木兰属生殖生物学研究及系统演化表征探析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木兰科Magnoliaceae植物作为被子植物的原始类群,多为珍贵濒危种,也是全球气候变化的敏感类群,在整个植物进化系统上占有重要地位。本试验以木兰科木兰属的白玉兰Magnolia denudata和武当木兰Magnolia sprengeri为主要研究对象,采取形态学研究、组织化学染色、解剖学观测、人工授粉试验以及红外线热偶探针测温、红外线成像等方法,对开花生物学,传粉机制,繁育系统以及开花生热效应中表现出的原始性状和进化机制进行了深入研究,揭示了自然条件下白玉兰M. denudata部分胚珠败育的机理、玉兰亚属Subgen. Yulania心皮不完全发育的机制、木兰属Magnolia植物花芽长绢毛的趋同进化、木兰属生殖过程中的开花生热效应、以及木兰科植物双花粉管萌发的进化作用与机制。主要结论如下:
     1)白玉兰M. denudata花粉活力在不同散粉阶段具有明显差异。展瓣期(Stage 3)的花粉活力最强,即此时雄蕊群距中轴辐射散开,花药开裂,离心皮雌蕊柱头暗淡。此阶段的花粉萌发速率最快,近1.5小时即萌发;白玉兰柱头可授期时间很短,仅约5小时,因此,可授期的短促和具活力花粉的适时落置,是该属胚珠发育的先决条件。
     2)白玉兰M. denudata雌雄异熟间隔时间约为36小时,即从柱头具可受性到雄蕊成熟。尽管雌雄异熟避免自花授粉的发生,但北方玉兰早春花先叶的满树绽放,为访花昆虫在同一株树上长时间访花提供了机会,因而提高了同株异花授粉这种广义自花授粉形式的大量发生,进而使得雌雄异熟机制避免自花授粉在木兰属中的作用微乎其微。
     3)白玉兰生殖过程为严格意义的异株异花授粉。人工授粉试验结果显示,白玉兰异株异花果实与种子发育良好,同株异花授粉胚珠后期败育。同株异花授粉后,花粉管在花柱道内的生长和伸长率与异株异花样本并无明显差异,荧光显微镜下,同株和异株授粉柱头花粉管均可以通过花柱内的引导组织到达花柱道的底端。此后受精卵开始发育,胚乳核分裂,但胚珠发育停滞在鱼雷期,中心细胞消融退化,解剖学观测到的胚珠鱼雷期败育,直接导致低结实率,而败育发生在受精以后,为自交不亲和的滞后表现(Late-acting self-incompatibility)。
     4)玉兰亚属心皮的不完全发育是由部分胚珠败育导致。玉兰亚属的心皮由于自交不亲和机制,受自花授粉和同株异花授粉的影响,胚珠部分败育,导致部分心皮不完全发育,果序不饱满。玉兰亚属胚珠发生的自交不亲和的滞后表现,即合子后自交不亲和(Post zygotic SI)。由于原始被子植物不是完善的合心皮果,因此导致有效自交不亲和的进化不能得以顺利进行。
     5)木兰属Magnolia植物在花的生长发育过程中具有明显的生热效应。木兰属花芽外密被长绢毛,红外线测温以及热偶探针测定显示低温天气下,花芽内部温度高于环境温度,密被绢毛的芽鳞片有效保持了花芽发育的内部温度,并防止热量向外扩散;花蕾期,花芽的温度明显高于枝叶温度;开花期,雌蕊的温度在柱头可授期和最佳散粉期中都会维持较高的温度,花期温度的变化中,雌蕊比雄蕊有更强的控制力。植物开花生热,保持较高的温度,不仅能保障植物花粉发育,花粉管生长和受精等一系列生殖发育的顺利进行,而且能促使花部气味挥发,吸引昆虫访花,提高自身的繁殖成功。
     6)木兰科植物的花粉萌发出现双花粉管现象,是木兰科在植物系统发育中原始性状的表现。双花粉管的萌发类型在木兰属Magnolia、含笑属Michelia、木莲属Manglietia和鹅掌楸属Liriodendron等木兰科植物中普遍存在。结合裸子植物与部分被子植物的比较研究结果,认为木兰科花粉管的生长上保留了部分原始的特征,是探讨裸子植物与被子植物系统进化过程中具有关联作用的表征,可以看作是从裸子植物到被子植物进化的过程中,在花粉萌发中出现的重演现象。
Magnoliaceae plants, originated mostly from China, are the endangered and sensitive species to global climate change. This family occupies an important position on the evolution of angiosperm system. By using morphological observation, anatomical and embroyological analysis, hand-pollination, infrared thermometer and infrared imaging, the features in relation to reproductive development and systematic evolution of Magnolia denudata and Magnolia sprengeri were investigated, based on analysis of the floral character, pollination biology, breeding system and thermogenisis occurred in Magnolia. In the present experiments, the mechanism of ovule abortion of M. denudata under natural condition and the reason of incomplete carpel development of Subgenus Yulania were revealed. Furthermore, the co-evolution of Magnolia flower buds with dense trichomes, heat generation occurred at anthesis and evolution mechanism of two pollen tubes occurred in pollen germination in Magnoliaceae were uncovered. The main results were summarized as follows:
     1) Pollen viability of M. denudata varied at different stages, but was at its highest in stage 3, during which time the stamens detach from the axis, the anthers dehisce, and the gynoecium stigma starts to fade, and pollen germination rate was fastest and nearly 1.5 hours for germination. The duration of pistil receptivity was very short and approximately five hours. These results indicated that poor fertilisation may occur if the optimum period for pollination was missed or the stigma receives poor-quality pollen grains from stages other than stage 3.
     2) The duration of dichogamy, i.e., from the state of a receptive stigma to mature stamens, was approximately 36 h, although dichogamy avoids selfing, but for the dichogamous M.denudata in early spring in northern China, more numerous floral displays resulted in a longer sequence of visits by pollinators to flowers within the same tree and increased geitonogamous self-pollination. Therefore, protogyny of Magnolia might have little effect in reducing geitonogamy.
     3) Reproductive process in Magnolia is cross-pollination in a strict sense, and hand-pollination experiments demonstrated that fruits and seeds from cross-pollinated samples grew well, whereas fruits of geitonogamous samples were aborted in later development. The amount and elongation rate of self-pollinated pollen tubes in the styles did not differ from those that were cross-pollinated. Using UV microscopy, both self and cross pollen tubes were found to reach the base of the style along style canal. In addition, zygote and endosperm nucleus developed, but the embryo degenerated in the torpedo stage, our anatomical analysis of ovule and seed development further revealed that fertilisation occurred in samples with geitonogamy, but the embryo degenerated in the torpedo stage, demonstrating that aborted seeds were produced by fertilisation, that is late-acting self-incompatibility.
     4) Subgenus Yulania carpels are not fully developed due to some ovule sterility. For self-incompatibility mechanism, the incomplete development of carpels was found to be the effect by ovule abortion caused by self-pollination and geitonogamy, and aggregate follicle fruits are not plump. Moreover, the ovule abortion of Subgenus Yulania was late acting self-incompatibility that was post zygotic self-imcompatibility. Incompleted syncarp fruits of primitive angiosperm led to effective self-incompatibility and the evolution can not proceed smoothly.
     5) There was a significant heat production occurred during anthesis in Magnolia. As the Magnolia plants have dense trichomes on well-developed bracts which tightly packed around floral buds, measurements by thermal couple probe demonstrated that pubescent bracts played a role in keeping the interior of buds warmer than environment, and pubescents avoided the heat spreads out; In its budding stage, the temperature of buds was higher than that of branch and leave buds; In floral stage, the temperature of gynoecium was higher during stigma receptivity period as well as pollen stage. During anthesis, the gynoecium had more control than the stamens. Thermogenisis in plant floral stage, maintain a high temperature, not only to protect pollen development, pollen tube growth, fertilization and etc. during reproduction development, but also can promote evaporation of floral scent, to attract insects visiting flowers, all of which increase their own reproductive success.
     6) It is commonly observed that there were two tubes from an individual pollen during the germination in Magnolia, Michelia, Manglietia, Liriodendron and other genuses in Magnoliaceae. Given the link between gymnosperm and angiosperm, it is supposed that some original features are maintained in pollen germination pattern in Magnoliaceae. These results have implications for understanding the systematic evolution of primitive angiosperm.
引文
[1]王立龙,王广林,刘登义等.珍稀濒危植物小花木兰传粉生物学研究[J].生态学杂志,2005(8):853-857.
    [2]王亚玲,张寿洲,崔铁成.trnL内含子及trnL-trnF间隔区序列在木兰科系统发育研究中的应用[J].西北植物学报,2003(2):247-252.
    [3]王亚玲,李勇,张寿洲等.用matK序列分析探讨木兰属植物的系统发育关系[J].植物分类学报,2006(2):135-147.
    [4]王亚玲,李勇,张寿洲等.巫锡良木兰科植物的人工杂交[J].武汉植物学研究,2003(6):508-514.
    [5]王伏雄,陈祖铿.银杏胚胎发育的研究-兼论银杏目的亲缘关系[J].植物学报,1983(3):199-207.
    [6]王庆,王恒昌,徐立铭.木兰科含笑的细胞学研究[J].武汉植物学研究,2004(1):87-89.
    [7]王恒昌,何子灿,李建强等.乐昌含笑(木兰科)的核型分析[J].武汉植物学研究,2004(5):469-472.
    [8]王莉,陆彦,林明明等.银杏花粉萌发生长与分枝式花粉管形成的观察[J].电子显微学报,2009(5):426-431.
    [9]白伟宁,张大勇.雌雄同体植物的性别干扰及其进化意义[J].植物生态学,2005(4):672-679.
    [10]刘玉壶,刘玉壶,夏念和等.木兰科(Magnoliaceae)的起源、进化和地理分布[J].热带亚热带植物学报,1995(4):1-12.
    [11]刘克旺,杨旭红.湖南木兰科植物分类和地理分布的研究[J].武汉植物学研究,2001(2):121-127.
    [12]刘忠,路安民,林祁等.五味子属雄花的形态发生及其系统学意义[J].植物学报,2001(2):169-177.
    [13]刘忠,路安民.华中五味子(五味子科)雄花和雌花的形态发生[J].植物学报,1999(12):1255-1258.
    [14]汤彦承.系统发育和被子植物“多系—多期—多域”系统—兼答傅德志的评论[J].植物分类学报,2003(2):199-208.
    [15]邬志荣,林祁.八角目(Illiciales)植物花被片表皮比较形态[J].植物研究,2008(2):155-167.
    [16]齐藤干夫.用扫描电子显微镜观察红松、黑松与堰松的花粉发芽[J].日本林学会志,1983(5):12-19.
    [17]吴征镒,路安民,汤彦承等.中国被子植物科属综论[M].北京:科学出版社,2003:496-499.
    [18]张仲鸣,崔克明,李正理.银杏成熟花粉的形态侧向萌发及其意义[J].植物分类学报,2000(2):141-147.
    [19]张冰,黄云晖.木兰科种子内种皮合点区形态观察[J].生态科学,1996(1):30-34.
    [20]张国莉,龚洵.细胞学方法在木兰科杂交育种早期鉴定中的应用[J].云南植物研究,2002(5):659-662.
    [21]张新华,夏念和.木兰科植物染色体数目报道[J].热带亚热带植物学报,2005(6):516-518.
    [22]李秀兰,宋文芹,安祝平等.中国含笑属核型分析[J].植物分类学报,1998(2):145-149.
    [23]李秀兰,宋文芹,安祝平等.木兰科属间核型比较[J].植物分类学报,1998(3):232-237.
    [24]杨亲二.国产毛莨科银莲花族十七种植物的细胞学研究[J].植物分类学报,2002(5):396-405.
    [25]杨德奎,杨海,陈政.山东毛茛属植物的花粉形态研究国产毛莨科银莲花族十七种植物的细胞学研究[J].山东师范大学学报,2006(3):123-125.
    [26]汪小全,洪德元.植物分子系统学近五年的研究进展概况[J].植物分类学报,1997(5):465-480.
    [27]汪小全,韩英,邓峥嵘等.松科系统发育的分子生物学证据[J].植物分类学报,1997(2):97-106.
    [28]陈之端,路安民.被子植物起源和早期演化研究的回顾与展望[J].植物分类学报,1997(4):375-384.
    [29]陈远征,马祥庆,冯丽贞等.濒危植物沉水樟的濒危机制研究[J].西北植物学报,2006(7):1401-1406.
    [30]孟少武,李德铢,梁汉兴.基于5.8SrDNA序列论三白草科的系统发育[J].云南植物研究,2001(3):309-302.
    [31]孟爱平,王恒昌,李建强等.中国木兰科属40种植物的核形态研究[J].植物分类学报,2006(1):47-63.
    [32]林祁.八角属花粉形态研究[J].植物研究,1989(1):115-119.
    [33]林新春,俞志雄,裘利洪等.濒危植物华木莲的遗传多样性研究[J].江西农业大学学报,2003(12):805-810.
    [34]段林东,林祁,袁琼.南五味子属花的形态及其系统学意义[J].植物研究,2004(1):87-92.
    [35]胡适宜,杨弘远.植物胚胎学与生殖生物学—发展现状及近期战略的初步设想.北京:中国林业出版社,1994:30-57.
    [36]胡适宜.被子植物生殖生物学[M].北京:高等教育出版社,2005:3-10.
    [37]唐源江,叶秀麟,曾庆文等.观光木大孢子发生与雌配子体形成[J].热带亚热带植物学报,2003(1):20-22.
    [38]徐凤霞,胡晓颖,徐信兰.木莲属(木兰科)5种植物的花粉形态[J].热带亚热带植物学报,2004(4):313-317.
    [39]徐凤霞,徐信兰,胡晓颖.五种木兰属植物的花粉形态[J].云南植物研究,2004(1):83-88.
    [40]徐凤霞.乐东拟单性木兰花粉形态观察[J].广西植物,2002(2):157-159.
    [41]梁汉兴.三白草科花部发育及其系统学意义[J].植物分类学报,1994(5);425-432.
    [42]梁汉兴.论三白草科的系统演化和地理分布[J].云南植物研究,1996(3):255-267.
    [43]黄双全,郭友好.鹅掌楸的花部特征与虫媒传粉[J].植物学报,1999(3):241-248.
    [44]黄坚钦.鹅掌揪结籽率低的胚胎学原因探讨[J].浙江林学院学报,1998(3):269-273.
    [45]黄坚钦.鹅掌揪雌配子体发育及淀粉动态观察[J].浙江林学院学,1998(2):164-169.
    [46]龚洵,张国莉,潘跃芝.木兰科两个杂交组合的细胞学研究[J].园艺学报,2003(5):615-617.
    [47]龚洵,潘跃芝,杨志云.木兰科植物的杂交亲和性[J].云南植物研究,2001(3):339-344.
    [48]曾庆文,张奠湘,高泽正等.濒危植物焕镛木的兼性无融合生殖[J].植物学报,2003(11):1270-1273.
    [49]路安民,汤彦承.被子植物起源研究中几种观点的思考[J].植物分类学报,2005(5):420-430.
    [50]路安民.被子植物系统学的方法论[J].植物学通报,1985(3):21-28.
    [51]Alber J, Quilichini A, Gibernau M. Pollination ecology of Arum italicum(Araceae)[J]. Bot. J. Linn. Soc, 2003 (141):205-214.
    [52]Allain L K, Zavada M S, Matthews D G. The reproductive biology of Magnolia grandiflora [J]. Rhodora,1999 (101):143-162.
    [53]APG (Angiosperm Phylogeny GrouP) An Update of The Angiosperm Phylogeny GrouP Classifieation For The Ordersand Families of Flowering Plants[J]. Bot. J. Linn.Soc,2003 (141):399-436.
    [54]Azuma H, Thien L B, Kawano S. Floral scents. Leaf volatiles and thermogenic flowers in Magnoliaceae Plant [J]. Species Biol,1999 (14):121-127.
    [55]Baguna Jaume, Garcia-Fernandez Jordi. Evo-Devo:the long and winding road. Int J Devel Biol,2003 (7-8):705.
    [56]Barrett S C H, L D Harder, A C Worley. The comparative bio logy of po llination and mating in flowering plants. In:Silvertown, J, M. Franco and J. L. Harpereds. Plant life histories:ecology, phylogeny and evolution [M]. Cambridge:Cambridge University Press,1997:57-76.
    [57]Barrett S C H. The evolution of mating strategies in flowering plants [J]. Trends in Plant Science,1998 (3):335-341.
    [58]Barthlott W, SzarzynskiJ, Vlek P, Lobin W, Korotkova N. A torch on the rain forest:thermogenesis of the Titan arum (Amorphophallus titanium) [J]. Plant Biol,2009 (11):499-505.
    [59]Bartholomew G A, Casey T M J. Thermogenisis [J]. Biol,1977 (2):173-176.
    [60]Bermadinger-Stabentheiner E, Stabentheiner A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescenes of Arum maculatum [J]. New Phytol,1995 (131):41-50.
    [61]Bernhardt P, Thien L B. Self-isolation and insert pollination in the primitive angiosperms:new evaluation of order hypothesis[J]. Plant Syst. Evol.,1987 (156):159-176.
    [62]Bernhardt P. Convergent evolution and adaptive radiation of beetle-pollinated angiosperms[J]. Plant Sys Evol,2000 (222):293-320.
    [63]Bertin R I, Newman C M. Dichogamy in angiosperms [J]. Bot Rev,1993 (59):112-152.
    [64]Bessey C E. The Phylogenetic taxonomy of flowering Plants [J]. Ann Missouri Bot Gard,1915:(2): 109-117.
    [65]Bowe L M, G Coat, C W dePamphilis. Phylogeny of seed Plants based on three genomic compartments:extent gymnosperms are monophyletic and Gnetales’closest relatives are conifers[J]. Proc Natl Acad Sci USA,2000 (97):4092-4097.
    [66]Bowler P J. Life's Splendid Drama. Evolutionary Biology and the Reconstruction of Life's Ancestry[M]. 1860-1940. Chicago:The University of Chicago Press.1996:1-10.
    [67]Bown D. Ariod [M]. London:Century Hutchinson,1988:30-36.
    [68]Burquez A J, Sarukhan, A L Pedroza. Floral biology of a primary rain forest palm, Astrocaryum mexicanum Liebm [J]. Bot J Linn Soc,1987 (9):407-419.
    [69]Callaway D J. The world of Magnolias [M]. Oregon:Timber Press,1994:36-40.
    [70]Camazine S, Niklas K J. Aerobiology of Symplocarpus foetidus:interaction between the spathe and spadix[J].Am J Bot,1984 (7):846-850.
    [71]Chappell M A, Shoemaker V H, Janes D N. Energetics of foraging in breeding Adelie Penguins [J]. Ecology,1993 (8):2450-2461.
    [72]Chase M W, Soltis D E, Olmatesd R G et al Phylogenetics plants:An analysis of nucleotidesequences from the plastid gene rbcL[J]. Ann Missouri Bot Gard,1993 (80):528-580.
    [73]Chen T, Teng N, Wu X et al Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking[J]. Plant Cell Physiol,2007 (1):19-30.
    [74]Chen T, Wu X, Chen Y et al Combined proteomic and cytological analysis of Ca2+ calmodulin regulation in Picea meyeri pollen tube growth[J]. Plant Physiol,2009 (4):1111-1126.
    [75]Choi Jung-sun, Friedman W. Development of the pollen tube of Zamiafurfuracea (Zamiaceae) and its evolutionary implications [J]. Amer J Bot,1991(78):544-560.
    [76]Colley J R. Floral heat rewards and direct benefits to insect pollinators [J]. Ann Entomol Soc Am,1995 (88):576-579.
    [77]Corbet S A. Pollination and the weather [J]. Israel J Bot,1990 (9):13-20.
    [78]Crane P R, Friis E M, Pedersen K R. The origin and early diversification of angiosperms [J]. Nature, 1995 (374):27-33.
    [79]Crepet W L. Insect pollination:paleontologieal perspeetive [J]. Bioscience,1979(9):102-108.
    [80]Cronk Q C B. Plant evolution and development in a postenomic context [J]. Nat Rev Genet,2001 (2): 607-619.
    [81]De Arroyo M T. Geitonogamy in animal pollinated tropical angiosperms: a stimulus for the evolution of self-incompatibility [J]. Taxon,1976 (25):543-548.
    [82]De Nettancourt D. Incompatibility in angiosperms [J]. Berlin:Springer Verlag,1977:20-36.
    [83]De Win A H N, Knuiman B, Piesron E S, Geurts H, Kengen H M P, Dekrsen J. Development and cellular organization of Pinus sylvestris Pollen tubes [J]. Sex Plant Reprod,1996 (3):93-101.
    [84]Delph L F, Johannsson M H, Stephenson A G. How environmental factors affect pollen performance: ecological and evolutionary perspectives[J]. Ecology,1997(78):1632-1639.
    [85]Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M. Regulation of pollen tube growth [J]. Acta Bot.Neerl,1995 (44):93-119.
    [86]Dieringer et al Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae), Flowering and fruiting phenology of Magnolia hypoleuca[J]. Int J Plant Sci,1999 (1):64-71.
    [87]Dieringer G, J E Espinosa S. Reproductive ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico[J]. Bull Torrey Bot Club,1994 (121):154-159.
    [88]Doyle J A, A Le Thomas. Phylogenetic analysis and character evolution in Annonaceae [J]. Bulletin du Museum national d'Histoire naturelle, section B, Adansonia,1996(18):279-334.
    [89]Doyle J A, A Le Thomas. Significance of palynology for phylogeny of Annonaceae:experiments with removal of pollen characters[J]. Plant Sys Evol,1997 (206):133-159.
    [90]Doyle J A, Kdonoghu E M J. Fossils and seed plant phylogeny reanalyzed [J]. Brittonia,1992(44): 89-106.
    [91]Ed. Proc. Intemat. Symp. Fam. Magnoliaceae [M]. Beijing:Seienee Press,2000:188-191.
    [92]Endress P K. Diversity and evolutionary biology of tropical flowers [M]. Cambridge:Cambrid University Press,1994:25-30.
    [93]Ervik and Barfod. Thermogenesis in palm in florescences and its ecological significance [J]. Acta Bot Venez,1999 (22):195-212.
    [94]Fernando D D, Lazzaro M D, Owen J N. Growth and development of conifer pollen tubes [J]. Sex Plant Reprod,2005 (18):149-162.
    [95]Fowler A.Magnolia[J]. Horticulture Wee,2004 (3):16-17.
    [96]Franklin Tong V E. Singaling and the modulation of Pollen tube growth [J]. Plant Cell,1999 (11): 727-738.
    [97]Franklin Tong V E. The difficult question of sex:the mating game [J]. Curr Opin Plant Biol,2002 (1): 8-14.
    [98]Friedman W E, Moore R C, Purugganan M D. The evolution of plant development [J]. Am J Bot 2004 (91):1726-1741.
    [99]Friis E M, Endress P K. Origin and evolution of angiosperm flowers [J]. Adv Bot Res,1990 (17): 99-162.
    [100]Galen C, Stanton M L. Sunny-side up:flower heliotropism as a source of parental environmental effects on pollen quality and performance in the snow buttercup, Ranunculus adoneus (Ranunculaceae) [J].Am J Bot.,2003 (90):724-729.
    [101]Gibernau M, Barabe D, Cerdan P, Dejean A. Beetle pollination of Philodendron solimoesense(Araceae) in French Guyana[J].Int J Plant Sci,1999 (160):1135-1143.
    [102]Gibernau M, Barabe D, Labat D. Flowering and pollination of Philodendron solimoesense (Araceae) in French Guyana[J]. Plant Bio.,2000 (2):331-334.
    [103]Gibernau M, Barabe D. Pollination ecology of Philodendron squamiferum (Araceae) [J]. Can J Bot., 2002 (80):316-320.
    [104]Gibernau M, Barabe D. Thermogenesis in three Philodendron species (Araceae) of French Guyana[J]. J Bot,2000 (78):685-689.
    [105]Gilbert S F. The morphogenesis of evolutionary developmental biology [J]. Int J Dev Biol,2003 (47): 467-477.
    [106]Giulia M Stellari, M Alejandra Jaramillo, Elena M. Kramer Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box-Containing Genes in the Basal Angiosperms [J]. Mol. Biol. Evol.,2004 (3):506-519.
    [107]Goodman C S, Coughlin B C. The evolution of evo-devobiology [J]. Proc Natl Acad Sci USA,2000 (97):4424-4425.
    [108]Gottsberger G, Amaral A. Pollination strategies in Brazilian Philodendron species [J]. Jr Ber StshBot Ges,1984 (97):391-410.
    [109]Gottsberger G. Beetle pollination and flowering rhythm of Annona spp. (Anonaceae) in Brazil [J]. Plant Syst Evol,1989 (167):165-187.
    [110]Gottsberger G. Flowers and beetles in the South American tropics [J].Bot Acta,1990 (103):360-365.
    [111]Gottsberger G The reproductive biology of primitive angiosperms [J]. Taxon,1988 (37):630-643.
    [112]Gottsberger. Pollination and evolution in Neptropical Annonaceae [J]. Plant Species Biol,1999 (14): 1443-1452.
    [113]Graham S W, Olmstead R G. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms [J]. Am J.Bot.,2000 (87):1712-1730.
    [114]Graham S W, Reeves P A, Burns A C E et al. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of idels and inversions in basal angiosperm phylogenetic inference [J].Int J Plant Sci,2000 (161):83-96.
    [115]Gregg Dieringer, Leticia Cabrera R, Manuel Lara, Larisa Loya, Pedro Reyes-Castillo. Beetle pollination and floral thermogenicity in magnolia tamaulipana (magnoliaceae) [J]. Int. J. Plant Sci.,1999 (1): 64-71.
    [116]Haeckel E. Generelle Morphologie der Organismen:Allegeneine Grundzǖge der organischen Formen-Wissenschaft, Mechanisch Begrǖndendet Durch Die von Charles Darwin Reformite Descendenz-Theorie[M]. Berlin:G.Reimer.1866 (2):43-60.
    [117]Hall B K. Evo-devoevolutionary developmental mechanism [J]. Int J Dev Biol,2003 (47):491-495.
    [118]Hall B K. Evolutionary Developmental Biology [M]. The Netherlands Dordrecht:Kluwer Academic Publishers,1999:15-20.
    [119]Hanna Skubatz, Timothy A Nelson, Arthur M Dong, Bastiaan J D, Meeuse, Arnold J Bendich. Infraread thermography of Arum lily inflorescences [J]. Planta,1990 (182):432-436.
    [120]Hedhly A, Hormaza J I, Herrero M. The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.) [J]. Plant, Cell & Environment,2003 (26):1673-1680.
    [121]Heinrich B, Mc Clain E. "Laziness" and hypothermia as a foraging strategy in flower scarabs (Coleoptera: Scarabaeidae) [J]. Physiol Zool,1986 (59):273-282.
    [122]Heinrich B. The hot-Blooded insects. Strategies and Mechanisms of Thermoregulation [M]. Cambridge MA:Harvard University Press,1993:130-145.
    [123]Hirayama K, Ishidai K, Tomaru N. Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata[J]. Ann. Bot.,2005 (95):1009-1015.
    [124]Hocking B, Sharplin C D. Flower basking by arctic insects [J]. Nature 206:215.
    [125]Howarth D G, Donoghue M J. Phylogenetic analysis of the ‘ECE’(CYC/TB1) clade reveals duplications predating the core edicts[J].Proc Natl Acad Sci USA,2006 (103):9101-9106.
    [126]Tamaki I, Setsuko S, Tomaru N. Genetic variation and differentiation in populations of a threatened tree, Magnolia stellata: factors influencing the level of within-population genetic variation[J]. Heredity, 2008 (100):415-423.
    [127]Isabelle Barrisault, Marc Gibernau, Denis Barabe. Flowering period, thermogenesis, and pattern of visiting insects in Arisaema triphyllum (Araceae) in Quebec[J]. Botany,2009 (87):324-329.
    [128]Ishida K, Yoshimaru H, Ito H. Effects of geitonogamy on the seed set of Magnolia obovata Thunb. (Magnoliaceae) [J]. Int. J. Plant Sci.,2003 (5):729-735.
    [129]Ishida K. Beetle pollination of Magnolia praecocissima var. borealis [J]. Plant Species Biol.,1996 (11): 199-206.
    [130]Ivancic A. Thermogenesis and-flowering biology of Colocasia gigantea. Araceae [J]. J Plant Res,2008 (121):73-82.
    [131]Jennifer R Waltling, Sharn A Robinson, Roger S Seymour. Contribution of the alternative pathway to respiration during thermogenesis in flowers of Scared Lotus [J]. Plant Physiol,2006 (140):1367-1373.
    [132]Jerome Albre, Angelique Quilichini, Marc Gibernau. Pollination ecology of Arum italicum (Araceae) [J]. Bot J Lin Society,2003 (141):205-214.
    [133]Jewell J, Mckee J, Richards A J. The keel colour polymorphism in Lotus corniculatus L [J]. New Phytol, 1994 (128):363-368.
    [134]Kevan P G. Sun-tracking solar furnaces in high arctic flowers:significance for pollination and insects [J]. Science,1975 (189):723-726.
    [135]Kikuzawa K, N Mizui. Flowering and fruiting phenology of Magnolia bypoleuca [J]. Plant Speceis Biol, 1990 (5):255-261.
    [136]Kim S, Yoo M J, Albert V A, Farris J S, Soltis P S, Soltis D E. Phylogeny and diversification of B-function MADS-box genes in angiosperms:evolutionary and functional implications of a 260-million-year-old duplication[J]. Am J Bot,2004 (91):2102-2118.
    [137]Kjellberg B, Karlsson S, Kerstensson I. Effects of heliotropic movements of flowers of Dryas octopetala L. on gynoecium temperature and seed development [J]. Oecologia,1982 (54):10-13.
    [138]Knutson R M. Heat production and temperature regulation in eastern skunk cabbage [J]. Science,1974 (186):746-747.
    [139]Kong L, Wang M, Wang Q, Wang X, Lin J. Protein phosphatasel and or 2A is involved in the regulation of calcium uptake and pollen tube development in Picea wislonii [J]. Tree Physiol,2006(26): 1001-1012.
    [140]Kramer E M, Irish V F. Evolution of genetic mechanisms controlling petal development [J]. Nature,1999 (399):144-148.
    [141]Kudo G. Ecological significance of flower heliotropism in the spring ephemeral Adoni ramose (Ranunculaceae) [J].Oikos,1995(72):14-20.
    [142]Lansac A R, Sullivan C Y, Johnson B E. Accumulation of free praline in sorghum (Sorghum bicolor) pollen[J].Can J Bot.,1996 (74):40-45.
    [143]Lavergne S, Debussche M, Thompson J D. Limitations on reproductive success in endemic Aquilegia viscosa (Ranunculaceae) relative to its widespread congener Aquilegia vulgaris:the interplay of herbivory and pollination [J]. Oecologia.,2005 (2):212-220.
    [144]Lenoard B Thein, Hiroshi Azuma, Schoichi Kawano. New perspectives on the pollination biology of basal angisperms [J]. Int. J. Plant Sci,2000 (161):225-235.
    [145]Liao J P, Chen Z L, Cai X Z et al Embryology of Manglietia glauca var sumatrana and Michelia guangxiensis and the abnormal development. In:Liu Y H et al Proceedings of the International Symposium on the Family Magnoliaceae [M]. Beijing:Science Press,2000:177-187.
    [146]Listabarth C. Pollination of Bactris by Phyllotrox and Epurea: implications of the palm breeding beetles on pollination at the community level [J]. Biotropica,1996 (28):69-81.
    [147]Liu Y H. A preliminary study on the taxonomy of the family Magnoliaceae [J]. Acta Phytotax. Sin,1984 (2):89-109.
    [148]Liu Y H. Magnolias of China [J].Science& Technology,2004 (3):89-102.
    [149]Lloyd D G, Webb C J. The avoidance of interference between the presentation of pollen and stigamas in angiosperms. Dichogamy [J]. NZ J Bot,1986 (24):135-162.
    [150]Dawkins M.D., Owens J.N.. In vitro and in vivo pollen hydration, germination, and pollen tube growth in white spruce, Picea glauca (Moench)voss [J]. Int.J.Plant Sci.1993(164):506-521.
    [151]Marc Gibernau, Denis Barabe, Marc Moisson, Alain Trombe. Physical constrains on temperature difference in some thermogenic aroid inflorescences [J]. Ann Bot,2005 (96):117-125.
    [152]Marta Riutort, Kate G Field, Rudolf A Raff, Jaume Baguna.18SrRNA sequences and phylogeny of platyhelminthes[J].Biol Syt Ecol,1993 (21):71-77.
    [153]McNiven M A, Thompson H M. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different[J]. Science,2006 (313):1591-1594.
    [154]Meeuse A D J.Angiosperm evolution: no abom inable mystery [M]. Delft:Eburon,1992:61-67.
    [155]Meeuse B J D, Raskin I. Sexual reproduction in the Arum lily family, with emphasis on thermogenicity[J]. Sex Plant Reprod,1988 (1):3-15.
    [156]Meinzer F, Goldstein G. Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis [J]. Ecol,1985 (66):512-520.
    [157]Michael J Wade. The co-evolutionary genetics of ecological communities [J]. Nature Reviews,2007(3): 185-195.
    [158]Miller G A. Pubescence, floral temperature and fecundity in species of Puya (Biomeliaceae) in the Ecuadorian Andes [J]. Oecologia,1986 (70):155-160.
    [159]Muller C H. Phytotoxins as plant habitat variables [J]. Rec Adv Phytoche,1970 (3):106-121.
    [160]Nagy K A, Odell D K, Seymour R S. Temperature regulation by the inflorenscence of Philodendron [J]. Science,1972 (178):1195-1197.
    [161]Nicloe M Grant, Rebecca E Miller, Jennifer R Waiting, Sharon A Robinson. Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus airing floral development[J]. J Ex Bot,2008 (59):705-714.
    [162]Nooteboom H P. Different looks at the classification of the Magnoliaceae[R]. Beijing: Science,2000: 14-25.
    [163]Pan Y Z, Liang H X, Gong X. Studies on the reproductive biology and endangerment mechanism of the endangered plant Manglietia aromatica [J]. J.Wuhan Bot. Res,2003 (11):20-22.
    [164]Pan Y Z, Liang H X, Gong X. Studies on the formation of microspores and development of male gametes in Manglietia insignis[J].Acta Bot,2001 (23):85-90.
    [165]Parre E, Geitmann A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense [J]. Planta,2005 (220):582-592.
    [166]Peigler R S. Areview of pollination of Magnolia by beetles, with a collecting survey made in the Carolinas [J]. Magnolia,1988 (45):1-8.
    [167]Pellmyr O, L B Thien. Insect reproduction and floral fragrances:Key to the evolution of angiosperms[J]? Taxon,1986 (35):76-85.
    [168]Pigott C D, Huntley J P. Factors controlling the distribution of Titia cordata at the northern limits of its geographical range. Ⅲ [J]. Nature and causes of seed sterility. New Phytol,1981 (87):817-839.
    [169]Prance G T, Arias J R. A study of the floral biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae) [J].Acta Amazon,1975 (5):109-139.
    [170]Radulescu A E, Siddhanta A, Shields D. A role for clathrin in reassembly of the Golgi apparatus [J]. Mol Biol Cell,2006 (18):94-105.
    [171]Raghavan. Molecular Embryology of flowering plants [M]. Cambridge University Press,1997:49-56.
    [172]Rahman M A. Structur of Pollens and reproductive biology in the Magnoliaeeae. In:LiuY H ed.Proe. Intemat. SymP. Fam. Magnoliaceae [M]. Beijing:Seienee Press,2000:188-191.
    [173]Rebecca E Miller, Jwnnifer R Walting, Sharon A Robinson. Functional trasition in the floral receptacle of the sacred lotus (Nelumbo nucifera):from thermogenesis to photosynthesis[J]. Funct. Plant Biol,2009 (36):471-480.
    [174]Richards A J. Plant breeding systems [M]. London:Chapman & Hall,1997:35-41.
    [175]Roger S Seymour, Paul Schultze-Motel. Respiration, temperature regulation and energetics of thermogenic inflorescences of dragon lily Dracunculus vulgaris (Areaceae) [J]. Proc R Soc Lond B Bilo Sci,1999 (266):1975-1983.
    [176]Roger S Seymour, Paul Schultze-Motel. Heat-producing flowers [J]. Endeavour,1997 (3):125-129.
    [177]Rui F Y, Ma L Y. Taxonomy significance based on pollen morphology observation of five species of Magnolia L. including Magnolia wufengensis L. Y. Ma et L. R. Wang [J]. Bull. Bot. Res,2007 (4): 393-397.
    [178]Russell S D, Dress elhaus T. Deciphering molecular mechanisms of fertilization in seed plants [J]. Sex Plant Reprod,2008 (21):1-10.
    [179]Russell S D, Dumas C. Sexual Reproduction in flowering plants [M]. New York:Academic Press Inc., 1992:91-97.
    [180]Sanchez-Lafuente A M, Guitian J, Medravno M, M Herrerers, Pedro J Rey P J, Cerda X. Pla nt Traits, Environmental Factors, and Pollinator Visitation in Winter-flowering Helleborus foetidu s (Ranunculaceae) [J]. Ann Bot,2005 (5):845-852.
    [181]Sarah P Otto.The Evolutionary Consequences of Polyploidy [J]. Cell,2007 (131):452-462.
    [182]Satyajit D S, Maruyama Y. Medicinal and Aromatic Plants-Industrial Profiles[J]. Magnolia,2002(28): 51-57.
    [183]Schneider E L, P S Williamson, D C Whitenberg. Hot sex in water lilies [J]. Water Gard J,1990(6): 41-51.
    [184]Setsuko S, Tamaki I, Ishida K, Tomaru N. Relationships between flowering phenology and female reproductive success in the Japanese tree species Magnolia stellata [J]. Bot,2008 (86):248-258.
    [185]Seymour R S, Bartholomew G A, Barnhart M C. Respiration and heat production by the inflorenscence of Philodendron selloum Koch [J]. Planta,1983 (157):336-343.
    [186]Seymour R S, P Schultze-Motel, I Lamprecht. Heat production by sacred lotus flowers depends on ambient temperature, not light cycle[J]. J Exp Bot,1998 (49):1213-1217.
    [187]Seymour R S, P Schultze-Motel. Thermoregulating lotus flowers [J]. Nature,1996(383):305.
    [188]Seymour R S, Schultze-Motel P. Heat-producing flowers [J]. Endeavour,1997(21):125-129.
    [189]Seymour R S. Pattern of respiration by intact inflorescences of the thermogenic arum lily philodendron 5elloum[J].J Exp Bot,1999(50):845-852.
    [190]Seymour R S. Plants that warm themselves [J]. Sci Am,1997 (276):90-95.
    [191]Sheng X, Hu Z, Lu H et al Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG1322induced alterations in ultrastructure, cytoskeleton, and cell wall components [J]. Plant Physiol,2006 (4):1578-1590.
    [192]Shivanna K R. In-virto Pollen germination and tube growth. In "Pollen Biology and Biotechoology", ShivannaKR (ed), Enfield (NH) [M].USA:Seience pubblishesr,2003:61-76.
    [193]Skubata H, Nelson T A, Meeuse B J D, Bendich A J. Heat production in the voodoo lily (Sauromatum guttatum) as monitored by infrared thermography[J]. Plant Physiol,1991 (95):1084-1088.
    [194]Skubata H, P S Williamson, E L Schneider, B J D Meeuse. Cyanide-insensitive respiration in thermogenic flowers of Victoria and Nelumbo [J].J Exp Bot,1990 (41):1335-1339.
    [195]Skubatz H, Tang W, Meeuse B J D. Oscillatory heat-production in the male cones of cycads [J]. J Exp Bot,1993 (44):489-492.
    [196]Smapsno F B. Pollen diversity in some moder Magnoliids [J]. Int J Plant Sci.,2000(161):193-210.
    [197]Soltis D E, Soltis P S, Chase M W et al Angiosperm phylogeny inferred from a combined data set of 18SrDNA, rbcL, and atpB sequences[J]. Bot J Linn Soc,2000 (133):381-461.
    [198]Soltis P S, D E Soltis. The Origin and Diversification of Angiosperms [J]. Am J Bot,2004 (91): 1614-1626.
    [199]Soltis P S, Soltis D E, Chase M W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology [J]. Nature,1999 (402):402-404.
    [200]Stephenson A G, LauTC, Quesada M, Winsor J A. Factors that affect pollen performance. In:Wyatt R ed. Ecology and evolution of plant reproduction:new approaches[M]. New York:Chapman and Hall, 1992:119-136.
    [201]Suo Z L. A review on the phylogenetics of Austrobaileyaceae [J]. Chin Bull Bot,2005 (22):146-156.
    [202]Suo Z L. A review on the phylogenetics of Cabombaceae [J]. Chin Bull Bot,2006 (1):88-98.
    [203]Suo Z L. Phylogenetic review of Ceratophyllaceae [J].Acta Bot Boreali-Occiden Sin,2005 (5): 1058-1063.
    [204]Suo Z L. Phylogeny of Amborellaceae:a review [J]. Acta Bot Boreali-Occident Sin,2004(12):381-384.
    [205]Suo Z L. Phylogeny of Trimeniaceae:a review [J]. Bull Bot Res,2005 (1):26-29.
    [206]Suzuki Setsuko, Kiyoshi Ishida, Saneyoshi Ueno, Yoshihiko Tsumura, Nobuhiro Tomaru. Population differentiation and gene flow within a metapopulation of a threatened tree magnolia stellata (magnoliaceae) [J]. Am J Bot,2007 (1):128-136.
    [207]Takhtajan A. Diversity and Classification of Flowering Plants [M]. New York:Columbia University Press,1997:11.
    [208]Takhtajan A. Flowering Plants:Origin and Dispersal. Authorised translation from the Russian by C. Jeffrey [M]. Edinburgh:Oliver & Boyd.1969.
    [209]Takhtajian A. Diversity and Classification of Flowering Plants [M]. New York:Columbia University Press,1997:21-26.
    [210]Tang W. Heat production in cycad cones [J]. Bot. Gaz,1987 (148):165-174.
    [211]Thien L B, Azuma H, Kawano S. New perspectives on the pollination biology of basal angiosperms [J]. Int. J. Plant Sci,2000 (161):225-235.
    [212]Thien L B, Heimermann W H, Holman R T. Floral odors and quantitative taxonomy of Magnolia and Liriodendron[J]. Taxon,1975 (6):557-568.
    [213]Thien L B. Floral biology of Magnolia [J]. American Journal of Botany,1974(10):1037-1045.
    [214]Thorne R F. Eastern Asia as a living museum for archair angiosperms and other seed plants [J]. Taiwania,1999 (4):413-422.
    [215]Thorne R F. Some guiding principles of angiosperm phylogeny [J]. Brittonia,1958 (10):72-77.
    [216]Tsukaya H, Tsuge T. Morphological adaptation of inflorescences in plants that develop at low temperatures in early spring:the convergent evolution of "downy plants"[J]. Plant Biol.,2001 (3): 536-543.
    [217]Vanlerberghe G C, Mcintosh L. Alternative oxidase:from gene to function[J]. Ann Rev Plant Physiol Plant Mol Biol,1997 (48):703-734.
    [218]Wang R, Jia H, Wang J, Zhang Z. Flowering and pollination pattern of Magnolia denudate with emphasis on anatomical changes in ovule and seed development [J]. Flora,2010 (205):259-265.
    [219]Walker. Comparative pollen morphology and phylogeny of the Ranalean complex. In:Beck BC, ed. Origins and Early Evolution of Angiosperms [M]. NewYork: Columbia University Press,1976:241-299.
    [220]Wang L, Liu Y M, Li Y. Comparision of F-actin fluorescent labeling methods in pollen tubes of Liliium davidii [J]. Plant Cell Rep,2005 (24):266-270.
    [221]Wang X, Teng Y, Wang Q, Li X et al Imaging of dynamic secretary vesicles in living pollen tubes of Picea meyeri using evanescent wavemicroscopy[J]. Plant Physiol,2006 (141):1591-1603.
    [222]Wolfe K H, Morden C W, Palmer J D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant [J]. Proceedings of the National Academy of Sciences of the United States of America,1992 (89):1648-1652.
    [223]Wu Z Y, Lu A M, Tang Y C et al. The Families and Genera of Angiosperms in China-A Comprehensive Analysis [M]. Beijing:Science Press,2003:'35-39.
    [224]Y L Qiu, J Lee, F Bemaseoni Quadroni et al The Earliest Angiosperms:Evidence From Mitoehondrial, Plastidand NuclearGenomes[J]. Nature,1999 (402):404-407.
    [225]Yasukawa S, H Kato, R Yamaoka, H Tanaka, H Arai, S Kawano. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects [J]. Plant Species Biol,1992 (7):121-140.
    [226]Young T P. Solar irradiation increases floral development rates in afro-alpine Lobelia telekii [J]. Biotropica,1984 (16):243-245.
    [227]Yu Matsuki, Ryunosuke Tateno, Mitsue Shibata, and Yuji Isagi. Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin [J]. Am J Bot,2008 (8):925-930.
    [228]Yuko Kumano-Nomura, Ryohei Yamaoka. Beetle v isitions and associations with quantitative variation of attractionts in floral odors of Homalomenapropinqua(Araceae)[J]. J Plant Res,2009(122):183-192.
    [229]Zanis M J, Soltis D E, Soltis P S et al The root of the angio-sperms revisited[J]. Proc Natl Acad Sci USA 2002 (10):848-853.
    [230]Zanis M J, Soltis D E, Soltis P S et al. The root of the angiosperms revisited [J]. Proc Natl Acad Sci USA 2002 (99):6846-6853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700