姜科植物繁殖生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜科Zingiberaceae是一个有着50余属1,500多种的由动物传粉的热带单子叶大科,和姜科植物丰富的物种多样性和显著的花展示相比,长期以来对姜科植物繁殖生态学的研究相对较为缺乏,但这些相对有限的研究结果显示了姜科植物具有极其多样性的传粉和繁育系统,是研究有花植物传粉和繁育系统进化的理想植物类群。本研究在对姜科植物繁殖生态学研究进行全面总结和把握的基础上,选择具有不同花部特征的3属4种姜科植物,以花寿命的适应意义为关注重点,对这些植物的繁殖生态学进行研究,期望从不同角度来探讨姜科植物传粉和繁育系统的多样性及其形成机制。
     大叶拟姜黄Curcumorpha longiflora为自交亲和植物,花寿命为2天,花在开放的第1天处于雄性阶段,第2天则为雌性阶段,花粉只能在不同花之间进行传递,从而完全避免了自花授粉的发生,同时,自然居群中的个体具有每隔1天开1朵花的特性,这使得在自然条件下同株异花授粉很少发生。大叶拟姜黄通过2天的花寿命来实现雄性先熟,同时配合特殊的开花格局来促进异交的机制是在姜科植物中的首次发现和报道。一种熊蜂Bombus sp.和小蜜蜂Apis florae是大叶拟姜黄的有效传粉者,它们对大叶拟姜黄不同性阶段的花有选择的访问是为了获取不同的回报物。
     喙花姜Rhynchanthus beesianus具有典型的鸟传粉综合特征,花展示极为显著,但自然居群的结实率极低。在长达138个小时的访花动物观察中并没有发现喙花姜的有效传粉者,雌性黑胸太阳鸟Aethopyga saturata和一种熊蜂是喙花姜有规律的访花者,但它们都只是盗蜜者。人工授粉试验中,自交授粉的结实率(57.55±4.08%)和异交授粉的结实率(64.32±4.42%)没有显著差异,说明喙花姜是完全自交亲和的,同时自然居群存在着严重的花粉限制。生境片断化导致的鸟类绝灭可能使喙花姜的传粉者减少,是进而导致喙花姜居群结实率极低的主要原因。喙花姜的花寿命为2.5天,但其艳丽的苞片能保持鲜艳的红色4-5天,替代花瓣起着吸引传粉者的作用。
     红姜花Hedychium coccineum为自交亲和植物,花序水平上的花展示极为显著,自然居群的结实同时存在着严重的花粉限制和资源限制。蝴蝶是红姜花主要的传粉者,其对花序的访问频率随花序总开花数的增加而显著增加。红姜花的花寿命为2天,花序上的每个蝎尾状聚伞小花序具3-4朵花,小花序内的花依次开放,小花序内不同轮次花的花粉数随轮次显著增加,而胚珠数则随轮次显著减少。红姜花在花序水平上的大量开花增加了对传粉者的吸引,同时有利于花粉的分散输出,增加花粉的供应,提高了红姜花个体的雄性适合度。
     毛姜花Hedychium. villosum的2个变种四倍体毛姜花原变种var. villosum和二倍体小毛姜花var. tenuiflorum在形态特征上的差异主要体现在植株大小、花部大小及小花序数、花粉和胚珠数上,在花设计上没有任何差别。四倍体毛姜花原变种比二倍体小毛姜花具有较广的地理分布范围和多样化的生境适应性,两者在花期上已经产生了明显的生殖隔离。小毛姜花为合子后的自交不亲和,毛姜花原变种为完全自交亲和。蝴蝶和天蛾都是2个变种的有效传粉者,它们对2个变种具有同等的传粉效率,但2个变种在传粉者的种类上产生了强烈的分化。毛姜花原变种的花寿命为5天,而小毛姜花则仅有4天的花寿命。二倍体小毛姜花具有较强的无性繁殖能力,自然居群中个体的克隆大小和结实率之间具有显著的负相关性,而四倍体毛姜花原变种则不存在这样的相关性。多倍化过程使毛姜花的自交不亲和系统发生了崩溃,导致了四倍体毛姜花原变种和二倍体小毛姜花在繁殖特性上产生了一系列的差异,使得四倍体毛姜花原变种具有更强的生境适应能力,能分布到二倍体小毛姜花所不能到达的生境。多倍化可能在姜花属植物从热带到高海拔地区的扩散中起着重要的作用。
     姜花属Hedychium是姜科唯一一个从热带到高海拔地区分布的大属,属内不同种类植物的花寿命差异很大。毛姜花原变种Hedychium villosum var. villosum的花寿命为5天,通过人工剪除毛姜花的柱头来使花朵具雌性功能的时间缩短,结果显示在不同的处理中,结实率随花朵具雌性功能时间的增长而增加,开花1天后剪除柱头的结实率为1.85±1.59%,极显著低于对照的结实率20.96±4.13%,说明其较长的花寿命能显著的增加传粉的成功率和结实率,长达5天的花寿命有利于雌性适合度的提高。同时,毛姜花原变种开花1天后剩余的平均花粉数和总平均花粉数没有显著差异,而开花后2、3、4天后剩余的平均花粉数则极显著少于总平均花粉数,说明随着花寿命的增加,花粉输出量也显著增加,其长达5天的花寿命也有利于其雄性适合度的提高。较长的花寿命在四倍体毛姜花原变种拓展新的生境,向更高海拔地区的扩散中也许起着重要的作用。
     姜科植物有着极其多样性的传粉和繁育系统,花寿命在姜科植物传粉和繁育系统的多样性形成及其进化中起着重要作用,同时,较长的花寿命有效的提高了雌性适合度和雄性适合度,从而使姜科植物能脱离热带生境,向更高海拔的地区扩散,花寿命在姜科植物从热带地区到高海拔地区的分布过程中也起着重要作用。
The Zingiberaceae is a large family of animal-pollinated tropical monocotyledons with approximate 1,500 species in 50 genera. Members of this family display a broad range of pollination and breeding systems. Ginger plants are considered to be an ideal plant group for studying the evolution of pollination and breeding system of flowering plant. In this study, 4 ginger species in 3 genera with different floral characteristics are selected for studying the reproductive ecology with special focus on floral longevity.
     Curcumorpha longiflora (Wallich) A. S. Rao & D. M. Verma is a perennial chasmophyte ginger that usually grows in crevices of calcareous rocks and forms patches on the understory of limestone monsoon rainforests. The pollination ecology of C. longiflora was studied by monitoring phenology and flowering behavior, observing pollinator activity, and the quantity and quality of pollination services. We also investigated the germination of pollen grains and growth of pollen tubes after different pollination treatments to detect its breeding system. Based on the results: (1) for the first time in Zingiberaceae a new protandrous mechanism was found with a two-day flowering to avoid autogamy in this species; (2) under field conditions, all individuals of C. longiflora usually produced only one flower every other day to keep geitonogamy to a minimum; (3) germination of pollen grains and growth rates of pollen tubes under different pollination treatments were the same 4 h later after pollination, suggesting that C. longiflora is completely self-compatible; (4) among the limited visitors, Bombus sp. and Apis florae were effective pollinators, but they were active at different times and at different stages of the flower, probably receiving different rewards.
     Rhynchanthus beesianus W. W. Smith is an epiphytic tropical ginger with a very conspicuous floral display, but almost no fruit set under field conditions. The reproductive ecology encompassing phenology, floral biology, and pollination and breeding systems was investigated in an evergreen broadleaved forest in Yunnan Province, Southwest China. The flowers possess a typical bird pollination syndrome, but no effective pollinators were observed during 138 h of observation. Female Black-breasted Sunbird (Aethopyga saturata) and bumblebees visited R. beesianus regularly, but they all played roles as nectar robbers. No fruit was found in the bagging treatment, and fruit set following manual self-pollination (57.55±4.08%) was comparable with cross-pollination (64.32±4.42%), suggesting that R. beesianus is self-compatible but spontaneous self-pollination in this species does not occur. R. beesianus was dependent on animals for fertilization and suffered a serious pollinator-limitation. Bird extinctions as a result of habitat fragmentation may lead to a decline of pollination and fruit set in R. beesianus. The floral longevity of R. beesianus is 2.5 days, but its showy red bracts last for 4-5 days as attractant to pollinators.
     Hedychium coccineum Smith is a self-compatible ginger with very conspicuous floral display at the inflorescence level, but fruit set in natural population suffered both serious pollen-limitation and resource-limitation. Butterflies are main pollinators of H. coccineum. In our observation, the visit frequency of 3 butterflies to H. coccineum increased greatly following the increase of total flowers on an inflorescence. The floral longevity of H. coccineum is 2 days. A cincinnus contains 3-4 flowers, and flowers bloom in turn. In cincinnus, the pollen grains of different flowers increase significantly in ture, but ovules numbers decline significantly in ture. Large floral display at the inflorescence level is advantageous both to attract pollinators and increase male fittness in H. coccineum.
     The two varieties of Hedychium villosum Wallich in Roxburgh, diploidy var. tenuiflorum and tetraploidy var. villosum, are morphologically different in palnt size, floral size and numbers of pollen grains, ovules and cincinnus. There is no any difference in floral design between two varieties. Tetraploidy var. villosum is much widespread than diploidy var. tenuiflorum geographically and ecologically, and the reproductive isolation occur between two varieties through flowering season. Diploidy var. tenuiflorum is post-zygotic self-incompatible and tetraploidy var. villosum is completely self-compatible. Both butterflies and hawkmothes are effective pollinators of two varieties, but strong differentiation in butterfly and hawkmoth species occurred to two varieties. The floral longevity of var. tenuiflorum and var. villosum are 4 days and 5 days respectively. Diploidy var. tenuiflorum shows stronger clonal ability than tetraploidy var. villosum does, and the fruit-set of var. tenuiflorum is significantly negative relative to clone size in natural population. The breakdown of self-incompatibility associated with polyploidy in H. villosum lead to changes in flowering time, pollinators, sexual versus asexual reproduction between diploidy var. tenuiflorum and tetraploidy var. villosum, which may cause tetraploidy var. villosum can explore new habitation and widespread. Polyploidy may play an very important role in distribution of Hedychium specieas from tropical area to high elevation area. Hedychium J. Konig is the only large genera distributed from tropical area to high elevation area in Zingiberaceae. Members of this genera vary greatly in floral longevity. The floral longevity of Hedychium villosum var. villosum is 5 days which is much longer than other sympatric gingers. We reduced the functional floral longevity for female function by clipping stigmas to test whether the long flowering duration of var. villosum increase female fitness by measure the fruit-set of different treatments.
     The results show that fruit-set incresed following the increse of female functional duration. Flowers with reduced functional floral longevity to 1 day had only 1.85±1.59% fruit-set which is significantly lower than 20.96±4.13% fruit-set of control flowers with natural longevity. Meanwhile, the mean pollen grains remiand on anthers of flowers 1 day after anthesis has no significant difference with the mean pollen grains of unopened flowers, but the mean pollen grains remiand on anthers of flowers 2, 3, 4 days after anthesis are all significantlly lower than the mean pollen grains of unopened flowers. These results indicate that the long floral longevity is advantageous both to male and female fitness in var. villosum. Long floral longevity may contribute to exploring new habitation and spreading toward high elevation area in tetraploidy var. villosum.
     Floral longivity not only plays a key role in form of diversity and evolution of pollination and breeding system of ginger famlily, but also plays an very important role in exploring new habitation and spreading toward high elevation area from tropical area in ginger famlily.
引文
1. Asker S. 1980. Gametophytic apomixis: elements and genetic regulation. Hereditas 93:277-293.
    2. Arista M, Ortiz PL. and Talavera S. 1999. Apical pattern of fruit production in the racemes of Ceratonia siliqua (Leguminosae: Caesalpinoideae): role of pollinators. American Journal of Botany 86: 1708-1716.
    3. Arroyo MTK, Armesto JJ. and Villagran C. 1981. Plant phenplogical patterns in the high Andean cordillera of central Chile. Journal of Ecology 69: 205~223.
    4. Ashman TL. and Schoen DJ. 1994. How long should flowers live? Nature 371: 788~791.
    5. Augspurger CK. 1980 Mass flowering of a tropical shrub (Hybanthus prunifolius): influence on pollinator attraction and movement. Evolution 34: 475-488.
    6. Baker HG. 1963. Evolutionary mechanisms in pollination biology. Science 139:877–83.
    7. Barrett SCH. 1988. The evolution, maintenance, and the loss of self-incompatibility systems. In Lovett Doust J. and Lovett Doust L. eds. Plant Reproductive Ecology: Patterns and Strategies. Oxford: Oxford University Press. Pp: 98-124.
    8. Barrett SCH. 1998. The evolution of mating strategies in flowering plants. Trends in Plant Science 3:335-341.
    9. Barrett SCH. 2002a. The evolution of plant sexual diversity. Nature Reviews Genetics 3:274-284.
    10. Barrett SCH. 2002b. Sexual interference of the floral kind. Heredity 88:154-159.
    11. Barrett SCH. 2003. Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 358:991-1004.
    12. Barrett SCH. and Charlesworth D. 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352:522-524.
    13. Barrett SCH and Richardson BJ. 1986. Genetic attributes of invading species. In Groves RH, Burdon JJ, eds. Ecology of biological invasions: an Australian perspective. Canberra, Australia: Australian Academy of Science, 21–33.
    14. Barrett SCH. and Shore JS. 1989. Isozyme variation in colonizing plants. In Soltis DE, Soltis PS, eds. Isozymes in plant biology. Portland, OR, USA: Dioscorides Press, 106–126.
    15. Bateman AJ. 1948. Intrasexual selection in Drosophila. Heredity 2:349-369.
    16. Bawa K. and Beach J. 1981. Evolution of sexual systems in flowering plants. Annals of Missouri Botanical Gardens 68:254-274.
    17. Bayer RJ, Purdy BG. and Lebedyx DG. 1991. Niche differentiation among sexual species of Antennaria gaertneri (Asteraceae: Inuleae) and A. rosea, their allopolyploid derivative. Evolutionary Trends in Plants 5: 109–123.
    18. Beattie AJ and Culver DC. 1979. Neighborhood size in Viola. Evolution 33: 1226–1229.
    19. Bell G. 1985. On the function of flowers. Proceedings of the Royal Society of London B224:223-265.
    20. Berjano R, Vega C, de Arista M, et al. 2006. A multi-year study of factors affecting fruit production in Aristolochia paucinervis (Aristolochiaceae). American Journal of Botany 93: 599–606.
    21. Bertin RI. and Newman CM. 1993. Dichogamy in angiosperms. The Botanical Review 59:112-152.
    22. Bingham RA. and Orthner AR. 1998. Efficient pollination of alpine plants. Nature 391: 238~239.
    23. Bond WJ. 1994. Do mutualisms matter? assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 344:83-90.
    24. Brammal RA. and Semple JC. 1990. The cytology of Solidago nemoralis (Compositae: Astereae). Canadian Journal of Botany 68: 2065–2069.
    25. Burtt BL. and Smith RM. 1972. Monoecism in Alpinia (Zingiberaceae), with descriptions of six new species. Notes from the Royal Botanic Garden Edinburgh 32: 29-43.
    26. Callaghan TV, Carlsson BA, Jonsdottir IS, et al. 1992. Clonal plants and environmental change - introduction to the proceedings and summary. Oikos 63:341-347.
    27. Caruso CM. 2000. Competition for pollination influences selection on floral traits of Ipomopsis aggregata. Evolution 54: 1546~1557.
    28. Campbell D, Waser N. and Price M. 1996. Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology 77: 1463~1472.
    29. Chapin FS, Schulze ED. and Mooney HA. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423-447.
    30. Charlesworth B. and Charlesworth D. 1999. The genetic basis of inbreeding depression. Genetical Research 74:329-340.
    31. Charlesworth D. 1993. Why are unisexual flowers associated with wind pollination and unspecialized pollinators. American Naturalist 141:481-490.
    32. Charlesworth D. and Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology, Evolution, & Systematics 18:237-268.
    33. Charlesworth D. 1999. Theories of the evolution of dioecy. In Geber MA, Dawson TE, and Delph LF. editors. Gender and Sexual Dimorphism in Flowering Plants. Berlin:Springer. Pp:33-60.
    34. Charlesworth D. 2001. Evolution: An exception that proves the rule. Current Biology 11:R13-R15.
    35. Charpentier A. 2002. Consequences of clonal growth for plant mating. Evolutionary Ecology 15:521-530.
    36. Chawla B, Bernatzky R, Liang W, et al. 1997. Breakdown of self-incompatibilityin tetraploid Lycopersicon peruvianum: inheritance and expression of S-related proteins. Theoretical and Applied Genetics 95:992-996.
    37. Cheke RA, Mann CF. and Allen R. 2001. Sunbirds: A Guide to the Sunbirds, Spiderhunters, Sugarbirds and Flowerpeckers of the World. USA, New Haven: Yale University Press.
    38. Cheptou PO, Berger A, Blanchard A, et al. 2000a. The effect of drought stress on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis sancta (Asteraceae). Heredity 85:294-302.
    39. Cheptou PO, Imbert E, Lepart J, et al. 2000b. Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae). Journal of Evolutionary Biology 13:522-531.
    40. Classen R. 1987. Morphological adaptations for bird pollination in Nicolaia elatior (Jack) Horan (Zingiberaceae). Garden’s Bulletin Singapore 40: 37–43.
    41. Clausen J, Keck DD. and Hiesey WM. 1945. Experimental studies on the nature of species II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Publication 564. Washington, DC, USA: Carnegie Institute Washington.
    42. Cook RE. 1983. Clonal plant-populations. American Scientist 71:244-253.
    43. Cox PA, Elmqvist T, Pierson ED, et al. 1991. Flying foxes as strong interactors in south Pacific island ecosystems: a conservation hypothesis. Conservation Biology 5: 448-454.
    44. Cui XL, Wei RC. and Huang RF. 1996. A study on the breeding system of Amomum tsao-ko. In Wu TL, Wu QG. and Chen ZY eds. Proceedings of the 2nd Symposium on Family Zingiberaceae. Guangzhou: Zhongshan University Press. 288-296.
    45. Dafni A. 1992. Pollination ecology: a practical approach. New York: Oxford University Press.
    46. Darwin C. 1859. On the Origin of Species. John Murray, London.
    47. Darwin, C. 1862. On various contrivances by which British and foreign orchids are fertilized by insects. London: Murray. Pp:365.
    48. Darwin C. 1876. The effects of cross and self fertilization in the vegetable kingdom. London: Murray.
    49. Darwin C. 1877. The different forms of flowers on plants of the same species. London: Murray.
    50. de Jong TJ, Klinkhamer PGL. and Rademaker MCJ. 1999. How geitonogamous selfing affects sex allocation in hermaphrodite plants. Journal of Evolutionary Biology 12:166-176.
    51. de Jong TJ, Waser NM. and Klinkhamer PGL. 1993. Geitonogamy: the neglected side of selfing. Trends in Ecology & Evolution 8:321-325.
    52. de Jong TJ. 2000. From pollen dynamics to adaptive dynamics. Plant Species Biology 15:31-41.
    53. Dudash MR. 1990. Relative fitness of selfed and outcrossed progeny in a self-incompatible, protandrous species, Sabatia angularis L. (Gentianaceae): a comparison in three environments. Evolution 44:1129-1139.
    54. Endress PK. 1994. Diversity and Evolutionary Biology of Tropical Flowers. Cambridge: Cambridge University Press. Pp:358-363.
    55. Eriksson O. and Jerling L. 1990. Hierarchical selection and risk spreading in clonal plants. In van Groenendael J. and de Kroon H. eds. Clonal Growth in Plants: Regulation and Function. The Hague: SPB Academic Publishing. Pp:79-74.
    56. F?gri K and van der Pijl L. 1979. The Principles of Pollination Ecology. 3rd ed. Oxford: Pergamon Press.
    57. Felber F. 1988. Phenologie de la floraison de populations diploides et tetraploides d’Anthoxanthum alpinum et d’Anthoxanthum odoratum. Canadian Journal of Botany 66: 2258–2264.
    58. Felber F. 1991. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. Journal of Evolutionary Biology 4:195–207.
    59. Fenster CB, Armbruster WS, Wilson P, et al. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, & Systematics 35:375-403.
    60. Fishbein M. and Venable DL. 1996. Evolution of inflorescence design: theory and data. Evolution 50: 2165~2177.
    61. Fisher RA. 1941. Average excess and average effect of a gene substitution. Annals of Eugenics 11:53-63.
    62. Fowler NL. and Levin DA. 1984. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. American Naturalist 124: 703–711.
    63. Gao JY, Zhang L, Deng XB, et al. 2004. The floral biology of Curcumorpha longiflora (Zingiberaceae): a ginger with two-day flowers. American Journal of Botany. 91: 289-293.
    64. Gao JY, Yang ZH, Ren PY, et al. 2006. The Reproductive Ecology of Rhynchanthus beesianus W. W. Smith (Zingiberaceae) in South Yunnan, China: a Ginger with Bird Pollination Syndrome. Journal of Integrative Plant Biology 48: 1294-1299.
    65. Gentry, AH. 1974. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6: 64-68.
    66. Givnish TJ. 1980. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34:959-972.
    67. Gordon-Gray KD, Cunningham AB, Nichols GR. 1989. Siphonochilus aethiopicus (Zingiberaceae): observations on floral and reproductive biology. South African Journal of Botany 55: 281-287.
    68. Grant A. and Grant V. 1956. Genetic and taxonomic studies in Gilia. VIII. The Cobwebby Gilias. Aliso 3: 203-287.
    69. Grant V and Grant KA. 1965. Flower Pollination in the Phlox Family. New York:Columbia University Press. Pp:180.
    70. Grant V. 1981. Plant speciation. New York, USA: Columbia University Press.
    71. Hancock JF and Bringhurst RS. 1981. Evolution of California populations of diploid and octoploid Fragaria (Rosaceae): a comparison. American Journal of Botany 68: 1–5.
    72. Handel SN. 1985. The intrusion of clonal growth patterns on plant breeding systems. American Naturalist 125:367-384.
    73. Harder LD and Barrett SCH. 1995. Mating cost of large floral displays in hermaphrodite plants. Nature 373:512-515.
    74. Harder LD, Jordan CY, Gross WE, et al. 2004. Beyond floricentrism: the. pollination function of inflorescences. Plant Species Biology 19, 137-148.
    75. Hauser TP. and Loeschcke V. 1996. Drought stress and inbreeding depression in Lychnis flos-cuculi (Caryophyllaceae). Evolution 50:1119-1126.
    76. Heinrich B. and Raven PR. 1972. Energetics and Pollination Ecology. Science 176: 597-602.
    77. Heywood VH. 1976. Plant Taxonomy. London: Edward Arnold Press.
    78. Holsinger KE. 1996. Pollination biology and the evolution of mating systems in flowering plants. Evolutionary Biology 29:107-149.
    79. Holsinger KE, Feldman MW. and Christiansen FB. 1984. The evolution of self-fertilization in plants: a population genetic model. American Naturalist 124:446-453.
    80. Holttum RE. 1950. The Zingiberaceae of the Malay Peninsula. Garden’s Bulletin Singapore 13: 1~250.
    81. Howell D and Roth B. 1981. Sexual reproduction in agaves: the benefits of bats, the cost of semelparous advertising. Ecology 62: 1-7.
    82. Husband BC. 2000. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proceedings of the Royal Society of London B 267: 217–223.
    83. Husband BC. and Schemske DW. 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54-70.
    84. Ippolito A. and Armstrong JE. 1993. Floral biology of Hornstedtia scottiana (Zingiberaceae) in a lowland rain forest of Australia. Biotropica 25: 281–289.
    85. Janzen DH. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203-205.
    86. Jarne P. and Charlesworth D. 1993. The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annual Review of Ecology, Evolution, & Systematics 24:441-466.
    87. Johnston MO. and Schoen DJ. 1996. Correlated evolution of self-fertilization and inbreeding depression: An experimental study of nine populations of Amsinckia (Boraginaceae). Evolution 50:1478-1491.
    88. Johnson SD. and Steiner KE. 2000. Generalization versus specialization in plant pollination systems. Trends in Ecology & Evolution 15:140–143.
    89. Kato M. 1996. Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. American Journal of Botany 83: 732–743.
    90. Kato M, Itino T. and Nagamitsu T. 1993. Melittophily and ornithophily of long-tubed flowers in Zingiberaceae and Gesneriaceae in West Sumatra. Tropics 2: 129–142.
    91. Kearns CA, Inouye DW. and Waser NM. 1998. Endangered mutualisms: the conservation biology of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83-112.
    92. Khadari B, Gibernau M, Anstett MC, et al. 1995. When figs wait for pollinators: the length of fig receptivity. American Journal of Botany 82: 992~999.
    93. Klinkhamer PGL, de Jong TJ. and de Bruyn GJ. 1989. Plant size and pollinator visitation in Cynoglossum officinale. Oikos 54: 201-204.
    94. Knight TM, Steets JA, Vamosi JC, et al. 2005. Pollen limitation of plant reproduction: pattern and process. Annual Review of Ecology, Evolution andSystematics 36: 467-497.
    95. Knuth P, Appel O. and Loew E. 1904/1905. Handbuch der Blutenbiologie. III.1/III.2 Leipzig: Engelmann.
    96. Kunckel d’Herculais J. 1910. Rapport des insects lepidopteres avec les fleurs des zingiberacees et en particulier avec celles des Hedychium. Comptes Rendus Hebdomadaires des Seances del Academie des Sciences 1153-1155.
    97. Kǒlreuter JG. 1761. Vorlaufige Nachrichten von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. Leipzig: Gleditschischen Handlung.
    98. Kress WJ, Prince LM. and Williams KJ. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany 89: 1682–1696.
    99. Kress WJ, Liu AZ, Newman M, et al. 2005. The molecular phylogeny of Alpinia (Zingiberaceae): A complex and polyphyletic genus of gingers. American Journal of Botany. 92: 167~178.
    100. Larsen K, Lock JM, Maas H, et al. 1998. Zingiberaceae. In Kubitzki K ed. The Families and Genera of Vascular Plants. IV Flowering Plants, Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Berlin: Springer. Pp:474–495.
    101. Larson BMH. and Barrett SCH. 1999. The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). Journal of Ecology 87: 371-381.
    102. Levin DA. 1981. Dispersal versus gene flow in plants. Annals of the Missouri Botanical Garden 68: 233–253.
    103. Levin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1–25.
    104. Levin DA. 2002. The role of chromosomal change in plant evolution. New York: Oxford University Press.
    105. Lewis WH. 1976. Temporal adaptation correlated with ploidy in Claytonia virginica. Systematic Botany 1: 340–347.
    106. Li QJ, Xu ZF, Kress WJ, et al. 2001. Flexible style that encourages outcrossing. Nature 410: 432.
    107. Li QJ, Kress WJ, Xu ZF, et al. 2002. Mating system and stigmatic behaviour during flowering of Alpinia kwangsiensis (Zingiberaceae). Plant Systematics and Evolution 232: 123-132.
    108. Lloyd DG. 1979. Parental strategies of angiosperms. New Zealand Journal of Botany 17:595-606.
    109. Lloyd DG. 1982. Selection of combined versus separate sexes in seed plants. American Naturalist 120:571-585.
    110. Lloyd DG. 1984. Gender allocation in outcrossing cosexual plants. In Dirzo R. and Sarukhan J. eds. Perspectives on Plant Population Ecology. Sinauer, Sunderland, MA. Pp:277-300.
    111. Lloyd DG. 1992. Self-fertilization and cross-fertilization in plants .2. the selection of self-fertilization. International Journal of Plant Sciences 153:370-380.
    112. Lloyd DG. and Webb CJ. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms 1. Dichogamy. New Zealand Journal of Botany 24:135-162.
    113. Loehle C. 1987. Partitioning of reproductive effort in clonal plants: a benefit-cost model. Oikos 49:199-208.
    114. Lumaret R. 1984. The role of polyploidy in the adaptive significance of polymorphism at the Got-1 locus in the Dactylis glomerata complex. Heredity 52: 153–169.
    115. Lumaret R, Guillerm JL. and Delay J. 1987. Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73: 436–446.
    116. Lumaret R. 1988. Adaptive strategies and ploid levels. Acta Oecologica Oecologia Plantarum 9: 83-93.
    117. Lynch RI. 1882. On a contrivance for cross-fertilisation in Roscoea purpurea: with identical reference to the structure of Salvia Grahami. Journal of the Linnean Society 19: 204-206.
    118. Maas PJM. 1972. Costoideae (Zingiberaceae). In Stafleu F. ed. Floral Neotropica Monograph. New York: Hafner. 8: 1-139.
    119. Maas PJM. 1977. Renealmia (Zingiberaceae-Zingiberoideae). Costoideae (Additions) (Zingiberaceae). In Rogerson CT. ed. Floral Neotropica Monograph. Bronx: New York Botanical Garden. 18:1-218.
    120. Mable BK. 2004. Polyploidy and self-compatibility: is there an association? New Phytologist 162: 803–811.
    121. Mahanty HK. 1970. A cytologia study of the Zingiberales with special reference to their taxonomy. Cytologia 35:13-49.
    122. Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424.
    123. Maynard Smith J. 1978. The Evolution of Sex. Cambridge: Cambridge University Press.
    124. Miller JS. and Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants. Science 289:2335-2338.
    125. Miller JS. and Venable DL. 2002. The transition to gender dimorphism on an evolutionary background of self-incompatibilty: An example from Lycium (Solanaceae). American Journal of Botany 89:1907-1915.
    126. Mukherjee I. 1970. Chromosome studies of some species of Hedychium. The Botanical Magazine, Tokyo 83: 237-241.
    127. Müller F. 1888. Zweimannige Zingiberaceenblumen. Berichte der Deutschen Botanischen Gesellschaft 6: 95-100.
    128. Müller F. 1890. Miscellen. Kreuzung von Hedychium. AbhandlungenHerausgegeben vom Naturwissenschaftlichen Vereine zu Bremen 11: 444.
    129. Müller L. 1931. Ueber den Bau und die Mechanik der Blute von Globba atrosanguinea. Oesterreichische Botanische Zeitschrift 80: 149-161.
    130. Ollerton J. 1996. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. Journal of Ecology 84: 767-769.
    131. Ollerton J. 1998. Sunbird surprise for syndromes. Nature 394: 726-727.
    132. Pannell JR, Obbard DJ. and Bruggs RJA. 2004. Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biological Journal of the Linnean Society 82: 547–560.
    133. Porsch O. 1924. Methodik der Blutenbiologie. In Abderhalden E. ed. Handbuch der Biologischen Arbetsmethoden. Berlin: Urban & Schwarzenberg.Ⅺ(1), 395~514.
    134. Prach K. and Pysek P. 1994. Clonal plants - what is their role in succession. Folia Geobotanica & Phytotaxonomica 29:307-320.
    135. Prati D. and Schmid B. 2000. Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90:442-456.
    136. Price MV. and Waser NM. 1979. Pollen dispersal and optimal outcrossing in Delphinium nelsoni. Nature 277: 294–297.
    137. Primack RB. 1985. Longevity of individual flowers. Annual Review of Ecology and Systematics 16: 15~37.
    138. Queller D. 1983. Sexual selection in an hermaproditic plant. Nature 305:706-707.
    139. Rao AS, Verma DM. 1971. Curcumorpha: a new genus of Zingiberaceae. Bulletin of the Botanical Survey of India 13: 339-341.
    140. Ramsey J. and Schemske DW. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33: 589–639.
    141. Rathcke BJ. 2003. Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). AmericanJournal of Botany 90: 1328~1332.
    142. Rathcke BJ. and Jules ES. 1993. Habitat fragmentation and plant-pollinator interactions. Current Science 65: 273-277.
    143. Ren PY, Liu M. and Li QJ. 2007. An example of flexistyly in a wild cardamom species (Amomum maximum (Zingiberaceae)). Plant Systematics and Evolution 267: 147-154.
    144. Renner SS. 2001. How commin is heterodichogamy. Trends in Ecology & Evolution 16: 595-597.
    145. Renner SS. and Ricklefs RE. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany 82:596-606.
    146. Richards AJ. 1997. Plant breeding systems. 2nd ed. London: Chapman & Hall.
    147. Robertson C. 1928. Flowers and Insects. Lists of Visitors of Four Hundred and Fifty-Three Flowers. Carlinville, IL: Charles Robertson.
    148. Rodriguez DJ. 1996. A model for the establishment of polyploidy in plants. American Naturalist 147: 33–46.
    149. Rodriguez-Riano T. and Dafni A. 2000. A new procedure to assess pollen viability. Sexual Plant Reproduction 12: 241-244.
    150. Rothera SL. and Davy AJ. 1986. Polyploidy and habitat differentiation in Deschampsia cespitosa. New Phytologist 102: 449–467.
    151. Roxburgh W. 1820. Flora Indica or descriptions of Indian plants. vol. 1. Calcutta: Serampore, W. Thacker & Co. (Facsimile of the 1st Edition of 1820, 1824; published in 1975 by Oriole Editions, New York).
    152. Sage TL. and Sampson FB. 2003. Evidence for ovarian self-incompatibility as a cause of self-sterility in the relictual woody angiosperm, Pseudowintera axillaris (Winteraceae). Annals of Botany 91:807-816.
    153. Sakai S. and Nagamasu H. 1998. Systematic studies of Bornean Zingiberaceae I. Amomum in Lambir Hills, Sarawak. Edinburgh Journal of Botany 55: 45-64.
    154. Sakai S, Kato M. and Inoue T. 1999. Three pollination guilds and variation infloral characteristics of Bornean gingers (Zingiberaceae and Costaceae). American Journal of Botany 86: 646–658.
    155. Schemske DW. 1980a. Evolution of floral display in the orchid Brassavola nodosa. Evolution 34: 489-493.
    156. Schemske DW. 1980b. The evolutionary significance of extrafloral nectar production by Costus woodsonii (Zingiberaceae): An experimental analysis of ant protection. Journal of Ecology 68: 959-967.
    157. Schemske DW. 1981. Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology 62: 946-54.
    158. Schemske DW. 1983. Breeding system and habitat effects on fitness components in three Neotropical Costus (Zingiberaceae). Evolution 37: 523-39.
    159. Schmitt J. 1980. Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34: 934–943.
    160. Schoen DJ. and Dubuc M. 1990. The evolution of inflorescence size and number– a gamete-packaging strategy in plants. American Naturalist 135: 841~857.
    161. Schoen DJ. and Ashman TL. 1995. The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution 49: 131~139.
    162. Schumann K. 1904. Zingiberaceae. In Engler A. ed. Pflanzenreich. Leipzig: W. Engelmann. IV. 46.
    163. Seavey SR. and Bawa KS. 1986. Late-acting self-incompatibility in angiosperms. Botanical Review 52:195-219.
    164. Segraves KA and Thompson JN. 1999. Plant polyploidy and pollination. Floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53: 1114–1127.
    165. Sekercioglu CH, Daily GC. and Ehrlich PR. 2004. Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences of the UnitedStates of America 101: 18042-18047.
    166. Sharma AK and Bhattacharyya NK. 1959. Cytology of several members of Zingiberaceae and a study of inconstancy of their chromosome complements. La cellula 59: 299-346.
    167. Silvertown J. and Charlesworth D. 2001. Introduction to plant population biology. 4th edition. Oxford: Blackwell science.
    168. Smith RM. 1977. Additional notes on Alpinia Sect. Myriocrater. Notes from the Royal Botanic Garden Edinburgh 35: 195-208.
    169. Smith RM. 1985. A review of Bornean Zingiberaceae: I (Alpinieae p.p.). Notes from the Royal Botanic Garden Edinburgh 42: 261~314.
    170. Smith RM. 1989. A new Alpinia from Sabah. Notes from the Royal Botanic Garden Edinburgh 45: 341-343.
    171. Smith RM. 1990. Alpinia (Zingiberaceae): A proposed new infrageneric classification. Edinburgh Journal of Botany 47: 1-75.
    172. Smith-Huerta NL. 1984. Seed germination in related diploid and allotetraploid Clarkia species. Botanical Gazette 145: 246–252.
    173. Snow AA, Spira TP, Simpson R, et al. 1996. The ecology of geitonogamous pollination. In Lloyd DG. and Barrett SCH. eds. Floral Biology: Studies on Floral Evolution in Animal-pollinated Plants. New York: Chapman & Hall. Pp: 191-216.
    174. Soltis DE. 1984. Autopolyploidy in Tolmiea menziesii (Saxifragaceae). American Journal of Botany 71: 1171–1174.
    175. Soltis DE. and Soltis PS. 1989. Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae). Evolution 43: 586–594.
    176. Soltis DE, Soltis PS. and Tate JA. 2003. Advances in the study of polyploidy since Plant speciation. New Phytologist 161:173–191.
    177. Sprengel CK. 1793. Das entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen. Berlin: Vieweg.
    178. Stebbins GL. 1947. Types of polyploidy: their classification and significance.Advances in Genetics 1: 403–429.
    179. Stebbins GL. 1950. Variation and evolution in plants. New York, USA: Columbia University Press.
    180. Stebbins GL. 1957. Variation and evolution in plants. New York: Columbia University Press.
    181. Stebbins GL. 1970. Adaptive radiation of reproductive characteristics in angiosperms. I: Pollination mechanisms. Annual Review of Ecology, Evolution, & Systematics 1:307–326.
    182. Stiles FG. 1978. Temporal organization of flowering among the hummingbird foodplants of a tropical wet forest. Biotropica 10: 194-210.
    183. Stratton DA. 1889. Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica 21: 308~318.
    184. Sun GD, Dilcher L, Zheng S, et al. 1998. In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science 282:1692-1695.
    185. Takano A, Gisil J, Yusoff M, et al. 2005. Floral and pollinator behaviour of flexistylous Bornean ginger, Alpinia nieuwenhuizii (Zingiberaceae). Plant Systematics and Evolution 252: 167-173.
    186. Thompson JD. and Lumaret R. 1992. The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology and Evolution 7: 302–307.
    187. Thompson JN, Nuismer SL. and Merg K. 2004. Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biological Journal of the Linnean Society 82: 511-519.
    188. Traveset A. 1999. Ecology of plant reproduction: mating systems and pollination. In Pugnaire FI. and Valladares F. eds. Handbook of Functional Plant Ecology. New York: Marcel Dekker. Pp: 545-588.
    189. Troll W. 1929. Roscoea purpurea Sm., eine Zingiberacee mitHebelmechanismus in den Bluten. Mit Bemerkungen uber die Entfaltungsbewegungen der fertilen Staubblatter von Salvia. Planta 7: 1-28
    190. Troll W. 1951. Botanische Notizen II. Abh. Akad. Wiss. Lit. Mainz, Math.-Naturwiss. Kl., 1951: 25-80.
    191. Tyler B, Borrill M. and Chorlton K. 1978. Studies in Festuca. X. Observations on germination and seedling cold tolerance in diploid Festuca pratensis and tetraploid F. pratensis var. alpennina in relation to their altitudinal distribution. Journal of Applied Ecology 15: 219–226.
    192. van der Pijl L. 1954. Xylocopa and flowers in the tropics. I-III. Proceeding of the Koninklijke Nederlandse Akademie van Wetenschappen Series C 57:413~423, 541~562.
    193. van Dijk PJ. 2003. Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 358:1113-1121.
    194. van Dijk P, Hartog M. and VanDelden W. 1992. Single cytotype areas in autopolyploid Plantago media L. Biological Journal of the Linnean Society 46: 315–331.
    195. Vogel S. 1966. Parfumsammelnde Bienen als Bestauber von Orchideen und Gloxinia. Oesterreichische Botanische Zeitschrift 113: 302-361.
    196. Vogel S. 1984. Blutensekrete als akzessorischer Pollenkitt. In Ehrendorfer F. ed. Mitteilungsband Botaniker-Tagung Wien, 123. Vienna: Institut fur Botanik, Universitat Wien.
    197. Wang YQ, Zhang DX, Renner SS, et al. 2004. A new self-pollination mechanism. Nature 431: 39–40.
    198. Waser NM. 1983. The adaptive nature of floral traits: ideas and evidence. In Real L. ed. Pollination biology, 241~285. Academic press, Orlando, Florida, USA.
    199. Waser NM, Chittka L, Price MV, et al. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043-1060.
    200. Webb CJ. 1999. Empirical studies: evolution and maintenance of dimorphic breeding systems. In Geber MA, Dawson TE, and Delph LF. eds. Gender and Sexual Dimorphism in Flowering Plants. Berlin: Springer. Pp: 61-96.
    201. Webb CJ. and Lloyd DG. 1986. The avoidance of interference between the presentation of pollen and stigmas in angiosperms .2. Hercogamy. New Zealand Journal of Botany 24:163-178.
    202. Willson MF. and Rathcke BJ. 1974. Adaptive design of the floral display in Asclepias syriaca L. American Midland Naturalist 92:47-57.
    203. Wolfe LM. 1993. Inbreeding depression in hydrophyllum-appendiculatum - role of maternal effects, crowding, and parental mating history. Evolution 47:374-386.
    204. Wood JM. and Franks M. 1911. Natal Plants 6: 560-561.
    205. Wu TL. and Larsen K. 2000. Zingiberaceae. In Wu ZY and Raven HR, eds. Flora of China. Vol. 24. Flagellariaceae Through Marantaceae. Beijing: Science Press. pp. 346-347.
    206. Wyatt R. 1983. Pollinator-plant interactions and the evolution of breeding systems. In Real L. ed. Pollination Biology. Orlando: Academic Press. Pp:51-95.
    207. Yampolsky E. and Yampolsky H. 1922. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica 3:1-62.
    208. Zhang JH. and Cao M. 1995. Tropical forest vegetation of Xishuangbanna, SW China and its secondary changes, with special reference to some problems in local nature conservation. Biological Conservation 73: 229–238.
    209. Zhang L, Li QJ, Deng XB, et al. 2003. Reproductive biology of Alpinia blepharocalyx (Zingiberaceae): another example of flexistyly. Plant Systematics and Evolution 241: 67-76.
    210. Zhu H, Wang H, Li BG, et al. 2003. Biogeography and floristic affinities of the limestone flora in Southern Yunnan, China. Annals of the Missouri Botanical Garden 90: 444-465.
    211.郭友好. 1994.传粉生物学与植物进化.见:陈家宽,杨继.主编.植物进化生物学.武汉:武汉大学出版社. Pp:232-280.
    212.黄双全,郭友好. 2000.传粉生物学的研究进展.科学通报45:225-237.
    213.李庆军,许再富,夏永梅等. 2001.山姜属植物花柱卷曲性传粉机制的研究.植物学报43: 364-369.
    214.刘志秋,陈进,白智林. 2004.澜沧舞花姜繁殖生物学特性及其进化意义探讨.植物生态学报28: 1-8.
    215.王洪,朱华,李保贵. 1997.西双版纳石灰山森林植被.广西植物17: 101-117.
    216.王英强. 2004.姜科植物传粉生物学的研究.中国科学院研究生院博士学位论文.中国科学院华南植物园,广州. Pp:9-18.
    217.吴德邻. 1999.姜科植物地理.见:路安民.主编.种子植物科属地理.北京:科学出版社. Pp: 604~614.
    218.杨晓君. 2004.总述:云南的自然环境与鸟类资源特点.见:季维智.主编.中国云南野生鸟类.北京:中国林业出版社. Pp: 19-53.
    219.杨业华. 2004.染色体数目的变异.见:杨业华.主编.普通遗传学.北京:高等教育出版社. Pp: 144-169.
    220.张大勇. 2000.性生态学.见:张大勇等.理论生态学研究.北京:高等教育出版社. Pp:75-122.
    221.张大勇. 2004.植物繁殖生态学.见:张大勇.主编.植物生活史进化与繁殖生态学.北京:科学出版社.
    222.张玲,李庆军. 2002.花柱卷曲性异交机制极其进化生态学意义.植物生态学报26: 385-390.
    223.朱华,王洪,李保贵. 2004.滇南勐宋热带山地雨林的物种多样性与生态学特征.植物生态学报28: 351-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700