raskin V. Ontological semantics[M]. Cambridge:MIT Press,2004.
    [58]Rahm E, Bernstein P A. A survey of approaches to automatic schema matching[J]. the VLDB Journal,2001,10(4):334-350.
    [59]Noy N F. Semantic integration:a survey of ontology-based approaches [J]. ACM Sigmod Record,2004,33(4):65-70.
    [60]Shvaiko P, Euzenat J. A survey of schema-based matching approaches [J]. Journal on Data Semantics IV,2005:146-171.
    [61]Choi N, Song I Y, Han H. A survey on ontology mapping[J]. ACM Sigmod Record,2006,35(3):34-41.
    [62]Euzenat J, Euzenat J, Shvaiko P. Ontology matching[M]. Springer,2007.
    [63]The description logic handbook:theory, implementation, and applications[M]. Cambridge university press,2003.
    [64]Horrocks I, Patel-Schneider P F, Boley H, et al. SWRL:A semantic web rule language combining OWL and RuleML[J]. W3C Member submission,2004,21: 79.
    [65]Zhu L, Jayaram U, Jayaram S, et al. Querying and Reasoning With Product Engineering Ontologies:Moving Past Modeling[C]. ASME,2010.
    [66]Fiorentini X, Rachuri S, Mahesh M, et al. Description logic for product information models[C]. ASME,2008.
    [67]Noh J D, Suh H W. Layered Product Knowledge Representation and Reasoning With OWL and SWRL[C]. ASME,2008.
    [68]Wu M C, Jen S R. A neural network approach to the classification of 3D prismatic parts[J]. The International Journal of Advanced Manufacturing Technology,1996, 11(5):325-335.
    [69]Ip C Y, Regli W C, Sieger L, et al. Automated learning of model classifications[C]. Proceedings of the eighth ACM Symposium on Solid Modeling and Applications. ACM,2003:322-327.
    [70]Ip C Y, Regli W C. Content-based classification of CAD models with supervised learning[J]. Computer Aided Design and Application,2005,2(5):609-618.
    [71]Ip C Y, Regli W C. Manufacturing classification of CAD models using curvature and SVMs[C]. Shape Modeling and Applications,2005 International Conference. IEEE,2005:361-365.
    [72]Hou S, Lou K, Ramani K. SVM-based semantic clustering and retrieval of a 3D model database[J]. Journal of Computer Aided Design and Application,2005, 2(1):155-164.
    [73]Barutcuoglu Z, DeCoro C. Hierarchical shape classification using Bayesian aggregation[C]. Shape Modeling and Applications,2006. SMI 2006. IEEE International Conference on. IEEE,2006:44-48.
    [74]Wei W, Yang Y, Lin J, et al. Color-based 3d model classification using hopfield neural network[C]. Computer Science and Software Engineering,2008 International Conference on. IEEE,2008,1:883-886.
    [75]Philipp-Foliguet S, Jordan M, Najman L, et al. Artwork 3D model database indexing and classification[J]. Pattern Recognition,2011,44(3):588-597.
    [76]Wang W, Liu X, Liu L. Shape matching and retrieval based on multiple feature descriptors[J]. Computer Aided Drafting, Design and Manufacturing,2013. 23(1):60-67.
    [77]Moon Y B, Roy U. Learning group-technology part families from solid models by parallel distributed processing[J]. The International Journal of Advanced Manufacturing Technology,1992,7(2):109-118.
    [78]Smith S D G, Escobedo R, Anderson M, et al. A deployed engineering design retrieval system using neural networks[J]. Neural Networks, IEEE Transactions on,1997,8(4):847-851.
    [79]Dasari R V, Moon Y B. Analysis of part families for group technology applications using decision trees[J]. The International Journal of Advanced Manufacturing Technology,1997,13(2):116-124.
    [80]Onwubolu G C. Manufacturing features recognition using backpropagation neural networks[J]. Journal of Intelligent Manufacturing,1999,10(3-4):289-299.
    [81]Sunil V B, Pande S S. Automatic recognition of machining features using artificial neural networks[J]. The International Journal of Advanced Manufacturing Technology,2009,41(9-10):932-947.
    [82]Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
    [83]Huang F J, LeCun Y. Large-scale learning with svm and convolutional for generic object categorization[C]. Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference on. IEEE,2006,1:284-291.
    [84]Kavukcuoglu K, Sermanet P, Boureau Y L, et al. Learning convolutional feature hierarchies for visual recognition[C]. Advances in Neural Information Processing Systems.2010:1090-1098.
    [85]Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems 25.2012:1106-1114.
    [86]Gruber T R. Toward principles for the design of ontologies used for knowledge sharing[J]. International Journal of Human-Computer Studies,1995,43(5): 907-928.
    [87]Yu J, Thom J A, Tam A. Evaluating ontology criteria for requirements in a geographic travel domain[M]. On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg,2005:1517-1534.
    [88]Yu J, Thom J A, Tam A. Requirements-oriented methodology for evaluating ontologies[J]. Information Systems,2009,34(8):766-791.
    [89]Pak J, Zhou L. A framework for ontology evaluation[M]. Exploring the Grand Challenges for Next Generation E-Business. Springer Berlin Heidelberg,2011: 10-18.
    [90]Aruna T, Saranya K, Bhandari C. A survey on ontology evaluation tools[C]. Process Automation, Control and Computing (PACC),2011 International Conference on. IEEE,2011:1-5.
    [91]Fernandez-Lopez M, Gomez-Perez A. Overview and analysis of methodologies for building ontologies [J]. The Knowledge Engineering Review,2002,17(2): 129-156.
    [92]Uschold M, King M. Towards a methodology for building ontologies[M]. Artificial Intelligence Applications Institute, University of Edinburgh,1995.
    [93]Ahmed S, Kim S, Wallace K M. A methodology for creating ontologies for engineering design[J]. Journal of Computing and Information Science in Engineering,2007,7(2):132-140.
    [94]Miller G A, Beckwith R, Fellbaum C, et al. Introduction to wordnet:An on-line lexical database[J]. International Journal of Lexicography,1990,3(4):235-244.
    [95]ISO 10303-111(2007), Industrial automation systems and integration-product data representation and exchange-integrated application resource:elements for the procedural modeling of solid shapes[S].
    [96]ISO 10303-42(2003), Industrial automation systems and integration-product data representation and exchange-integrated application resource:geometric and topological representation[S].
    [97]Do H H, Rahm E. Matching large schemas:approaches and evaluation[J]. Information Systems,2007,32(6):857-885.
    [98]Do H H, Rahm E. COMA:a system for flexible combination of schema matching approaches[C]. Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment,2002:610-621.
    [99]Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning,2009,2(1):1-127.
    [100]Bengio Y, Courville A, Vincent P. Representation learning:a review and new perspectives [J].2013.
    [101]Chen D Y, Ouhyoung M. Three-dimensional model shape description and retrieval based on lightfield descriptors[D]. Ph. d., NTU CSIE,2003.
    [102]Chen D Y, Tian X P, Shen Y T, et al. On visual similarity based 3D model retrieval[C]. Computer Graphics Forum. Blackwell Publishing, Inc,2003,22(3): 223-232.
    [103]Shilane P, Min P, Kazhdan M, et al. The princeton shape benchmark[C]. Shape Modeling Applications,2004. Proceedings. IEEE,2004:167-178.
    [104]Zhang D, Lu G. An integrated approach to shape based image retrieval[C]. Proc. of 5th Asian Conference on Computer Vision (ACCV).2002:652-657.
    [105]Bishop C M. Neural networks for pattern recognition[M]. Oxford university press,1995.
    [106]Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models:a methodology review[J]. Journal of Biomedical Informatics,2002,35(5):352-359.
    [107]Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. International Conference on Artificial Intelligence and Statistics.2010:249-256.
    [108]Larochelle H, Bengio Y, Louradour J, et al. Exploring strategies for training deep neural networks[J]. The Journal of Machine Learning Research,2009,10:1-40.
    [109]Haykin S. Neural networks and learning machines[M]. New York:Prentice Hall, 2009.
    [110]Fang X, Luo H, Tang J. Structural damage detection using neural network with learning rate improvement[J]. Computers & Structures,2005,83(25):2150-2161.
    [111]Duda R O, Hart P E, Stork D G Pattern classification[M]. John Wiley & Sons, New York,2001.
    [112]Glorot X, Bordes A, Weston J, et al. A Semantic Matching Energy Function for Learning with Multi-relational Data[J]. Machine Learning,2013.
    [113]Ngiam J, Chen Z, Koh P W, et al. Learning deep energy models[C]. Proceedings of the 28th International Conference on Machine Learning (ICML-11).2011: 1105-1112.
    [114]Ranzato M A, Mnih V, Hinton G E. Generating more realistic images using gated MRF's[C]. Advances in Neural Information Processing Systems.2010: 2002-2010.
    [115]Prechelt L. Automatic early stopping using cross validation:quantifying the criteria[J]. Neural Networks,1998,11(4):761-767.
    [116]Yao Y, Rosasco L, Caponnetto A. On early stopping in gradient descent learning[J]. Constructive Approximation,2007,26(2):289-315.
    [117]Reed R. Pruning algorithms-a survey[J]. IEEE Transactions on Neural Networks, 1993,4(5):740-747.
    [118]Bergstra J, Breuleux O, Bastien F, et al. Theano:a CPU and GPU math expression compiler[C]. Proceedings of the Python for Scientific Computing Conference (SciPy).2010.
    [119]Bronstein A M, Bronstein M M, Guibas L J, et al. Shape google:Geometric words and expressions for invariant shape retrieval[J]. ACM Transactions on Graphics (TOG),2011,30(1):1.
    [120]Eitz M, Richter R, Boubekeur T, et al. Sketch-based shape retrieval[J]. ACM Transactions on Graphics (TOG),2012,31(4):31.
    [121]Wang Y, Lu W F, Fuh J Y H. Sampling Strategies for 3D Partial Shape Matching and Retrieval Using Bag-of-Words Model[J]. Computer-Aided Design and Applications,2014,11(1):43-48.
    [122]Manning C D, Raghavan P, Schutze H. Introduction to information retrieval[M]. Cambridge:Cambridge University Press,2008.
    [123]Salton G, Buckley C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management,1988,24(5):513-523.
    [124]Cordella L P, Foggia P, Sansone C, et al. A (sub) graph isomorphism algorithm for matching large graphs [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,26(10):1367-1372.
    [125]Conte D, Foggia P, Sansone C, et al. Thirty years of graph matching in pattern recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence,2004,18(03):265-298.
    [126]Cordella L P, Foggia P, Sansone C, et al. Performance evaluation of the VF graph matching algorithm[C]. Proceedings of International Conference on Image Analysis and Processing, IEEE,1999:1172-1177.
    [127]Cordella L P, Foggia P, Sansone C, et al. Graph matching:a fast algorithm and its evaluation[C]. Proceedings of the 14th International Conference on Pattern Recognition, IEEE,1998:1582-1584.
    [128]Cordella L P, Foggia P, Sansone C, et al. An efficient algorithm for the inexact matching of ARG graphs using a contextual transformational model[C]. Proceedings of the 13th International Conference on Pattern Recognition, IEEE, 1996:180-184.
    [129]Nilsson N J. Principles of artificial intelligence[M]. Palo Alto, CA:Tioga publishing company,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700