抗震剪力墙小跨高比洞口连梁有效配筋方式及分析模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连梁是联肢剪力墙结构中的重要构件,它是墙肢之间传力的纽带,其线刚度是影响联肢墙侧向刚度以及墙肢中内力的关键因素之一,而且是抗震联肢墙结构耗散地震能量的首选部位。一方面由于建筑上的需要,小跨高比连梁时有所见;另一方面,在框架-剪力墙和框架-核心筒结构中,因其中的剪力墙和核心筒承担大部分水平荷载,故有必要选用跨高比偏小的连梁以保证所需的侧向刚度。但是,小跨高比连梁属于两端被约束,反弯点在跨中的反对称弯曲深梁,其受力和变形规律不同于一般深梁。试验研究表明,在抗震联肢墙中对这类连梁若再用常规框架梁的抗震设计方法进行设计已无法避免其过早发生剪切破坏,从而无法满足结构对它的延性要求。至今国内外仍未找到一种既方便施工,又能保证剪切失效出现在连梁达到所需的位移延性之后的有效配筋方案。在刚完成的我国新一轮结构设计规范修订中,小跨高比连梁的抗震设计方法是被关注的重点问题之一,并在《建筑抗震设计规范》、《混凝土结构设计规范》和《高层建筑混凝土结构技术规程》的协调会上作过认真讨论,但因试验研究工作尚不够充分,未能取得一致意见。在这一背景下,《高层建筑混凝土结构技术规程》(JGJ3-2002)为了满足工程设计需要,对小跨高比连梁在没有充分试验结果的情况下,仍采用降低最大作用剪力和提高箍筋用量的设计方法(虽然这种方法已被国外试验证明在跨高比小于1.50的连梁中是肯定不能保证延性要求的),而《混凝土结构设计规范》(GB50010-2002)则把这部分内容继续留作空缺。
     针对工程设计中这一急待解决的重要问题,本论文作者所在的研究组对小跨高比连梁进行了系列试验研究。其中首先通过硕士研究生张彬彬的试验研究工作,进一步证实《高层建筑混凝土结构技术规程》(JGJ3-2002)提出的设计方法不能满足抗震基本要求;同时查明,国内外已提出的某些施工可以接受的改进配筋方案仍未达到较满意的延性性能。在总结已有配筋方案的基础上,本论文作者所在研究组提出了一种工程适用性好的配筋方案,即在传统配筋基础上加设对角斜筋和上、下两组“L”形筋组成的菱形斜筋的方案。经硕士研究生曹云峰四个接近足尺构件的低周交变加载试验,证实这种配筋形式小跨高比连梁(跨高比为1.0)具有良好的延性及塑性耗能能力。
     为了进一步深入研究工作,本论文的工作集中于以下两个方面:
     ①通过5个接近足尺构件的试验进一步查明:1)抗剪能力上限提高到V_u=0.2f_cbh_0或更高的可能性;2)连梁箍筋和纵向构造筋同时减小到最小构造配筋量的可能性;3)不同对角斜筋与菱形斜筋比例对这类小跨高比连梁性能的影响;
    
    重庆大学硕士学位论文
    4)混凝土强度等级对这类小跨高比连梁性能的影响;5)将这一配筋方案应用到
    跨高比为0.8和1.25情况下的有效性。
     ②国外学者近年来提出,对于剪切效应明显的“非贝努利区”或“干扰区”
    可以用较简单的“压杆一拉杆模型”(the strut一and一tie model)作为受力分析的有效“宏
    观模型”(macro model)。小跨高比连梁属于这类区域。但本文连梁配筋构造特殊,
    因此,本文任务在于尝试对这种配筋方案的深连梁用上述模型来模拟其受力性能。
     试验结果表明:①在抗剪能力上限提高到vu二0.2必h0和箍筋与纵向构造筋
    减至最低构造数量的条件下,这类配筋方式的连梁仍具有不小于5 .0的位移延性,
    且耗能能力良好:②在跨高比为0.8一1.25的范围内,连梁都依然保持上述良好性
    能;③配筋比例应以对角斜筋为主,一组“L”形斜筋用量与单向对角斜筋用量
    的比值宜控制在0.35一0.55的范围内;④通过对曹云峰的试验与本文试验的综合
    分析,表明CZ于C45的混凝土强度等级都是可用的,未发现混凝土强度在这一范
    围内偏高或偏低时可能带来什么不利影响。
     对比分析结果表明,本文所提出的适用于这类配筋方式的压杆一拉杆模型能对
    连梁受力性能作有效模拟。
     这类连梁的设计方法宜在进一步积累跨高比为1.25一2.5的连梁试验结果后统
    一提出,菱形斜筋在连梁中的受力机理和作用也有待用更多试验来验证。
Coupling beams are important elements in coupled walls. They are ligaments for passing force between single shear walls, and their linear stiffness is one of the key factors of affecting lateral stiffness of coupled walls and the internal forces in coupled walls , furthermore they are the first position for earthquake energy dissipation in seismic coupled walls. On the one hand, coupling beams with small aspect ratio are sometimes used due to architectural requirement; on the other hand, because shear walls in frame-shear walls and frame-tube structures bear most horizontal forces, coupling beams with small aspect ratio need be chosen to guarantee lateral stiffness required. However, for small span-to-depth ratio coupling beams are counter flexural deep beams restrained at their two ends and points of contraflexure at the center of the span, the rules of their carrying forces and deformation are not like common deep beams. If these kinds of coupling beams in seismic coupled walls are designed with seismic design methods of the normal frame beams, test investigation shows that they can't avoid to occur shear failure very early, so that their ductility demand can't be satisfied to the structure. So far domestic and foreign researches have not yet found out an effective reinforcement arrangement scheme for convenient construction and guaranteeing the occurrence of shear failure after coupling beams attaining displacement ductility required. Seismic design method of coupling beams with small aspect ratio was one of important problems catching notice at the newly revising structure design codes just completed, and it was discussed seriously at the harmonizing meeting of China Code for Seismic Design of Structures, China Code for Design of Concrete Structure and The Code for Design of Reinforced Concrete High-rise Structure. However, because of the insufficiency of experimental research, unanimous opinions were not obtained. At this background, though coupling beams with the small ratio of the span to depth have no sufficient test results, in order to satisfy the needs of engineering design, The Code for Design of Reinforced Concrete High-rise Structure (JGJ3-2002 ) still adopt the design method of decreasing the maximum shear force and increasing the quantity of stirrups. But in China Code for Design of Concrete Structures (GB 50010-2002) the content of seismic design methods for these kinds of coupling beams continue to be blank.
    Aiming at this important problem to be urgently settled in engineering design, the research group in which the author of this thesis is have carried out a series of test
    
    
    
    investigations on coupling beams with small aspect ratio. Firstly, the Master Zhang Binbin's tests further verified that the design methods brought forward by The Code for Design of Reinforced Concrete High-rise Structure (JGJ3-2002) can not satisfy basic seismic requirement. At the same time, our research group find that some acceptable improved reinforcement arrangement scheme in domestic and foreign researches can not attain satisfying ductility performance.
    At the basis of the summary of reinforcement arrangement scheme already put forward, our research group brings forward a reinforcement arrangement scheme having good applicability in engineering, namely the reinforcement arrangement scheme of adding the diagonal bars and rhombic inclined bars on the basis of traditional reinforcement. The long period cyclic tests of four specimens near to sufficient dimension made by the Master Cao Yunfeng prove that the reinforcement arrangement scheme can obtain favorable displacement ductility and plastic energy dissipation capacity for the coupling beams with the small aspect ratio of 1.0.
    To go deep into the research further, this thesis concentrates on the two aspects following:
    (1)The author of this thesis carries out the long period cyclic test of five specimens near to sufficient dimension to further verify: 1) the probability that the upper limit of shear-resistant ability increases to Vu = 0.2fcbh0 or higher;
引文
[1] 储自莹、王慧英·连梁设计建议·建筑结构·1997·NO·1·P18-19
    [2] 方鄂华·连系梁对双肢剪力墙弹塑性性能的影响·工程抗震·1985·NO·4·P5-10
    [3] 吴学敏·高层建筑剪力墙连梁设计的探讨·建筑结构学报·1995·NO·1·P77-78
    [4] 龚炳年、方鄂华·反复荷载下连肢剪力墙结构连梁的性能·建筑结构学报·1988·NO.1·P34-40
    [5] Nutan Kumar Subedi·RC Coupled Shear Wall Structures Ⅱ:Ultimate Strength Calculations·J.Struct. Engrg.,ASCE·1991·VOL. 117·NO.3·P681-698
    [6] 戴航·带缝钢筋混凝土高剪力墙抗震性能分析与设计(Ⅰ)·建筑结构·1997·NO.3·P3-7
    [7] T.Paulay and J.R.Binney·Diagonally Reinforced Coupling Beams of Shear Walls·ACI Special Publication 42,Detroit·1974·VOL.2·P579-598
    [8] T.Paulay·Coupling Beams of Reinforced Concrete Shear Walls·J.Struct. Engrg. ASCE·1971·VOL.97,ST3·P843-862
    [9] 秦文钺等译·钢筋混凝土结构·重庆:重庆大学出版社,1986.3
    [10] Loannis D.Lefas,Michael D.Kotsovos,and Nicholas N.Ambraseys·Behavior of Reinforced Concrete Structural Walls:Strength,Deformation Characteristics, and Failure Mechanism·ACI Structural Journal·1990·V.87,NO. 1·P23-31
    [11] 王勖成,邵敏·有限单元法基本原理和数值方法(第二版)·北京:清华大学出版社,1997,3
    [12] T.Paulay·The Design of Ductile Reinforced Concrete Structural Walls for Earthquake Resistance·Earthquake Spectra. 1986·V.2,NO.4·P783-823
    [13] 天津大学,同济大学,东南大学主编·混凝土结构·北京:中国建筑工业出版社,1994,6
    [14] 戴瑞同等译·钢筋混凝土和砌体结构的抗震设计·北京:中国建筑工业出版社,1999,6
    [15] J.Dario Aristizabal-ochoa.Seismic Behavior of Slender Coupled Wall Systems.J. Struct. Engrg.ASCE·1987·VOL. 113,NO. 10
    [16] Nutan Kumar Subedi·RC-coupled Shear Wall Structures.Ⅰ:Analysis of Coupling Beams.J. Struct. Engrg.ASCE·1991·VOL. 117,NO.3
    [17] 连肢剪力墙结构中钢筋混凝土连梁的分析·建筑结构·1993-NO.5·P55-57
    [18] 戴航·一种新型带缝钢筋混凝土高剪力墙的抗震性能分析和设计(Ⅱ)·建筑结构·1997·NO.8·P3-8
    [19] Luciano Galano and Andrea Vignoli·Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts·ACI Structural Journal·2000·V.97, NO.6·P876-885
    [20] Theodosios P.Tassios,Marina Moretti,and Antonios Bezas·On the Behavior and Ductility of Reinforced Concrete Coupling Beams of Shear Walls-ACI Structural Journal. 1996·V.93,NO.6
    
    P711-720
    [21] I.A.Tegos and G.Gr.penelis·Seismic Resistance of Short Columns and Coupling Beams Reinforced with Inclined Bars·ACI Structural Journal·1988·V.85, NO. 1·P82-88
    [22] 孙占国,林宗凡,戴瑞同·菱形配筋剪力墙连梁受力性能·建筑结构学报·1994·VOL.15,NO.5·P14-23
    [23] 戴瑞同,孙占国·菱形配筋剪力墙连梁的承载能力·工业建筑·1993·NO.10·P33-38
    [24] 中华人民共和国建设部·GB50010-2002·混凝土结构设计规范·北京:中国建筑工业出版社·2002
    [25] 中华人民共和国建设部·JGJ3-2002·高层建筑混凝土结构技术规程·北京:中国建筑工业出版社·2002
    [26] 中华人民共和国建设部·GB50011-2001·建筑结构抗震设计规范·北京:中国建筑工业出版社·2001
    [27] New Zealand Standard,NZS3101:Part1:1995,Concrete Structures Standard, Part1-the Design of Concrete Structure, 1995
    [28] Building Code Requirements for Structural Concrete(ACI318-02) and Commentary (ACI318R-02),An ACI Standard,reported by ACI Committee318,American Concrete Institute,2002
    [29] European Prestandard,Eurocode8-Design Provisions for earthquake resistance of structures, European Committee for Standardization,Feb,1995
    [30] CSA Standard A 23.3-94, Design of Concrete Structures, Canadian Standards Association, Dec, 1994
    [31] 兰林·联肢墙连梁的抗震性能及斜截面抗剪强度的试验研究·[硕士学位论文]·重庆建筑工程学院·1991
    [32] 张彬彬·高层建筑剪力墙连梁抗震性能的实验研究·[硕士学位论文]·重庆大学土木工程学院·2001
    [33] 曹云峰·高层建筑剪力墙连梁抗震性能的实验研究·[硕士学位论文]·重庆大学土木工程学院·2003
    [34] 曹云峰,张彬彬,赵杰林,傅剑平,白绍良·改善剪力墙小跨高比洞口连梁抗震性能的一种有效配筋方案·重庆建筑大学学报,2003
    [35] 傅剑半,赵态林,冒云峰,白绍良·采用新配筋方案的低配筋率小跨高比抗震连梁的试验研究·重庆建筑大学学报,2003
    [36] 赵杰林,傅剑平,白绍良·用宏观模型模拟新配筋方案小跨高比抗震连梁·重庆建筑大学学报,2003
    [37] Pedro A.Hidalgo, Christian A.Ledezma, and Rodrigo M.Jordan·Seismic Behavior of Squat Reinforced Concrete Shear Walls·Earthquake Spectra.Vol. 18.No.2,2002·P287-308
    [38] Schlaich J.,Schafer K,and Jennewein M.·Towards a Consistent Design of Reinforced Concrete Structures·PCI Journal·1987·VOL.32,NO.3·P74-150
    
    
    [39] Vecchio,F.J.,and Collins,M.P.·The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear·ACI Journal·1986·VOL.83, NO.2·P219-231
    [40] Collins,M.P.·Towards a Rational Theory for RC Members in Shear·Journal of the Structural Division,ASCE·1978·VOL. 104·P649-666
    [41] ASCE-ACI Committee 445 on Shear and Torsion·Recent Approaches to Shear Design of Structural Concrete·Journal of Structural Engineering·1998·P1375-1417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700