面向功能的可视化创新概念设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概念设计是产品设计过程中的早期阶段,对产品的全生命周期有着极为重要的影响。产品设计的目标是实现产品的功能,在概念设计的研究中,核心问题在于概念设计的功能建模和针对功能的创新设计求解过程。提升概念设计能力的重要途径就是结合设计者的创造性思维和计算机推理演算的计算能力。
     在综合分析概念设计领域国内外的研究历史和现状后,针对当前计算机辅助概念设计研究存在的主要问题,探讨了面向功能的可视化创新概念设计的描述、方法和系统实现,取得了一些具有理论意义和应用价值的成果,主要体现在以下四个方面:
     (1)面向功能创新的功能模型研究
     在研究了国内外概念设计过程理论和实现方法的基础上,着重论述了功能在创新概念设计求解过程中的作用。通过分析现存功能定义存在的问题,提出了体现了人类问题求解特征的基于粒度计算的功能模型,给出了功能粒度表示、功能层次结构和功能粒度运算规则,并提出了基于相似推理的功能模型建模过程。
     (2)功能模型创新推理方法的研究
     推理功能是人类智能的主要特征之一,而模糊推理是模糊专家系统、模糊控制系统的理论基础和核心,是信息科学中进行模糊信息处理和实现机器智能的重要工具。面向功能的创新概念设计,既包含了设计者的思维所带来的启发性和创造性,也包含了针对功能模型的模糊推理过程。针对概念设计的特点,提出了基于三I模糊推理和相似模糊推理两种方法,以此快速地从功能需求出发得到较合理的功能模型。
     (3)基于信息可视化的“人-机”结合功能设计系统研究
     功能模型创新推理的来源一方面是计算机的逻辑推理,通过将人类智能中极具逻辑性和可计算性的部分计算机化得到;另一方面是设计者的创造性思维,由计算机启发人的创造性思维,并将启发性知识应用于设计之中,两者相辅相成,缺一不可。
     定义功能模型格式语言FFL,建立FFL模型(以FFL语言描述的规范化的功能模型);并把信息可视化手段引入创新概念设计之中,建立FFL模型与可视化模型、可视化视图的映射关系,以直观生动的可视化方法动态显示,在人机交互的支持下,提高创新推理过程的灵活性、有效性和交互性,从而高效地获得创新设计解。同时,也使得设计者的创造性思维能够推动逻辑推理的有效进行,增强逻辑推理的合理性和创新性。
     (4)面向功能的可视化创新概念设计原型系统实现
     以上述理论框架为基础,依托行业科研项目,结合企业实际产品创新需求,开发了面向功能的可视化创新概念设计原型系统,它包含人机交互、功能建模、概念求解、结果输出和知识管理等子系统。该系统在井下掘进机自动测量和定向系统的创新设计中得到应用,提出了基于激光双目的三维表面建模系统。其中,可视化创新概念设计原型系统已获得国家软件著作权登记,所设计的基于双目的三维表面建模系统已经获得国家发明专利的授权。
Conceptual design lies in the early stage of the product design process. It is of great significance to the entire life cycle of the product. The goal of product design is to achieve product functions where the core problems are the function modeling and the solution process of innovative design of functions. The important way to enhance the ability of the conceptual design is to combine the designers’creative thinking with the computers’power of reasoning computing.
     After an integrative analysis of the state-of-the-art about conceptual design at home and aboard, focusing on current main problems in the research of computer-aided conceptual design, this dissertation discusses the description, methods and system realization of the function-oriented visual innovative conceptual design. There are some theoretical and applicable results listed as follows:
     (1) Research on innovation-oriented function model
     Based on studying the theory and implementing method of the conceptual design at home and aboard, the important roles of functions in the solution process of innovative conceptual design are confirmed. By analyzing the problems in current function’s definition, the function model is defined, which is based on granular computing and reflects the characters of problem solving. The representation of function granularity, functional hierarchy structure and rules of functional granularity computing are given, and then the modeling process of functional model based on similar reasoning is also proposed.
     (2) Innovative reasoning methods of the function model
     Reasoning ability is one of the main features of human intelligence. Fuzzy reasoning is the theoretical basis and core of the fuzzy expert systems and fuzzy control system, which is also an important tool to handle fuzzy information and attain machine intelligence in information science. Function-oriented innovative conceptual design contains the inspiration and creativity from the designers’thinking and also the fuzzy reasoning process for functional models. Aiming at the features of conceptual design, two ways of getting a reasonable function model quickly from function requirements are proposed where one is triple I fuzzy reasoning and the other is similar fuzzy reasoning.
     (3) Research on human-computer functional design system based on information visualization
     One source of innovative reasoning on functional model is the computer's logic reasoning, which is obtained by the logic and computable part of the human intelligence. The other source is designer's creative thinking, which is inspired by computers and used into design process. Both are indispensable.
     The function-model format language FFL is defined, while the FFL model (standardized and described function model in FFL language) is set up. And, information visualization is brought into the innovative conceptual design. The mapping between FFL model and visualization model and visualization view is built, and a vivid dynamic view is displayed by multiple visualization methods. With the support of human-computer interaction, the flexibility, effectiveness and interactivity of innovative reasoning are improved, thus the efficient solutions of innovative design are obtained. At the same time, the progress of logical reasoning is promoted; the rationality and innovation in logical reasoning are enhanced.
     (4) Realization of the prototype system of function-oriented visual innovative conceptual design
     On base of the above-mentioned theoretical framework, relying on industry research projects, combined with the business needs on product innovation, a function-oriented visual innovative conceptual design system is developed, including subsystems such as human-computer interaction, function modeling, concept solving, result output and information management. This system has been applied to the innovative design of underground boring machine, as a result the laser-based binocular three-dimensional surface modeling system is proposed, where a national software copyright registration is acquired due to the prototype system; a national patent of invention is achieved from the laser-based binocular three-dimensional surface modeling system.
引文
[1] Amaresh Chakrabarti, Thomas P. Bligh. A scheme for functional reasoning in conceptual design. Design Studies, 2001, 22(6): 493–517.
    [2]秦晋.面向功能的创新概念设计问题研究.合肥工业大学博士学位论文, 2007.
    [3] W. Hsu, B. Liu. Conceptual design: issues and challenges. Computer-Aided Design. 2000, 32(14): 849-850.
    [4] Joseph Schumpeter. The theory of economic development. Harvard University Press, Boston, 1934.
    [5] Bush Vannevar. Science, the endless frontier. A Report to the President. US Government Printing Office, 1945.
    [6] Everett M. Rogers. Diffusion of innovations. New York: The Free Press, 2003.
    [7] http://www.bjkw.gov.cn/n1143/n1240/n1465/n2216/n3710709/6207071.html 2010. 3.
    [8] Suh N P. Axiomatic design as a basis for universal design theory, in universal design theory. Aachen: Shaker Verlag Press, 1998.
    [9] G S Altshuller. The innovation algorithm, TRIZ, systematic innovation and technical creativity. Technical Innovation Center, INC. , Worcester, 1999.
    [10] G S Altshuller. An suddenly the inventor appeared. Technical Innovation Center, INC. , Worcester, 1996.
    [11] Ju Yijing, Yu Yongquan, Ju Guangming, Cai Wen. Extension set and restricting qualifications of matter-elements' extension. In Proceeding of the Third International Conference on Information Technology and Applications (ICITA 2005), 2005, 1: 395-398.
    [12]亿维讯集团. CAI的应用与发展趋势.软件及应用技术, 2006, No. 4: 13-14.
    [13] http://baike.baidu.com/view/768608.htm?fr=ala0_1 2010. 3.
    [14]邓家褆,韩晓建,曾硝,等.产品概念设计——理论、方法与技术.机械工业出版社, 2002.
    [15]谢友柏.现代设计理论和方法的研究.机械工程学报, 2004, 40(4): 1-9.
    [16] Suh N P. The principle of design. London: Oxford University Press, 1990.
    [17] Feng Yixiong, Tan Jianrong, Wei Zhe, Shao Lei. Research on key technologies for product axiomatic design and configuration integration. In Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2006: 1-6.
    [18] Tufan Koc, Yaprak Mutu. A technology planning methodology based on axiomatic design approach. Technology Management for the Global Future. PICMET 2006, 3: 1450-1456.
    [19] Bae, J.-H.J. Creative problem solving with TRIZ: an example. The 9th Russian-Korean International Symposium on Science and Technology. 2005: 1082-1083.
    [20] Movarrei, R.Vessal. S.R. Application of theory of inventive problem solving in customer relationship management. In Proceeding of 2006 IEEE International Conference on Management of Innovation and Technology, 2006, 1: 263-267.
    [21] Lau, D.K. The role of TRIZ as an inventive tool in technology development and integration in China. In Proceeding of 2004 International Conference on Business of Electronic Product Reliability and Liability, 2004: 157-161.
    [22]牛占文,徐燕申,等.实现产品创新的关键技术——计算机辅助创新设计.机械工程学报, 2000, 36(1): 11-14.
    [23]黄旗明,潘云鹤.产品设计中技术创新的思维过程模型研究.工程设计, 2000, No. 2: 1-4.
    [24] Hsiang-Tang Chang, Jahau Lewis Chen. An eco-innovative design method based on design-around approach. In Proceedings of EcoDesign 2003: Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2003: 575-582.
    [25]张祥唐,陈家豪.可拓方法与TRIZ方法在产品创新设计上的应用.工业工程, 2004, 7(2): 33-37.
    [26] Ma Lihui, Tan Runhua, Zhang Huangao, Zhang Xiaohui. TRIZ application in conceptual design of packaging machine for dropping pill of Chinese traditional medicine. 2006 IEEE International Conference on Management of Innovation and Technology, 2006, 2: 600-603.
    [27] Guoping Li, Runhua Tan, Zhansheng Liu, Huangao Zhang. Idea generation for fuzzy front endusing TRIZ and TOC. 2006 IEEE International Conference on Management of Innovation and Technology, 2006, 2: 590-594.
    [28]刘晓平,唐益明,秦晋.基于TRIZ的计算机辅助创新原型系统的研究与实现.工程图学学报, 2007, No. 6: 6-11.
    [29]姜亮,孙铁兵,屈福政.基于本体的技术创新研究.中国机械工程, 2008, 19(15): 1853-1857.
    [30]杨伯军,田玉梅,檀润华,等.基于标准解的计算机辅助创新软件系统研究与开发.中国机械工程, 2009, 20(6): 704-708.
    [31] Lu Qing, Yu Yongquan. The research of data mining based on extension sets. In Proceeding of the Third International Conference on Information Technology and Applications (ICITA 2005), 2005, 2: 234-237.
    [32] Zhu Qinhua, Yu Yongquan, Cai Wen. Extension set and the research of the extension ADD transformation. Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05) , 2005.
    [33] Yinai Sun, Yongquan Yu, Wen Cai, Guangqiang Li. Extension set and the dependent function of system model. First International Conference on Innovative Computing, Information and Control. (ICICIC' 06) , 2006, 1: 578-582.
    [34]王行愚,李健.论可拓控制.控制理论与应用, 1994, 11(1): 125-128.
    [35]徐顺喜,王行愚.连续生产综合自动化系统功能集成的可拓控制模型.系统工程理论与实践, 1998, (2): 110-113.
    [36]赵燕伟.机械产品可拓概念设计研究.中国工程科学, 2001, 3(5): 67-71.
    [37]赵燕伟,苏楠,周鹏,李增芳.基于可拓变换的鞋类产品个性化定制设计研究.工程设计学报, 2006, 13(5): 342-345.
    [38]赵燕伟,苏楠,周鹏,唐辉军,叶永伟.面向定制的产品可拓配置设计方法.哈尔滨工业大学学报, 2006, 38(7): 1153-1155.
    [39]赵燕伟,李小川,苏楠,陈建.基于可拓变换的产品适应性设计研究.数学的实践与认识, 2009, 39(12): 54-63.
    [40]陈文伟,杨春燕,黄金才.可拓知识与可拓知识推理.哈尔滨工业大学学报, 2006, 38(7): 1094-1096.
    [41]杨春燕.可拓学的重要科学问题及其关键点.哈尔滨工业大学学报, 2006, 38(7): 1087-1090.
    [42]蔡文,杨春燕.评价信息元及其原信息元的获取方法.智能系统学报, 2009, 4(3): 234-238.
    [43]刘晓平,李书杰,秦晋.基于可拓学的产品功能创新模型.工程图学学报, 2007, (4): 12-16.
    [44]王体春,钟诗胜.基于知识重用的大型水轮机可拓方案设计.计算机辅助设计与图形学学报, 2008, 20(2): 239-245.
    [45]钟诗胜,张艳.可拓知识表示及知识库系统的开发.计算机集成制造系统, 2008, 14(11): 2184-2190.
    [46]约翰逊PC.机械设计综合一创造性设计与最优化(陆国贤等译).北京:机械工业出版社, 1987.
    [47]陈建国,潘云鹤.基于空间探索的创造性设计方法的研究.计算机辅助设计与图形学学报, 2000, 12(6): 441-445.
    [48]魏云冰,赵燕伟.基于菱形思维方法的刀库方案设计.机电工程, 1999, 16(5): 54-56.
    [49]赵燕伟.基于多级菱形思维模型的方案设计方法.中国机械工程, 2000, 11(6): 684-668.
    [50]邵春,孙守迁等.计算机支持的工程设计和工业设计的协同工作.工程图学学报, 1997, No. 2-3: 31-37.
    [51]孙守迁,包恩伟,潘云鹤.基于组合原理的概念创新设计.计算机辅助设计与图形学学报, 1999, 11(3): 262-265.
    [52]王靖滨,俞杰,耿卫东等.基于FBS的产品创新设计模型.计算机辅助设计与图形学学报, 2000, 12(11): 824-826.
    [53]冯培恩,邱清盈.机械产品广义优化设计进程研究.中国科学(E辑), 1999, 29(4): 338-346.
    [54]冯培恩,张帅,陈泳,潘双夏,何斌.复合功能原理方案特征建模及其求解过程研究.中国机械工程, 2002, 13(4): 306-311.
    [55]师汉民.从”他组织”走向自组织—关于制造哲理的沉思.中国机械工程, 2000, 11(1-2): 80-85.
    [56]王玉新.机械系统设计自动化方法.机械工程学报, 2002, 38(10): 148-153.
    [57]徐志刚,周济等.产品结构创新设计自动化理论及CAD系统构造.中国机械工程, 2001, (8): 900-902.
    [58]马建红,李娟,檀润华.计算机辅助创新设计系统—Invention Tool 2.0开发.河北工业大学学报, 2004, 33(4): 1-6.
    [59] Huang Kezheng, Ai Xing,Zhang. Decomposition and reconstitution principle for complex surfaces and its application. Science in China(SeriesE) , 1997, 40(1): 89-96.
    [60]李旭东,黄克正.基于多设计Agent的结构设计多方案协同选择.工程图学学报, 2001, 22(1): 1-5.
    [61]刘晓敏,檀润华.创新概念设计理念与虚拟设计实例分析.机械设计与研究, 2005, 21(5): 16-18.
    [62]刘晓敏,檀润华,姚立纲,陈长久,简兆辉.模糊前端阶段产品创新设计过程实现研究.计算机集成制造系统, 2009, 15(8): 1457-1462.
    [63]王生发,顾新建,潘敏等.网络知识流的过程控制模型及其在产品协同设计中的应用.计算机集成制造系统, 2008, 14(8): 1466-1471.
    [64] Miles L D. Techniques of value analysis and engineering. New York: McGraw-Hill, 1972.
    [65] Gero J S. Design prototypes: a knowledge representation schema for design. AI Magazine, 1990, 11(4): 26-36.
    [66] Tham K W, Gero J S, PROBER a design system based on design prototypes. Proceedings of AID’92, Kluwer Academic Publishers, 1992: 657.
    [67] Qian L, Gero J S. Function-behavior-structure paths and their role in analogy-based design. ALEDAM, 1996, 10(4): 289-312.
    [68] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework. Design Studies, 2004, 25: 373-391.
    [69] Brown D C, Blessing L. The relationship between function and affordance. Proceedings ofIDETC/CIE 2005: ASME 2005 International Design Engineering Technical Conferences & Computer and Information in Engineering Conference, September 24-28, 2005, Long Beach, Califonia, USA, 2005: 155-160.
    [70] Ullman D G. Toward the ideal mechanical engineering design support system. Research in Engineering Design, 2003, 13: 55-64.
    [71] Welch R V, Dixon J R. Guiding conceptual design through behavioral reasoning. Research in Engineering Design, 1994, 6: 169-188.
    [72] Sturges R H, O'Shaughnessy K, Kilani M I. Computational model for conceptual design based on extended function logic. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1996, 10(3): 255-274.
    [73] Pahl G, Beitz W,冯培恩等译审.工程设计学.北京:机械工业出版社, 1992.
    [74] Pahl, Beitz. Engineering design: a systematic approach. London: Springer-Verlag, 2nd printing, 1999.
    [75] Suh N P. Axiomatic design: advances and applications. MIT Press, 2000.
    [76] Freeman P, Newell A. A model for functional reasoning in design. In: Proceedings of the Second Internatonal Joint Conference on Artificial Intelligence, London. 1971: 621-633.
    [77] Hubka V, Eder W E. Theory of technical systems - a total concept theory for engineering design. Berlin: Springer-Verlag, 1988.
    [78] Umeda Y, Masaki I, Tomiyama T, et al. Supporting conceptual design based on the function-behavior-state modeler. AI EDAM, 1996, 10(4): 275-288.
    [79]闻邦椿,周知承,韩清凯,等.现代机械产品设计在新产品开发中的重要作用.机械工程学报, 2003, 39(10): 43-51.
    [80]杨琳珊,齐德昱.基于知识的可视化产品概念设计系统的实现.华南理工大学学报(自然科学版), 1999, 27(8): 37-40.
    [81]汪文旦,秦现生,阎秀天,等.一种可视化设计结构矩阵的产品设计模块化识别方法.计算机集成制造系统, 2007, 13(12): 2345-2350.
    [82]钟伟,刘晓强.基于Web的产品可视化定制系统.计算机工程, 2008, 34(19): 277-282.
    [83] T. L. Sun. Interactive 3D visualization of customized products with behaviors. Proceedings of the 2008 IEEE IEEM 2008: 1460-1464.
    [84] Aihua Mao, Yi Li, Xiaonan Luo, et al. A CAD system for multi-style thermal functional design of clothing. Computer-Aided Design, 2008, 40(9): 916-930.
    [85] H.Y.K. Lau, K.L. Mak, M.T.H. Lu. A virtual design platform for interactive product design and visualization. Journal of Materials Processing Technology, 2003, 139(1-3): 402-407.
    [86] W.D. Li, L. Ding, C.A. McMahon. Visualization models and technologies for collaborative product development: status and promise. Computer Supported Cooperative Work in Design, 2006. CSCWD '06. 10th International Conference on 3-5 May 2006:1-6.
    [87]张建明,魏小鹏.产品概念设计的研究现状及其发展方向.计算机集成制造系统, 2003, 9(8): 613 - 620.
    [88]刘晓平,唐益明,秦晋,路强.概念设计中基于扩展功能矩阵的功能求解方法.计算机辅助设计与图形学学报, 2007, 19(12): 1610-1617.
    [89]曹东兴,檀润华,苑彩云等.基于状态空间表示法的机械产品概念设计.计算机辅助设计与图形学学报, 2002, 14(2): 172-175.
    [90] Lin Y Y. Granular computing. Announcement of the BISC Special Interest Group on Granular Computing, 1997.
    [91]张铃,张钹.问题求解理论及应用--商空间粒度计算理论及应用.清华大学出版社, 2007.
    [92] Zadeh L A. Fuzzy sets and information granularity. In Advances in Fuzzy Set Theory and Applications, Gupta M M, Ragade R K, Yager R R (eds.), Amsterdam: North Holland, 1979: 3-18.
    [93] E. Zio, P. Baraldi, M. Librizzi, L. Podofillini, V.N. Dang. A fuzzy set-based approach for modeling dependence among human errors. Fuzzy Sets and Systems, 2009, 160(13): 1947-1964.
    [94] Alfredo Petrosino, Alessio Ferone. Rough fuzzy set-based image compression. Fuzzy Sets and Systems, 2009, 160 (10): 1485-1506.
    [95]张燕平,张铃,吴涛.不同粒度世界的描述法——商空间法.计算机学报, 2004, 27(3):328-333.
    [96]方宏彬.粒度计算中的不确定性问题研究.安徽大学博士学位论文, 2006.
    [97] Zhang B, Zhang L. Theory and applications of problem solving. North-Holland: Elsevier Science Publishers B.V. , 1992.
    [98]张铃,张钹.模糊商空间理论.软件学报, 2003, 14(4): 770—776.
    [99] Ling Zhang, Bo Zhang. Fuzzy reasoning model under quotient space structure. Information Sciences, 2005, 173(4): 353-364.
    [100] Ling Zhang, Bo Zhang. The structure analysis of fuzzy sets. International Journal of Approximate Reasoning, 2005, 40(1-2): 92-108.
    [101] Bargiela A, Pedrycz W. Granular Computing: An Introduction. Boston: Kluwer Academic Publishers, 2002.
    [102] Hirtz, J., Stone, R., McAdams, D., Szykman, S., & Wood, K.. A functional basis for engineering design: reconciling and evolving previous efforts. Research in Engineering Design, 2002, 13(2): 65-82.
    [103] Xiaoping Liu, Jin Qin and Yiming Tang. An innovative function-tree building method based on similarity theory and extension theory. In: Proceeding of CAID&CD’06, Hangzhou, China, Nov. 17-19, 2006: 199-204.
    [104] Zhou Meili. Formation Principles of Similarity between Similar Systems. International Journal of General System, 1999, 27(6): 495-504.
    [105] Pirri F, Reiter R. Some contributions to the metatheory of the situation calculus. Journal of the ACM, 1999, 46(3): 325–361.
    [106]李骏,王国俊.基于支持度理论的广义Modus Ponens问题的最优解.软件学报, 2007, 18(11): 2712-2718. http://www.jos.org.cn/ 1000-9825/18/2712.htm.
    [107] Kesim FN, Sergot M. A logic programming framework for modeling temporal objects. IEEE Trans. on Knowledge and Data Engineering, 1996, 8(5): 724 -741.
    [108]王国俊.数理逻辑引论与归结原理.北京:科学出版社, 2006.
    [109]王国俊.模糊命题演算的一种形式演绎系统.科学通报, 1997, 42(10): 1041-1045.
    [110] Dubois D, Prade H. Fuzzy sets in approximate reasoning. Fuzzy Sets and Systems, 1991, 40(1): 143-244.
    [111]王国俊.模糊推理的全蕴涵三I算法.中国科学(E辑), 1999, 29(1): 43-53.
    [112] Wang G J, Fu L. Unified forms of triple I method. Comput Math Appl, 2005, 49: 923-932.
    [113]唐益明.面向创新推理的功能树无损简化与求解方法研究.合肥工业大学硕士学位论文, 2008.
    [114]陈欣,路强,唐益明,刘晓平.基于可拓功能模型与功能树的FFL模型研究.计算机技术与应用进展2009,南宁:中国科学技术大学出版社, 2009: 279-282.
    [115] Wynne Hsu, Irene M Y Woon. Current research in the conceptual design of mechanical product. Computer-Aided Design, 1998, 30 (5): 377-389.
    [116] Yoshinobu Kitamura, Masakazu Kashiwase, Masayoshi Fuse, et al. Deployment of an ontological framework of functional design knowledge. Advanced Engineering Informatics, 2004, 18(2): 115-127.
    [117] Tan Runhua. The conceptual design of a fast clasping mechanism based on function means tree and TRIZ. [2009-04-15]. http://www.triz-journal.com/archives/2000/10/f/index.htm.
    [118] Ju Yijing, Yu Yongquan, Ju Guangming, Cai Wen. Extension set and restricting qualifications of matter-elements’extension. Proceedings of the Third International Conference on Information Technology and Applications ( ICITA’05), 2005: 395-398.
    [119]刘晓平,陆劲挺,唐益明.基于可拓学的对比相似功能树扩展方法.工程图学学报, 2009, 30(1): 153-159.
    [120] Wuwongse V., Anutariya C, et al. XML declarative description: a language for the semantic web. IEEE Intelligent Systems, 2001, 16(3): 54-65.
    [121]杨春燕,蔡文.可拓工程.北京:科学出版社, 2007.
    [122] M. X. Zhou, S. K. Feiner. Data characterization for automatically visualizing heterogeneous information. In Proceedings IEEE Symposium on Information Visualization, IEEE, 1996: 13-20.
    [123] Roth S.F., Mattis J.A. Data characterization for intelligent graphics presentation. InProceedings of the CHI'90 Conference (Seattle, April 1990), ACM Press, 1990: 193-200.
    [124] Russo Dos Santos C., Gros P., Abel P., Loisel D., Trichaud N., Paris J.P. Mapping information onto 3D virtual worlds. In: Proceedings of the International Conference on Information Visualization, 2000: 379-386.
    [125] Andrienko G., Andrienko N.. Data characterization schema for intelligent support in visual data analysis. In: Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science, COSIT'99, Lecture Notes in Computer Science, Vol. 1661 (Springer, Berlin, Heidelberg 1999) pp. 349-366.
    [126] Bastiaan, Sch?nhage, Anton Eli?ns. A flexible architecture for user-adaptable visualization. In: Proceedings of the 1997 workshop on New paradigms in information visualization and manipulation, 1997: 8-10.
    [127] Shin Takahashi. Visualizing constraints in visualization rules. In: In Proc. CP2000 Workshop on Analysis and Visualization of Constraint Programs and Solvers, 2000: 1-9.
    [128] Matsuoka, Satoshi, Takahashi, Shin, Kamada, Tomihisa, Yonezawa, Akinori. A general framework for bidirectional translation between abstract and pictorial data. ACM Transactions on Information Systems (TOIS), 10 (4): 408-437.
    [129] http://www.vtk.org/ 2010.3.
    [130]韩江洪,刘晓平,路强等.基于双目的三维表面建模.中国专利: ZL 200810023146.2, 2008.12.24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700