用户名: 密码: 验证码:
不同生境四合木(Tetraena mongolica Maxim.)生理生态适应机制及濒危机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四合木(Ttraena mongolica)是蒺藜科(Zygophyllaceae)单种属的古地中海孑遗植物,中国狭域和特有分布种,典型的西鄂尔多斯特有单种属和特有群系,国家二级保护植物,在植物分类、植物区系研究上具有重要科学意义,在防风固沙、水土保持和维持荒漠生态系统功能方面具有重要作用。四合木分布区的生态环境十分脆弱,近年来由于自然环境恶化和人为因素破坏,四合木种群在分布区内破碎化程度逐渐加剧,生境适宜性已明显下降,濒危状况日益严重,对四合木物种保护生物学的研究已引起生物学工作者的广泛关注。因此研究空间上斑块分布区的生境适宜性和四合木的生态适应性具有十分重要的意义,将有助于探索四合木种群的濒危机制,也将为濒危植物保护措施的制定提供科学依据。本论文选取四合木分布区5个不同典型生境为研究样区,以同生境近缘种霸王为对照,通过对种群特征和土壤理化性质(土壤有机质、营养元素和微量元素)的研究,结合野外天然生长状态下不同季节植物水分参数特征、内源激素、抗氧化系统、光合作用、蒸腾作用及水分利用效率等方面特征分析对不同生境四合木抗旱生理生态适应机制及濒危机理进行了系统的研究。研究结果如下:
     1.研究区不同生境四合木种群密度、盖度、年龄结构存在显著差异,且低山、台地、丘陵种群所处生境有利于四合木幼苗更新和植物生长,其密度和盖度较大,适合建立保护区,应该进一步加强保护;高平原和倾斜平原种群所处生境不利于四合木幼苗更新和植物生长,四合木逐渐被适应性更强的霸王所取代,其密度和盖度较小,四合木有趋于消亡的趋势,应该引起关注。
     2.研究区四合木根际土壤有机质含量、土壤含水量、营养元素(N、P、K)、微量元素(Fe、Mn、Cu、Zn、Mo、B)含量均较低,pH偏高,体现出贫瘠碱性化的荒漠土壤特点。运用数理统计将5个样地土壤理化性质进行聚类分析,分为两类:低山、台地、丘陵样地为一类(A类),高平原、倾斜平原为一类(B类)。两类样地土壤理化性质存在一定的差异:低山、台地、丘陵样地(A类)土壤营养元素(N、P、K)和微量元素(Fe、Mn、Cu、Zn的全量和有效量;有效B、有效Mo)、土壤有机质含量及土壤含水量都显著高于B类,而pH值显著低于B类。
     3.四合木水分参数Ψ_s~(sat)、Ψ_s~(tlp)值较低, AWC、V_a/V_0值较高,体现荒漠灌木四合木较强的干旱适应性特点。四合木主要水分参数Ψ_s~(sat)、Ψ_s~(tlp)值及ε~(max)表现为5月>7月>9月,AWC、V_a/V_0表现为5月<7月<9月,四合木耐旱性随5月、7月、9月递增,这种季节变化规律与植物生长发育的节律相吻合即与物候的进程一致。对5个生境四合木进行耐旱性排序,得出倾斜平原、高平原>丘陵>台地>低山,将三个月份5个不同生境四合木水分参数进行聚类。结果和土壤理化性质结果相一致,低山、台地、丘陵四合木为一类(A类),耐旱性强弱,高平原、倾斜平原四合木为一类(B类),耐旱性较强。两类样地植物水分参数特征存在一定的差异:三个月份Ψ_s~(tlp)值、Ψ_s~(sat)值和AWC值均表现为高平原、倾斜平原四合木显著低于低山、台地、丘陵四合木。不同生境四合木的渗透调节机制不同,倾斜平原和高平原的四合木其体内通过增加细胞质浓度进行渗透调节能力较强(较低的Ψ_s~(tlp)值和Ψ_s~(sat)值);而生境为低山、台地和丘陵四合木抗脱水能力较强(较大的AWC值)。
     4.不同生境四合木体内ABA和GA_3含量均表现为随5月、6月、8月而不断升高,而IAA的含量和ZR的含量均表现为:6月>8月>5月,一方面体现出内源激素对植物生长发育的调控作用,另一方面体现出内源激素在抗逆性中发挥重要作用,干旱胁迫下,IAA和ZR的含量降低,ABA和GA3含量升高,内源激素协同作用促进植物度过不良环境。不同生境条件四合木内源激素存在显著差异:5月份IAA含量表现为在A类样地>B类样地,8月份ABA含量和GA_3含量表现为在A类样地>B类样地。内源激素的综合调控作用是A类样地四合木种群密度和盖度较大的内在原因之一。
     5.不同生境四合木体内MDA含量均随5月、6月、8月而不断升高,表明随着季节进程加剧叶片受到的过氧化伤害也在不断加剧,而四合木体内抗氧化酶类SOD、POD、CAT、AsA-POD、GR和非酶氧化剂GSH、AsA随5月、6月、8月而不断升高,二者协同作用共同抵抗干旱胁迫诱导的氧化伤害。不同生境四合木的抗氧化系统存在差异性:A类样地受到的膜质过氧化强度相对较低,其体内的抗氧化酶活性和抗氧化剂含量较低;而B类样地四合木根际土壤干旱程度较高,均有提高一定幅度的抗氧化酶活性和抗氧化剂含量以清除干旱导致的氧化伤害的能力。抗氧化系统的调节是四合木对不同生态环境适应的重要生理反应之一。
     6.对B类样地建群种四合木和近缘种霸王进行比较研究,相同生境下四合木叶片MDA含量均显著高于霸王,膜质过氧化程度高于霸王,抗氧化酶活力和抗氧化剂含量均显著高于霸王,四合木体内ABA、IAA、ZR、GA3含量低于霸王,四合木保持最大膨压和维持最低膨压的水势阈值弱于霸王,耐旱性弱于霸王。说明同生境下霸王竞争有限的环境资源以促进植物生长发育的能力和耐旱性强于四合木,耐受相同程度环境胁迫的能力强于四合木,这些可能是四合木逐渐被霸王取代以及分布局限和濒危的重要内在原因之一。
     7.自然条件下,四合木和霸王叶片的光合速率、蒸腾速率日进程均呈“双峰”曲线,净光合速率、蒸腾速率峰值分别出现在11:00和15:00,两种植物上午的光合速率、蒸腾速率高于下午。四合木、霸王净光合速率、蒸腾速率具有明显的“午休”现象,而光合速率午间降低的原因主要是由气孔因素即孔导度降低造成的,蒸腾作用的午间降低是旱生植物通过关闭气孔来适应午间高温或防止叶片过度蒸腾失水的一种生态适应对策。PAR和Gs是影响这两种植物光合作用速率和蒸腾速率Tr的最主要因子。二者相比霸王比四合木具有较高的光合速率和水分利用效率,这可能是四合木逐渐被霸王取代以及分布局限和濒危的重要内在原因之一。
Tetraena mongolica, monotypic genus of Zygophyllaceae, is the super xerophyte and the relic shrub of Tethys. There is only a small part of them distributing in China. It is a special shrub endemic to the west of Ordos Plateau end its distributed area is very small, belonging to second-class national protected species. It has very important significance both in plant taxonomy and regional system study, and plays an important role as a windbreak, as well as in stabilizing sand and in conserving soil and water. It has also played a very important role in maintaining ecosystem in terms of preventing desertification. But in recent years, the landscape pattern has been fragmented and the habitat has been islanding because of deterioration of the environment and destruction by people. So the plant species has fallen into severe endangered. So the research on the conservation biology of endangered species T. mongolica has been taken great attentions. And analysis on habitat fitness of different population patches in distribution region and ecological adaptability of endemic species T. mongolica are of great significance. It will help to seek after the danger mechanism and offer science base for establishing the safeguard. Then five T. mongolica populations in different habitats (upland, hill tableland, high plain and terrace) and its congener species Zygophyllum xanthoxylon in the same condition were selected as our research objects. Through analyze the soil physical and chemical characters, combining with research on aspects of eco-physiology characters with season including water parameters characters, endogenous phytohormone, enzymatic antioxidant system, photosynthesis and water use efficiency responses, researches on eco-physiological adaptation mechanism of T. mongolica Maxim in different habitats to drought condition and endangering mechanism was carried out. The results are as follows:
     1.There was a significant difference in density, coverage, width-class and age-class structures of T. mongolica populations in different habitats. The habitats of Upland, hill and tableland population were fit for seedlings rebirthing and plants growth, and the density and coverage in these three populations were significantly higher than that of high plain and terrace populations. The habitats of these three populations is fit to establish nature preservation zone and shoud be given more effective way to conservation. But the habitats of high plain and terrace populations were not fit for seedlings rebirthing and plants growth. T. mongolica in these two populations has been replaced by Z. xanthoxylon that has stronger adaptability and will die out. So the habitats of these two populations should be given more attention.
     2. The content of organic matter, nutritional elements (N、P、K),micro-element (Fe、Mn、Cu、Zn、Mo、B) was very low, but the pH was high. This embodied the bad condition of barren soil and alkalization in desert. The physical and chemical index of soil in T. mongolica were cluster analyzed and T. mongolica population in five habitats were classified into two groups: upland, hill and tableland populations (group A) and high plain and terrace populations (group B). The content of organic matter, nutritional elements (N、P、K) in the group A was significantly higher than that in group B. The total content of micro- elements Fe、Mn、Cu Zn in soil is higher in the group A than in group B. The available content of six kinds of micro-element such as Fe、Mn、Cu、Zn Mo、B indicates the same results as above.
     3. T.mongolica is of lowΨ_s~(sat),lowΨ_s~(tlp) , high AWC and high V_a/V_0, which shows that T.mongolica is of strong ability of drought tolerance. The seasonal change ofΨ_s~(sat)、Ψ_s~(tlp)andε~(max) showed May > July > September. And the AWC、V_a/V_0 showed May < July < September. The drought tolerance of T.mongolica continuously enhanced with season. This seasonal change is response to the phonological rhythm of plant. The ordination analysis for drought tolerance of T. mongolica in upland, hill,tableland, high plain, terrace was finished. The level of drought-tolerance among the five habitats above decreased in the following order: high plain and terrace>upland> tableland>hill. Based on three measurements of water parameters of T. mongolica in five habitats in P-V curves, the cluster analysis of drought tolerance of T. mongolica was finished. T. mongolica in five habitats can be classified into two groups: upland, hill and tableland is one group, high plain and terrace is the other group. The variance analysis showed that three measurements ofΨ_s~(sat)、Ψ_s~(tlp) and AWC of T.mongolica in high plain and terrace is lower than that of upland, hill and tableland. There are difference in osmotic adjustment mechanism among five different habitats. T. mongolica in high plain and terrace is of stronger ability of osmosis adjustment by improving the concentration of cellular solute, but T. mongolica in upland, hill and tableland is of stronger ability of holding water (high AWC).
     4. The change trend of ABA and GA3 in the five populations were distinct and regulative in the whole growthing season , i.g. August>June>May. Similarly, the content of IAA and ZR embodys distinct regulative changes, i.g. June> August>May. On the one hand, this proved IAA and ZR content decreased but ABA and GA3 increased under drought stress. On the other hand, this embodied interrelated relationships between endogenous phytohormone and plants growth . ABA played an important role as a signal under drought stress. The content of IAA in May, ABA and GA3 in August in group A were significantly higher than that in group B. The condition of endogenous phytohormone is adapted with its habitats, which plays an important role in plants growth and development.
     5. The seasonal change of MDA content showed August>June>May, which embodied the memberane lipid peroxidation became stronger. Both the activity and amount of five detected enzymatic antioxidant system SOD、POD、CAT、AsA-POD、GR and antioxidant AsA、GSH were increased significantly with the season, which mutually regulated to promote the growth of T.mongolica. The Enzymatic antioxidant systems have difference in five habitats. The memberane lipid peroxidation of growp A were lower than group B. The activity and amount of antioxidant system were lower than group A. It may be suggested that enzymatic antioxidant play a key role as one of the adaptation mechanism of T.mongolica in different habitats.
     6. Compared T.mongolica with its its congener species Z. xanthoxylon in group B, The MDA content of T.mongolica were higher which embody the memberane lipid peroxidation were higher than Z.xanthoxylon to eliminate the oxidation damage. The content of endogenous phytohormone ABA、IAA、ZR、GA_3 were lower. T.mongolica has lower ability of maintaining large turgor and low water potential , which embody lower ability of drought tolerance than Z. xanthoxylon. This explained that the ability of Z.xanthoxylon competing limited entironment resource to promote plant growth and drought tolerance, were higher than T.mongolica. These are reasons why T. mongolica has been replaced by Z.xanthoxylon and narrow distributing and endangering.
     7. Under wild conditions, Analysis on a series of physiological and ecological characteristics of photosynthesis of T. mongolica and Z.xanthoxylon during the growth season shows that the daily change pattern of net photosynthetic rate (Pn) and transpiration rate (Tr) of two plants can be expressed as a two-peak curve. The Pn and Tr reache the maximum at 11:00 and 15:00, Also the Pn and Tr were higher in the morning than in the afternoon. The decline of Pn and Tr of two plants in the noon were observed. The reasons of Pn decline were mainly caused by stomatal limitation. And the decline of Tr were a ecological adaptation way by closing down the stomatal to adapt high temperature in the noon. Correlation analysis and regression analysis showed the photosynthetic active radiation (PAR) and the stomatal conductance (Gs) are the two most influential factors on the Pn and Tr. Compared with T.mongolica, Z. xanthoxylon had higher Tr and water use efficiency (WUE), which may be an important reason why why T. mongolica has been replaced by Z.xanthoxylon and narrow distributing and endangering.
引文
[1]杨持,王迎春,刘强,等.四合木保护生物学[M].北京:科学出版社.2002.
    [2]中国科学院内蒙古宁夏综合考察队.内蒙古自治区与东北西部地区土壤地理[M].北京:科学出版社.1978,186-191.
    [3]刘果厚,周世权,张力,等.内蒙古特有植物四合木生态环境及濒危原因的研究[J].内蒙古林学院学报,1993,2:33-38.
    [4]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [5]李博,史培军,李天杰.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990.
    [6]张云飞.濒危植物四合木生境破碎化过程中种群动态研究[D].武汉大学博士学位论文,2000.
    [7]吴树彪,屠丽珠.从胚胎学特征探讨四合木的系统位置[J].西北植物学报,1990,10(1):23-29.
    [8]马毓泉,张寿洲.四合木系统地位的研究[J].植物分类学报,1990.28(2):89-95.
    [9]吴树彪,屠丽珠.四合木胚胎发育及系统地位[J].西北植物学报,1990,21(2):277-283.
    [10]屠丽珠.内蒙古西部地区九种旱生植物叶的解剖观察[J].内蒙古大学学报(自然科学版),1982,13(4):485-505.
    [11]王迎春,杨持.四合木叶片的比较解剖学研究[J].内蒙古大学学报(自然科学版),1997,28(1):119-121.
    [12]维娜.四合木和霸王营养器官比较解剖[J].内蒙古大学学报(自然科学版),1991,22(4):528-533.
    [13]吴树彪,屠丽珠.四合木胚胎学研究[J].内蒙古大学学报,1990,21(2):277-283.
    [14]周世权,田秀英.几种濒危植物的花粉形态[J].内蒙古林学院学报,1988,8(2):65-72.
    [15]宛涛,燕玲,卫智军,等.内蒙古西部九种濒危植物的花粉形态[J].草地学报,1999,7(2):129-133.
    [16]王迎春,马虹,征荣.四合木繁殖特性的研究[J].西北植物学报,2000,20(4):661-665.
    [17]吴素琴,李克昌,杨瑞全,等.四合木种子特性的测定研究[J].草业科学,1994,11(3):29-31.
    [18]李天然,许月英,征荣,等.珍稀濒危植物四合木体细胞胚胎发生的组织学观察[J].内蒙古大学学报(自然科学版),1998,29(2):245-249.
    [19]杨持,张颖娟.四合木水浸出液对几种植物种子萌发及幼苗存活的影响[J].内蒙古大学学报,1998,29(1):125-129.
    [20]曹瑞,段飞舟,马虹,等.残遗植物半日花与四合木生理生态学特征的比较研究[J].西北植物学报,2001,21(1):184-187.
    [21]徐庆,刘世容,臧润国,等.中国特有植物四合木种群的生殖生态特征-种群生殖值及生殖分配研究[J].林业科学,2001,37(2):36-41.
    [22]王迎春,侯艳伟,张颖娟,等.四合木种群生殖对策的研究[J].植物生态学报,2001,25(6):699-703.
    [23]张云飞,杨持,李博,等.鄂尔多斯高原特有种四合木生长和繁殖的种群间变异与濒危机制[J].生态学报,2003,23(2):436-443.
    [24]贾玉华,刘果厚,周瑞东,等.四合木扦插繁殖的研究[J].内蒙古农业大学学报.2006.27(2):71-74.
    [25]刘果厚,周世权,张力,等.四合木水分代谢特征的初步研究[J].干旱区资源与环境,1993,7(2):100-105.
    [26]李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木水分参数的研究(I)[J].中国沙漠,2005,25(4):581-586.
    [27]孙卫国,雍世鹏.四合木常量元素、微量元素、氨基酸和热值的初步分析[J].内蒙古大学学报(自然科学版),1996,26(4):462-465.
    [28]智颖飙,杨持,王再岚,等.四合木氨基酸含量特征分析[J].内蒙古大学学报(自然科学版).2005,36(3):306-312.
    [29]李昉,钟惠民,王现杰.四合木的化学成分研究[J].天然产物研究与开发.2006,18:948-950.
    [30]张颖娟,杨持.西鄂尔多斯特有种四合木种群遗传多样性及遗传分化研究[J].生态学报,2001,21(4):162-167,506-511.
    [31]Ge Xue-jun,Yu Yan. Gentic variation in the endangered Inner Mngolia endemic shrub shm[J],Biological Conservation. 2003,111(3): 466-469.
    [32]张颖娟,卢萍.特有种四合木种群遗传结构分析[J].内蒙古师范大学学报(自然科学汉文版),2006,35(1):89-98.
    [33]张慧荣,杨持,叶波.濒危植物四合木种群结构和动态研究[A].见:李博主编.草地生物多样性保护研究[C].呼和浩特:内蒙古大学出版社,1995,89-103.
    [34]张云飞,杨持,陈家宽.四合木分布区景观结构时空变化分析[J].武汉植物研究,2001,19(1):25-30
    [35]王峰,杨持.四合木自然更新及就地保护途径的研究[J].内蒙古大学学报(自然科学版),2003,34(2):196-202.
    [36]智颖飙,杨持,姚一萍,等.西鄂尔多斯地区土壤与四合木微量元素含量特征分析[J].应用生态学报,2004,15(3):396-400.
    [37]杨持,智颖飙,征荣.四合木种群的生态适应性[J].生态学报.2006.26(1):91-96.
    [38]甄江红,刘果厚.不同生境条件下四合木种群结构特征[J].生态学报,2008,28(4):1829-1841.
    [39]徐庆,姜春前,刘世荣,等.濒危植物四合木种群传粉生态学研究[J].林业科学研究,2003,16(4):391-397.
    [40]张颖娟,阿里穆斯,杨持.四合木有性繁殖能力的观测[J].内蒙古大学学报,1997,28(2):268-270.
    [41]张丽香,刘强,高艳春,等.火红拟孔蜂采访植物及访花行为的研究[J].天津师范大学学报,2002,22(3):63-68.
    [42]刘强,张丽香.火红拟孔蜂的筑巢习性和行为[J].动物学杂志,2002,37(6):8-12.
    [43]刘果厚,高润宏,赵培英.珍惜濒危植物沙冬青、四合木、绵刺和半日花等四种旱生灌木在环境胁迫下的生存对策分析[J].内蒙古农业大学学报,2001,22(3):66-69.
    [44]刘书润.鄂尔多斯高原西部阿拉巴斯山地区第三纪残遗植物避难所的自然保护问题[J].干旱区资源与环境,1989,3(2):69-79.
    [45]何丽君,齐冰杰.四合木体细胞胚胎发生中细胞组织学的淀粉积累动态的研究[J].内蒙古草业,2002,14(3):39-41.
    [46]何丽君,于卓.濒危植物四合木的离体培养组织学观察及再生植株的研究[J].内蒙古大学学报,2003,24(2):27-32.
    [47]刘祖祺,张石城主编.植物抗性生理学[M].北京:中国农业出版社,1994.
    [48]Wang SM ,Wan CG,Wang YR.The characteristics of Na+, K+ and free praline distribution in several drought-resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments,2004,56:525-539.
    [49]Xu SHJ, An LZ, Fen HY, etal. The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment[J]. Journal of Arid Environments, 2002, 51:437-447.
    [50]周瑞莲,孙国钧,王海鸥.沙生植物渗透调节物对干旱、高温的响应及其在逆境中的作用[J].中国沙漠,1999,19:18-22.
    [51]陈鹏,潘晓玲.干旱和NaCl胁迫下梭梭幼苗中甜菜碱含量和甜菜碱醛脱氢酶活性的变化(简报)[J].植物生理学通讯,2001,37(6):520-522.
    [52]浦铜良,程偌发,张承烈.沙丘芦苇特有一小分子化合物及其对叶绿体的保护逆境保护效应[J].科学通报,2000,45:1308-1313.
    [53]李德全,等.土壤干旱下不同小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1992,18(1):37-44.
    [54]Turner, N.C., Jones MM.In:Tuner NC, Kramer PJ(eds). Adatation of plants to Water and High Temperature Stress (M) John Wiley and Sons, New York, 1980.87-103.
    [55]Hsiao,T .C, E. Aceredo, E.Fereres and D. W. Henderson, Water stress, growth and osmotic adjustment[J].Phil.Trans.R. Soc.Land.Ser.B., 1976,273:497-500.
    [56]王玉国,荆家海.水分胁迫下高梁叶片的渗透调节与延伸生长的关系[J].植物生理学报,1991,17(1):37-43.
    [57]王万里.压力室(pressure chamber)在植物水分状况研究中的应用.植物生理学通讯,1984:(3):52-57.
    [58]李庆梅,徐化成.油松P-V曲线主要水分参数随季节和种源的变化.植物生态学与地植物学学报,1992,16(4):326-335.
    [59]Jone MM, Turner NC,Osmand CB.Mechanism of drought resistance.In:Palag LG,Aspinall D.eds Physilogy and Biochemistry of Drought Resistance in plants[M]. Academic Press,Sydney,1981,15-37
    [60]Busch DE, Smith SD.Mechanis msassociated with decline of woody species in riparianeco systems of the southern US[J].Ecologica lMonographs,1995,65:347-370.
    [61]董学军.九种沙生灌木水分关系参数的实验测定及生态意义[J].植物学报,1998,40(7):657-664.
    [62]Halliwell B.,Gutteridge JMC.In "Free Radicals in Biology and Medicine"[M].Clarendon Press,1985.65-138.
    [63]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003
    [64]Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? [J] J Exp Biol. 2006, 209(9): 1575-1584.
    [65]Mckersie BD, Chen Y, de Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.)[J]. Plant Physiol, 1993, 103:1155-1163.
    [66]Allen RD. Dissection of oxidative stress tolerance using transgenic plants [J]. Plant Physiol,1995,107:1049-1054.
    [67]Allen RD. Dissection of oxidative stress tolerance using transgenic plants[J]. Plant Physiol,1995,107:1049-1054.
    [68]Gupta AS, Heinen JL, Holaday AS, et al. Increased resistance to oxidative stress in transgentic plants that over express chloroplastic Cu/Zn superoxide dimutase[J]. Proc Natl Acad Sci USA 1993,90: 1629-1633.
    [69]Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J]. EMBIO, 1991, 10:1723-1732.
    [70]Breusegem FV, Slooten L, Stassart .IM, et al.Effects of over exproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress[J]. Exp Bot, 1999,50(330): 71-78.
    [71]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperat-ure: diferences and crosstalk between two stres signaling pathways [J]. Curt Opin Plant Biol,2000, 3:217-223.
    [72]FujitaY, FujitaM, SmohR, etal. AREB1 is atranscription activator of novel ABRE-dependent ABA signaling that enhances drought stres tolerance in Arabidopsis[J]. The Plant Cell,2005,17:3470-3488.
    [73]YangW L, Hu zA, WangHX, et al. The pmtective role of XanthophyH cycle in resurrection angiosperm boca hygrometrica during dehydration and rehydration[J]. Acta Botanica Sinica,2003,45(3):307-310.
    [74]PeizM, MurataY, BenningG, etal. Calcium channelsactivated by hydrogen peroxide med-iate absoisic acid signaling in guard cells[J]. Nature,2000, 406:731 -734.
    [75]余叔文,汤章城,主编.植物生理与分子生物学[M].北京:科学出版社,1999,476-492.
    [76]季孔庶,孙志勇,方彦.林木抗旱性研究进展[J].南京林业大学学报(自然科学版),2006, 30(6):123-128.
    [77]胡景江,左仲武.外源多胺对油松幼苗生长及抗旱性的影响[J].西北林学院学报,2004,19(4):5-8.
    [78]Hsiao,T.C.Plant response to water stress[J].Plant Physiol,1973,24:519-570.
    [79]韦振泉,林宏辉,何军贤.水分胁迫下小麦捕光色素蛋白复合物的影响[J].西北植物学报,2000,26(4):555-560.
    [80]Zheng WJ, Zheng XP, Zhang CL. A survey of Photosynthetic carbon metabolism in 4 ecotypes of Phragmites communis in northwest China: leaf anatomy, ultrastructure, and activities of ribulose 1,5-bisphosphate carboxlase, phosphoenopyruvate carboxylase and glycollate oxidase[J].Physiol Plant,2000,l 10:201-208.
    [81]李卫华,张承烈.泡泡刺叶磷酸烯醇式丙酮酸羧化酶季节性聚态变化[J].植物生态学报,2000,24(3):284-288.
    [82]Zhu XY, Chen GC, Zhang CL. Photosynthetic electron transport, photo phosphorylation and anti oxidants in two eco types of reed (Phragmites communis Trin.) from different habitats[J].Photosynthetica,2001,39(2): 183-189.
    [83]Pyankov VI, Gunin PD. C4 plants in the vegetation of Mongolia: their natural occurrence and geographic a distribution in relation to climate [J].Oecologia,2000,123:15-31.
    [84]殷立娟,李美荣.中国C4植物的地理分布与生态学研究.中国C4植物及其与气候环境的关系[J].生态学报,1997,17(4):350-363.
    [85]O'Grady, A. P, Eamus, D..Hutley, L. B. Transpiration increases during the dry season:Patterns of tree water use in eucalypt open. forests of northern Australia[J]. Tree Physiology,1999,19(9):591-597.
    [86]荆家海,马书尚.大田玉米,高梁,芝麻,豌豆叶片水势,蒸腾速率,气孔阻力对环境因素的反应[J].西北植物学报,1990,10(10):8-16.
    [87]郭连生,田有亮.9种针阔叶幼树的蒸腾速率,叶水势与环境因子关系的研究[J].生态学报,1992,12(1):47-52.
    [88]Comstock, J., Mencuccini, M. Control of stomatal couductauce by leaf water potential in HymeNoclea salsola (T.& G), a desert sub shrub[J]. Plant, Cell and Environment, 1998, 21(10):1029-1038.
    [89]王根轩,廖建雄,吴冬秀.荒漠条件下甘草气孔振荡的水被动证据[J].植物学报,2001,43(1): 41-45.
    [90] Bunce, JA. Does transpiration control stomata responses to water vapour pressure deficit?[J].Plant, Cell and Environment, 1997, 20(1):131-135.
    [91]杨锡金.浅谈干旱地区自然保护区的建设及开发利用[J].干旱区地理,1998,21(1):57-62.
    [92]周广胜.中国东北样带(NECT)与全球变化——干旱化、人类活动和生态系统[M].北京:气象出版社,2002.3-6.
    [93]张文辉,祖元刚,马克明.1999.裂叶沙参与泡沙参种群分布格局分形特征的分析[J].植物生态报.23(1):31-39.
    [94]Fransen B, Blijjenberg J, de Kroon H. Root morphological physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches[J]..Plant and Soil, 1999,211,179-189.
    [95]Sultan SE, Phenotypic plasticity for plant development, function and life history [J]. Trends in plant science, 2001,5,537-542.
    [96]He WM, Dong M. Plasticity in physiology and growth of Salix mastudana in response to simulated atmospheric temperature rise in the Mu Us Sandland. [J].Photosynthetica, 2003,41,297-300.
    [97]张云飞,杨持,李博,等.鄂尔多斯高原特有种四合木生长河繁殖的种群间变异与濒危机制.生态学报,2003,23(3):436-443.
    [98]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005,115-151.
    [99]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,205-227.
    [100]Aubert H ,Pinta M. Trace-elements in Soils[M]. Amsterdam-Oxford-New York : Elsevier Scientific Publishing Company. 1977, 6-67.
    [101]Aubert H ,Pinta M. Trace-elements in Soils[M]. Amsterdam-Oxford-New York : Elsevier Scientific Publishing Company. 1977 ,106~l 12.
    [102]夏增禄.土壤元素背景值及研究方法[M].北京:气象出版社.1987,289-308.
    [103]魏复盛.中国土壤元素背景值[M].北京:中国环境科学出版社1990,87-249
    [104]Stuefer JF, HutchingsMJ. Enviromental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L[J]. Oecologia. 1994, 100,302-308.
    [105]韩秀珍,马建文,布和敖斯尔等.利用卫星ETM与样方统计数据研究西鄂尔多斯珍稀濒危植 物种群分布规律[J].遥感学报2002,6(2):136-141.
    [106]陈贻源.模糊数学[M].武汉:华中工学院出版社.1992.
    [107]张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ)[J].北京林业大学学报,1994,16(4):46-53.
    [108]Cheung Y N S,Tyree M T,Dainty J.water relations param-eters on single leaves obtained in a pressure bomb and some ecological interpretations[J]. Can.J.Bot. , 1975 ,53 :1342 -1346.
    [109]杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,17(4):364-370.
    [110]郭连生,田有亮.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报,1998,20(3):1-8.
    [111]张耀甲.甘肃民勤地区沙枣等植物生理生态学特性的初步研究[J].植物学报,1981,23(5):393-399.
    [112]李吉跃.PV技术在油松侧柏苗木抗旱特征研究中的应用[J].北京林业大学学报,1989,11(1):3-11.
    [113]Lemcoff JH, Guamaschelli AB ,Garau AM, et al. .Elastic and osmotic adjustment in rooted cuttings of several clones of Eucalyptus camaldulensis Dehnh.from southeastern Australia after a drought[J]. Flora,2002,197,134-142.
    [114]Martinez,Lotts S,Schanck A,Bajji M,et al. Is osmotic adjustment required for water stress resistance in the Mediterranean shurb Atriplex halimus L[ J]. Journal of Plant Physiology,2004,161,1041-1051.
    [115]Tyree MT,Jarvis PG Water in tissues and cells.In:Lange OL,Nobel PS,Osmond CB,Ziegier Heds[M].Encyclopedia of Plant Physiology,New Series,Volume 12 B.Springer-Verlag,Berlin,Heideberg, New York, 1982, 35-77.
    [116]杨文斌,任建民,贾翠萍.柠条抗旱的生理生态与土壤水分关系的研究[J].生态学报,1997,17(3):239-244.
    [117]李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木的水分关系参数(Ⅱ)[J].应用生态学报,2007,18(5):963-967.
    [118]Jone MM, Turner NC,Osmand CB.Mechanism of drought resistance.In:Palag LG,Aspinall D.eds .Physilogy and Biochemistry of Drought Resistance in plants[M]. Academic Press,Sydney, 1981,15-37.
    [119]李骁.珍稀植物四合木分布区特有微生物区系研究[D].内蒙古大学博士学位论文,2007
    [120]Davies, W.J.& J. Zhang. Annual Review Plant Physiology and Plant Molecular Biology[M],1991,42:55-102.
    [121]Bano A, Dorffling K ,Bettin D,et al. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soils[J]. Aust. J. Plant Physiol. 1993, 20:109-115. Press, San Diego, pp. 499-517.
    [122]Davies W.J, Metcalfe J, Lodge T.A, Costa A.R. Plant growth substances and the regulation of growth under drought[J]. Aust. J. Plant Physiol. 1986, 13: 105-125.
    [123]Hein M.B,Brenner M.L,Brun W.A. Accumulation of~(14) C-radiolabel in leaves and fruits after injection of~(14)Ctryptophan into seed of soybean[J]. Plant Physiol, 1986, 82:454-456.
    [124]Jackson M.B.,Young S.F. and Hall K.C. Are roots a source of abscisic acid for the shoots of flooded pea plants. [J]. Exp. Bot.., 1988,39:1631-1637.
    [125]刘瑞香,杨劼,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J],水土保持学报,2005,19(6):148-151.
    [126]许旭旦.ABA等内源激素与植物的抗早性[J].植物生理学通讯,1988,24(1):1-8
    [127]陈立松,刘星辉.水分胁迫对荔枝叶片内源激素含量的影响[J].热带作物学报,1999(3):31-35
    [128]束怀瑞.果树栽培生理学[M].北京:中国农业出版社,1993,111-137.
    [129]王霞,候平,尹林克,等.土壤缓慢水分胁迫下柽柳植物内源激素的变化[J].新疆农业大学学报,2000,23(4):41-43.
    [130]Stuefer JF, HutchingsMJ. Enviromental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L[J]. Oecologia. 1994,100,302-308.
    [131]王迎春,杨持.四合木叶片的比较解剖学研究[J].内蒙古大学学报,1997,28(1):117-121.
    [132]BouslamaM, Schapaugh JrW T. Stressin soybeans. I. Evaluation of three screen g techniques for heat and drought tolerance[J]. Crop Sci. 1984,24:933-937.
    [133]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989.6(4):211-217.
    [134]Elster E F. Oxygen actlvition and oxygen toxicity[J]. Ann Rev Plant Physiol. 1992,43:73-96.
    [135]蒋明义,郭绍川Ⅰ.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996,32(2):144-150.
    [136]李合生.现代植物生理学[M].北京:高等教育出版社,2006
    [137]Beauchamp C , Fridovich I. Superoxide dismutase : improved assays and applicable to acrylamide gels[J]. Analytical Biochemistry, 1971 , 44 : 276-287.
    [138]Chance B , Maehly A C. Assay of catalases and peroxidases. In : Colowick S P, Kaplan N O ,eds. Meth. Enzymol .(Vol .2)[M].New York: Academic Press ,1955 , 764-775.
    [139]Knoraer O C, Durner J, Boger P. Alterations in the antioxidative system of suspension-cultured soybean cells ( Glycine max) induced by oxidative stress[J]. Physiol.Plantarum, 1996 , 97 : 388-396.
    [140]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社.2002.
    [141]Madhava Rao KV , Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea( Cajanus cajan L.Millspaugh) in response to Zn and Ni stresses[J]. Plant Sci. 2000 , 157 :113-128.
    [142]Anderson JV, Chevone BI, Hess JL. Seasonal variation in the antioxidant system of eastern white pine needles [J]. Plant Physiol, 1992, 98: 501-508
    [143]孙群,胡景江.植物生理学研究技术.[M].杨凌:西北农林科技大学.2006.
    [144]Braford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254.
    [145]Ahmed S,Nawata E,Hosokawa M,et al. Alterations in photosynthesis and antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2004, 163:117-12
    [146]Bandeoglu E,Eyidogan F,Yucel M,et al. Antioxidant responses of shoots and roots of leitil to NaCl-salinity stress [J]. Plant Growth Regul, 2004,42: 69-77
    [147]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,31:144-150.
    [148]Bowler C, Van Montagu M, Ine D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol.,1992, 43:86-116
    [149]Foyer CH, Halliwell B. The presence of glutathino and glutathino reductase in choroplasts : A proposed role in ascorbic acid metabolism[J]. Planta , 1976,133:21-25.
    [150]应叶青,吴家胜,戴文圣,等.柃木苗期光合特性研究[J].浙江林学院学报,2004,21(4): 366-370.
    [151]Fischer R A, Turner N C. Plant productivity in the arid and semiarid zones[J]. Ann Rev Plant Physiol, 1978, 29:227-317
    [152]Berry J A,Downton W J S.Enviromental regulation of photosynthesis.In: Govindjee(ed).Photo-synthesis Vol Ⅱ [M] .New York:Academia Press, 1982.263-343.
    [153]Farquhar G D,Sharkey T D.Stomatal onductance and photosynthesis[J].Ann Rev Plant Physiol,1982,33,317-345.
    [154]许大全,光合作用效率[M].上海科学技术出版社,2002,95.
    [155]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080-1087.
    [156]王润元,杨兴国,赵鸿,等.半干旱雨养区小麦叶片光合生理生态特征及其对环境的响应[J].生态学杂志,2006,25(10):1161-1166.
    [157]廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J].应用生态学报,1997,8(5);481-485.
    [158]赵明,李少昆,王美云.田间不同条件下玉米叶片的气孔阻力及与光合、蒸腾作用的关系[J].应用生态学报,2006,17(5):805-810.
    [159]王森,代力民,姬兰柱.土壤水分状况对长白山阔叶红松林主要树种叶片生理生态特性的影响[J],生态学杂质,2002,21(1):1-5.
    [160]冯金朝,周宜君,周海燕等.沙冬青对土壤水分变化的生理响应[J],中国沙漠,2001,21(3):223-226.
    [161]谭会娟,周海燕,李新荣,张志山.珍稀濒危植物半日花光合作用日动态变化的初步研究[J],中国沙漠.
    [162]林保花,刘金祥,肖生鸿等.粤西乡土香根草光合生理生态特征日动态分析[J],应用生态学报,2006,17(11)2041-2045.
    [163]赵平,孙谷畴,曾小平等.两种生态型榕树的叶绿素含量、荧光特性和叶片气体交换日变化的比较研究[J].应用生态学报,2000,11(3):327-332.
    [164]Beardall,Morris l.Effects of environmental factors on phaedctylum tricornutum(bacillariophyceae)[J].III Effects of oxygen. Journal of Phycology,1975,11(4):430-434.
    [165]翁晓燕,将德安,陆庆等.影响水稻叶片光合日变化因素的分析[J].中国水稻科学,1999,12(2):105-108.
    [166]陶汉之。茶树光合日变化的研究[J],作物学报,1991,17:444-452.
    [167]王颖,魏国印,张志强,等.7种园林树种光合参数及水分利用效率的研究[J].河北农业大学学报,2006,29(6):44-48.
    [168]Eamus D.The interaction of rising CO2 and temperatures with water use efficiency[J].Plant, Cell and Environment, 1991, 14: 843-852.
    [169]孙学凯,范志平,王红等.科尔沁沙地复叶槭等3个阔叶树种的光合特性及其水分利用效率[J].干旱区资源与环境.2008,22(10):188-194.
    [170]高强.17种荒漠植物形态结构与环境的适应性研究[D].内蒙古农业大硕士学位论文.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700