基于优化支持向量机的空间滚动轴承寿命预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间滚动轴承高可靠与长寿命研究,是支撑高可靠、长寿命空间飞行器发展的基础保障性研究内容之一,而空间滚动轴承寿命评估和预测是空间滚动轴承高可靠与长寿命研究的重要内容。空间滚动轴承要承受低温和交变温度、高能粒子辐照、原子氧侵蚀、碎片撞击及微尘冲刷等极端环境的综合作用,其失效行为和机理与地面常规环境有很大差异,尚缺乏深入的规律性认识。目前只能通过地面模拟空间环境开展加速寿命试验,获取失效数据,进行空间滚动轴承寿命评估和预测研究。由于空间滚动轴承摩擦力矩不能有效反映其寿命特征,论文选用包涵空间滚动轴承寿命特征信息丰富的振动信号为研究对象,通过研究空间滚动轴承精度失效导致性能退化的激振机理,揭示空间滚动轴承振动特征随退化趋势的演变规律;通过对空间滚动轴承振动信号的处理,提取空间滚动轴承衰退性能指标;通过构建人工智能模型,实现空间滚动轴承寿命预测。对于指导空间滚动轴承的设计与制造、建立使用寿命的评估准则、提高后续空间飞行器的在轨寿命和使用性能都具有重要的意义。论文主要的研究内容如下:
     ①针对极端环境下空间滚动轴承失效机理复杂、失效特征难以表征的问题,研究空间滚动轴承精度失效导致性能退化的激振机理,建立空间滚动轴承振动信号和退化性能之间的联系,揭示空间滚动轴承振动特征随退化趋势的演变规律,为后期通过空间滚动轴承振动数据预测轴承的退化趋势和剩余寿命奠定了理论基础。
     ②针对地面模拟空间环境实验中空间滚动轴承振动信号背景噪声较为严重的问题,研究利用盲源分离算法进行背景噪声消除的滤波方法。分析地面模拟空间环境通过加速寿命试验采集到的轴承振动信号的背景噪声成分及其特征,研究背景噪声虚拟信号的构建方法,构建盲源分离模型消除背景噪声。应用结果表明在不影响有效特征信息的情况下能够有效剔除背景噪声的干扰。实现了以50Hz及其倍频成分的噪声信息的消除。
     ③针对空间滚动轴承寿命退化趋势指标难以构建的问题,研究基于空间特征信息加权融合的衰退性能指标构建方法。研究时域、频域和时频域的特征信息的提取方法,探索这些多维特征信息的空间分布,构建基于数据空间映射及加权融合的特征指标,研究结果表明所建立的衰退性能指标能够较好地反映轴承的退化趋势。从而实现了基于第一主分量的衰退性能指标的建立。
     ④针对传统的寿命预测方法不能有效预测空间滚动轴承寿命的问题,研究基于优化支持向量机的空间滚动轴承寿命预测方法。采用相空间重构进行支持向量机输入参数的选取,利用粒子群算法进行支持向量机内部参数优化,建立基于优化参数的退化趋势预测模型,实现空间滚动轴承退化趋势和剩余寿命的准确预测,通过不同方法的对比表明本文所提的方法的预测效果优于相关文献的预测效果。
     ⑤研发空间滚动轴承性能退化趋势预测模块、剩余寿命预测模块、人机交互等功能模块,实现空间滚动轴承寿命预测的功能。
     文章最后对本文的工作进行总结,并展望下一步的研究方向。
The long life and high reliable research of the space bearing is one of the basis forthe development of long-life spacecraft. The life assessment and prediction research ofthe space bearing is the most importment content of the space bearing long life and highreliable research. The space bearing needs to bear alternating temperature, high-energyparticle irradiation, the combined effects of the atomic oxygen erosion, debris impactand dust erosion and other extreme environments, the failure behavior and mechanismis very different from the bearing working in the conventional terrestrial environment,however, there lack of depth understanding of the laws. Currently, we just only throughthe accelerated life testing group in the simulated space environment to get the failuredata, in order to do the space bearing life assessment and prediction research. The paperchosen the vibration signal which indulgences the rich life evolution information towork as the object of the study, due to the friction torque can not effectively reflect thespace bearing life evolution characteristics. By researching the failure mechanism thatleading to the space bearing performance degradation accuracy, this research reveals thevibration characteristics can reflect the space bearing degradation trends. By processingthe space bearing vibration signal, this research extracts the index to reflect the spacebearing degradation process. By building the artificial intelligence model, this researchachieves the space bearing life prediction. All of these researchs will have greatsignificance for guiding the design and manufacture of space bearing, establishing thelife assessment criterion, improve the spacecraft performance subsequently. Thisresearch contents are as follows:
     ①Because the failure mechanism of the space bearing is very complex under theextreme environment, and the failure characteristics is difficult to reflect the bearingdegradation process, this article researchs the failure mechanism that leading to thespace bearing performance degradation accuracy, establishs the line between thevibration characteristics and the space bearing degradation trends. Reveals that thevibration characteristics changed with the bearing degradation process, this will laid thetheoretical foundation for using the vibration signal to predict the space bearing life.
     ②Aiming at the problem that the space vibration signal collected from thesimulated space environment experiments contains serious background noise. Thisresearch uses the blind source separation method to eliminate the background noise. Through researchs the components and characteristics of the background noise,constructs the virtual signals and builds the blind source separation model to eliminatethe noise. The application results showed that the method can eliminate the backgroundnoise effectively.
     ③Aiming at the problem that the space bearing degradation process indicator isvery difficult to been built. This paper constructs the indicator based on the principalcomponent analysis weighted fusion method. Researchs the time domain, frequencydomain and time-frequency domain feature information extraction methods, exploresthe spatial distribution of these features. Constructs the indicator based on the dataspace mapping and weight fusion method, the results show that the constructedindicator can reflect the bearing degradation trend effectively.
     ④Aiming at the traditional life prediction method can not predict the spacebearing life effectively, this article uses the optimizatic SVM to predict the spacebearing life. Uses the phase space reconstruction method to select the inpur parametersof the SVM, uses the particle swaram algorithm to select the SVM internal parameters.Through the optimized SVM model to achieve the space bearing life prediction, resultsproved the effectiveness of the proposed method.
     ⑤This research make the space rolling bearing performance degradation trendforecasting soft module and space rolling bearing residual life prediction soft module,human-computer interaction module, so as to meet the need of space bearing lifeprediction function.
     Finally, this work is summarized.
引文
[1]赵庆,航天电机用轴承的疲劳寿命试验及失效行为分析[D].哈尔滨工业大学,硕士学位论文,2010.
    [2] S.D. Lewis, M.J. Anderson, A. Haslehurst.Recent developments in performance and lifetesting of selflubricating bearings for long-life applications[C], Proc.12th Euro. SpaceMechanisms&Tribology Symp.(ESMATS)’, Liverpool, UK,19–21September2007(ESA SP-653, August2007)
    [3]曾庆虎,机械传动系统关键零部件故障预测技术研究[D],国防科学技术大学,博士学位论文,2010.
    [4] Chevalier James L,Zaretsky Erwin V,Parker Richard J.A new criterion for predictingrolling-element fatigue lives of through-hardened steels[R],Lewis Research Center,Cleveland,Ohio,NASA,1972:1-24.
    [5] Poplawski Joseph V.Interference-Fit Life Factors for Ball Bearings[R],Fred B.Oswaldand Erwin V.Zaretsky Glenn Research Center,Cleveland,Ohio,2010:1-31.
    [6] Oswald Fred B,Jett Timothy R,Predmore Roamer E,Probabilistic Analysis of SpaceShuttle Body Flap Actuator Ball Bearings[R],Glenn Research Center,Cleveland,Ohio,2008:1-19.
    [7]庄兴明,张向军,张晓昊,熊毅,姚立丹.润滑脂性能指标对滚动轴承振动特性影响的实验研究[J].润滑与密封,2008,33(7):44-49.
    [8]唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响[J].航空动力学报,2006,21(2):366-373.
    [9]汪久根,王庆九,章维明.表面微坑对轴承振动的影响[J].机床与液压,2007,35(6):221-222.
    [10]苗晓鹏,夏新涛.圆锥滚子轴承振动的实验研究[J].机床与液压,2006(8):8-10.
    [11]裴礼清,赵丽萍.滚动轴承微动磨损导致的振动分析[J].轴承,2004(5):23–27.
    [12]赵惠玲,贾峰一,李旭东,常洪.套圈制造精度对滚动轴承振动与噪声的影响[J].轴承,2003(12):31-33.
    [13] Wikstrom V, Hoglund E. Starting and Steady–state Friction Torque of Grease LubricatedRolling Element Bearings at Low Temperatures-Part I: a Parameter Study[J]. TribologyTransactions,1996,39(3):517-526.
    [14] Novikova I A, Sadovnikov S I, Taranova N V, et al.The Effect of the Composition andProperties of a Lubricant Grease on the FrictionMoment ofVideo Equipment Bearings [J].Khimiya i Tekhnologiya Top liv i Masel,1994(7-8):23-25.
    [15]徐志栋,杨伯原,李建华,任海东.航天轴承在较高温度下摩擦力矩特性的试验研究[J].润滑与密封,2008,33(3):66-68.
    [16]任海东,杨伯原,魏平,李建华,徐志栋.航天高速轴承动态摩擦力矩的预测[J].润滑与密封,2008,33(2):94-97.
    [17]苗学问,航空发动机主轴承使用寿命预测技术研究[D],北京航空航天大学,博士学位论文,2008.
    [18]王烨,民机产品可靠性评估技术研究[D],南京航空航天大学,博士学位论文,2009
    [19] Lundberg.G,Palmgren.A.,Dynamic Capacity of Rolling Bearings [J].Acta PolytechnicaMechanical Engineering Series.1947,1(3):1-30.
    [20] Lundberg.G,Palmgren.A,.Dynamic Capacity of Rolling Bearings[J].Acta PolytechnicaMechanical Engineering Series,1952,2(4):1-25.
    [21] International Organization for Standardization,Rolling Bearings Dynamic Load Ratingsand Rating Life[P],ISO281/I,1977(E).
    [22] Ioannides E,Harris T A.A new fatigue life model for rolling bearing[J].ASME Journalof Tribology,1985,107:367-378.
    [23] Yu W,Harris T.A new stress-based fatigue life model for ball bearings [J].Trib.Trans.,2001,44(1):11-18.
    [24]陈涛,疲劳裂纹形成寿命预估的耦联有限元法[D],燕山大学,硕士学位论文,2011.
    [25] Krajcinovic D,Silva G.Statistical Aspects of the Continuous Damage Theory[J].International Journal of Solids and Structure,1982,18(7):551-562.
    [26]蒋家羚,陈凌.疲劳-蠕变交互作用的寿命预测探讨[J].材料研究学报,2007,21(5):537-541.
    [27] Miller K J.The Short Crack Problem [J].Fatigue&Fracture of Engineering Materials&Structures,1982,5(3):223-231.
    [28] Carten H T,Dolan T J.Cumulative Fatigue Damage[C].Proceedings of an InternationalConferrence on Fatigue of Metals,London,1956,1:235-246
    [29] Hill R.A Self-consistent Mechanics of Composite Materials [J].Journal MechanicsPhysics Solids,1965,13:213-222.
    [30] Paris P C.The Growth of Cracks due to Variations in Load[D].Dissertation,LehighUniversity,1962:1-237.
    [31] Paris P.C,Gomez R.E,Andeson W.E.A Rational Analytic Theory of Fatigue[J].The Trendin Engg,1961,13:9-14.
    [32] Keer L M,Bryant M D.A Pitting Model for Rolling Contact Fatigue[J].Trans. of ASME,J. of Tribology,1983,105:198-205.
    [33]李新立,刘志全,遇今.航天器机构固体润滑球轴承的加速寿命试验方法[J],航天器工程,200817(5):82-87.
    [34] Shu D,Wei Z,Wan Z.Accelerating Life Test Design on Solid Lubrication of the BearingUsed in the Space[C].Reliability, Maintainability and Safety,ICRMS2009.8thInternational Conference1200-1202.
    [35] Meeks C. R,Christy R. I.,Cunningharm A. C.Accelerated vacuum testing of long lifeball bearings and sliprins[R].International aerospace abstracts,1970.
    [36]吴超,刘晓华,空间运动部件液体润滑加速寿命试验可行性分析[J],润滑与密封,200732(6):115-117.
    [37]曾庆虎,邱静,刘冠军.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J],机械科学与技术,200827(1):114-118.
    [38]赵荣珍,李超,张优云.中值与小波消噪集成的转子振动信号滤波方法研究[J],振动与冲击,200524(4):74-77.
    [39]赵汝进,马孜,姚远程.基于广义卡尔曼滤波的光学膜厚监控信号处理[J],激光技术,200731(4):412-415.
    [40]胡劲松,杨世锡,吴昭同,基于经验模态分解的旋转机械振动信号滤波技术研究[J],振动、测试与诊断,200323(2):96-98.
    [41]陈隽,李杰,振动信号趋势项提取的几种方法及其比较[J],福州大学学报(自然科学版),200533(10):42-45.
    [42]朱学锋,韩宁,基于小波变换的非平稳信号趋势项剔除方法[J],飞行器测控学报,200625(5):81-85.
    [43]杨向林,严洪,许志,基于Hilbert-Huang变换的ECG消噪[J],电子学报,2011,39(4):819-824.
    [44]郝如江,卢文秀,褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用[J],清华大学学报(自然科学版),200848(5):812-815.
    [45]沈路,周晓军,张文斌.基于形态滤波与灰色关联度的滚动轴承故障诊断[J],振动与冲击,200928(11):17-20.
    [46]李豫川,伍星,迟毅林.基于形态滤波和稀疏分量分析的滚动轴承故障盲分离[J],振动与冲击,201130(12):170-174.
    [47]陈雷,张立毅,郭艳菊,基于粒子群优化的工频干扰消除算法[J],计算机应用研究,2010.27(9):3263-3267.
    [48]徐小力,王红军.大型旋转机械运行状态趋势预测[M].北京:科学技术出版社,2011.
    [49] Hai Q,JingLinetal J L.Wavelet Filter-Based Weak Signature Detection Method andIts Application on Rolling Bearing Prognostics [J].Journal of Sound And Vibration,289(2006):1066-1090.
    [50] Shichang D,Jun L,Lifeng X.Degradation process prediction for rotational machinerybased on hybrid intelligent model [J].Robot Comput Integr Manuf.201228(2):190-207.
    [51] Wang W.J.McFadden P.D.Application of orthogonal wavelets to early gear damagedetection[J].Mechanical System and Signal Processing,1995,9(5):497-507.
    [52]秦毅.信号小波理论与一体化小波分析仪的研究[D].重庆大学,博士学位论文,2008.
    [53]赵学智,陈统坚,叶邦彦.小波包分析在轴承早期故障诊断中的应用[J].振动、测试与诊断,2003,23(4):243-246.
    [54]程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用法[J].机械工程学报,2004,40(8):115-118.
    [55]柏林,刘小峰,秦树人.小波_形态_EMD综合分析法及其应用[J].振动与冲击,2008,27(5):1-4.
    [56]杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15.
    [57]丁锋,何正嘉,陈雪峰,考虑损伤程度的设备运行可靠性研究[J],西安交通大学学报,2010,44(1):36-40.
    [58]潘紫微,吴超英,基于神经网络的多特征和多步轴承寿命预测方法[J],机械科学与技术,199918(4):584-586.
    [59] Runqing Huang, Lifeng Xi, Xinglin Li, Residual life predictions for ball bearings based onself-organizing map and back propagation neural network methods[J], MechanicalSystems and Signal Processing21(2007)193–207
    [60] Gebraeel N,Lawley M,Liu R.Residual Life Predictions From Vibration-BasedDegradation Signals: A Neural Network Approach[J],IEEE TRANSACTIONS ONINDUSTRIAL ELECTRONICS,2004,51(3):694-700.
    [61] Liao HT, Zhao W B,Guo H R.Predicting Remaining Useful Life of an IndividualUnit Using Proportional Hazards Model and Logistic Regression Model[J],2006IEEE.127-132.
    [62] Pan Y N, Chen J, Xing L.L.Bearing performance degradation assessment based onlifting wavelet packet decomposition and fuzzy c-means[J],Mechanical Systems andSignal Processing,2010,24:559–566.
    [63]李常有,徐敏强,郭耸.声信号的主分量分析应用于滚动轴承故障诊断[J].声学技术,2008,27(2):271-275.
    [64] Yang W. X,Peter W. T.Development of an advanced noise reduction method forvibration analysis based on singular value decomposition[J],NDT&E International,2003,36:419-432.
    [65] Yan W. W.,Zhang C. K.,Shao H. H.Nolinear fault diagnosis method based on kernelprincipal component analysis[J],High Technology Letters,2005,11(2):189-192.
    [66] Yu J B,Bearing performance degradation assessment using locality preservingprojections and Gaussian mixture models[J],Mechanical Systems and Signal Processing,2011,25:2573–2588.
    [67]陈才扣,王正群,杨静宇.基于小波特征的快速核主分量分析技术[J],计算机工程与应用,2004,22:45-47.
    [68]高海华,杨辉华,王行愚.基于PCA和KPCA特征抽取的SVM网络入侵检测方法[J],华东理工大学学报(自然科学版),2006,32(3):321-326.
    [69] Tian Z.G,Wong L,Safaei N,A neural network approach for remaining usefullife prediction utilizing both failure and suspension histories[J],Mechanical Systems andSignal Processing,2010,24:1542–1555.
    [70] Du S C,Lv J,Xi L.F,Degradation process prediction for rotational machinerybased on hybrid intelligent model[J],Robotics and Computer-Integrated Manufacturing,28(2012):190-207.
    [71] Heng A,Tan AndyC.C.,JosephMathew.Intelligent condition-based prediction ofmachinery reliability[J], Mechanical Systems and Signal Processing,2009,23:1600–1614.
    [72] Mahamad A K,Saon S,Hiyama T.Predicting remaining useful life ofrotating machinery based artificial neural network[J],Computers and Mathematics withApplications,2010,60:1078-1087.
    [73] Chang H, Yeung D.Y..Robust locally linear embedding[J].Pattern Recognition,2006,39:1053-1065.
    [74] Tran Q. A.,Li X.,Duan H. X..Efficient performance estimate for one-class support vectormachine[J]. Pattern Recognition Letters,2005,26:1174-1182.
    [75] Acevedo-Rodriguez J.,Maldonado-Bascon S.,Lafuente-Arroyo, S.Computationalload reduction in decision functions using support vector machines [J].Signal Processing,2009,89:2066-2071.
    [76]王太勇,何慧龙,王国锋.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92.
    [77] Osowski S.,Siroic R.,Markiewicz T..Application of Support Vector Machine andGenetic Algorithm for Improved Blood Cell Recognition[J].IEEE Transactions oninstrumentation and measurement,2009,58(7):2159-2168.
    [78] Liu H. X., Yao X. J.,Zhang R. S.The accurate QSPR models to predict thebioconcentration factors of nonionic organic compounds based on the heuristic methodand support vector machine[J].Chemosphere,2006,63:722-733.
    [79] Solera-Urena R.,Martin-Iglesias D,Gallardo-Antolin A.Robust ASR using SupportVector Machines[J].Speech Communication,2007,49:253-267.
    [80] Wang L.,Mu Z. C., Guo H..Application of support vector machine in the prediction ofmechanical property of steel materials[J].Journal of University of Science and TechnologyBeijing,2006,13(6):512-515.
    [81] Sun C,Zhang Z S,He Z J.Research on bearing life prediction based on support vectormachine and its application[C],9th International Conference on Damage Assessment ofStructures (DAMAS2011)Journal of Physics:Conference Series305,2011,12-28.
    [82] Caesarendra W,Widodo A,Yang B S.Combination of probability approach andsupport vector machine towards machine health prognostics[J], Probabilistic EngineeringMechanics,2011,26:165–173.
    [83] Zhao F,Chen J, Xu W.Condition prediction based on wavelet packet transformand least squares support vector machine methods,Additional services and information forProceedings of the Institution of Mechanical Engineers[J],Part E:Journal of ProcessMechanical Engineering.2008:71-79.
    [84] Widodo A,Yang B S.Machine health prognostics using survival probability andsupport vector machine[J],Expert Systems with Applications,2011,38:8430–8437.
    [85] http://www.bearingspecialists.com/
    [86] http://nix.nasa.gov/search.jsp?N=0
    [87] http://www.esa.int/esa-cgi/esasearch.pl?q=&sa=Search&r=
    [88] http://www.cnsa.gov.cn/n1081/index.html
    [89] http://www.federalspace.ru/main.php?lang=en&id=2&nid=11156
    [90] Herbert W. Scibbe, Deun C. Glenn, WiZZz'um J. Anderson. Friction torque of ballbearings in vacuum with seven polytetrafluoroethylene–composition retainer materials[R].NASA TN D-4355,1968.
    [91] E. J. Devine, Harold E. Evans, Instrument bearing performance in space and laboratoryvacuum[R], Goddard Space Flight Center, Greenbelt, Md.20771
    [92] L.C.Ensor, c.c.Feng, A study of the use of vibration and stress wave sensing for thedetection of bearing failure[R], National Aeronautics and Space Adminlstratlon, George C.Marshall, Space Flight Center,Huntsville, Alabama35812.
    [93] J. J. Broderick, R. F. Burchill, H. L. Clark, Design and fabrication of prototype system forearly warning of impending bearing failure[R], George C. Marshall Space Flight Center,National Aeronautics and Space Administration, Marshall Space Flight Center,Huntsville, Alabama,1972.
    [94]吴云鹏,张文平.带有波纹度的球轴承振动特性[J].大庆石油学院学报,2007(3):80-83.
    [95]汪久根,王庆九,章维明.表面粗糙度对轴承振动的影响[J].轴承,2007(1):23-25.
    [96]张雷涛,滚动轴承的振动形式及振动机理的研究[J].天水师范学院学报,200525(2):73-74.
    [97]何东.装配尺寸链中组成环公差的确定[J].山东建筑工程学院学报,200116(3):69-74.
    [98]邓四二,王燕霜,李新宁.轴承预紧力与系统固有频率关系的试验[J].航空动力学报,2010,25(8):1883-1887.
    [99]袁杰.空间有效载荷用长寿命中高速滚动轴承的润滑[J].润滑与密封,20063:154-158.
    [100]李新立,刘志全,遇今.航天器机构固体润滑球轴承磨损失效模型[J].航天器工程,2008,17(4):109-113.
    [101] Huang N E.A new view of nonlinear waves:The Hilbert spectrum.Annual Review ofFluid[J].Mechanics,1999,31:417-457.
    [102] Huang N E,WU M,LONG S R.A confidence limit for the empirical modedecomposition and Hilbert spectral analysis[J].Proc.R.Soc.Lond.2003,A459:2317-2345.
    [103] Tang B P,Dong S J,Song T.Method for eliminating mode mixing of empirical modedecomposition based on the revised blind source separation[J].Signal Processing,2012,92:248–258.
    [104]胡小林.Hilbert-Huang变换的改进及其在机械故障特征提取中的应用[D].重庆大学,硕士学位论文,2010.
    [105]钟佑明.希尔伯特黄变换局瞬信号分析理论的研究[D].重庆大学,博士生论文,2003
    [106]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006.
    [107]孙晖.经验模态分解理论与应用研究[D].浙江大学,博士学位论文,2005.
    [108] Matheron G.Random sets and integral geometry[M].New York:Wiley,1975.
    [109]李兵,张培林,刘东升.基于自适应多尺度形态梯度变换的滚动轴承故障特征提取[J].
    [110] Zhang L J,Xu J W,Yang J H.Multi-scale morphology analysis and its application tofault diagnosis[J].Mechanical Systems and Signal Processing,2008,22:597-610.
    [111] These data comes from Case Western Reserve University Bearing Data Centerwebsite[OL].http://www.eecs.cwru.edu/laboratory/bearing..
    [112]赵佳,杨景曙,金家保.基于JADE算法的盲DOA估计[J].通信学报,201031(8):91-97.
    [113] Johan H,Aapo H,Fabrizio E.Validating the independent components of neuroimagingtime series via clustering and visualization[J].NeuroImage,2004,22:1214–1222.
    [114] Nojun Kwak,Chunghoon Kim,Hwangnam Kim.Dimensionality reduction based on ICAfor regression problems[J].Neurocomputing,2008,71:2596–2603.
    [115]何振亚.自适应信号处理[M].西安:科学出版社,2002.
    [116] Aapo Hyv rinen,Erkki Oja.Independent Component Analysis:Algorithms andApplications[J].Neural Networks,2000,13(4-5):411-430.
    [117] Thomas Coffin,Signal analysis techniques for incipient failure detection inturbomachinery[R].Hyle Laboratories, Huntsville, Wla.1985.
    [118] Paula J. Dempsey,Gary Kreider,Thomas Fichter,Tapered Roller Bearing DamageDetection Using Decision Fusion Analysis[R],Glenn Research Center, Cleveland, Ohio,2003.
    [119] Haitao Liao,Wenbiao Zhao,Huairui Guo,Predicting Remaining Useful Life of anIndividual Unit Using Proportional Hazards Model and Logistic Regression Model[J],2006IEEE.127-132
    [120] S. Janjarasjitt,H. Ocak,K.A. Loparo.Bearing condition diagnosis and prognosis usingapplied nonlinear dynamical analysis of machine vibration signal[J],Journal of Sound andVibration317(2008)112–126.
    [121] Jihong Yan,ChaozhongGuo,XingWang.A dynamic multi-scale Markov model basedmethodology for remaining life prediction[J],Mechanical Systems and Signal Processing25(2011)1364–1376.
    [122] Lee J.,Qiu H.,Yu G..Rexnord Technical Services,‘‘Bearing Data Set’’[R].IMS,University of Cincinnati,NASA Ames Prognostics Data Repository.http://ti.arc.nasa.gov/project/prognostic-data-repository, NASA Ames, Moffett Field, CA,(accessed09.05.09).
    [123] Huang R Q,Xi L F,Li X L.Residual life predictions for ball bearings based onself-organizing map and back propagation neural network methods[J]. MechanicalSystems and Signal Processing,2007,21:193-207.
    [124]雷亚国,何正嘉,皆艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,200844(7):112-117.
    [125] TAKENS F.Detecting strange attractors in turbulence[M].Dynamical Systems andTurbulence.Berlin:Springe-Verlag,1981:366-381.
    [126]刘晓宁.齿轮系统的混沌控制及仿真[D].西北工业大学,硕士学位论文,2007.
    [127] Cao L.Practical method for determining the minimum embedding dimension of a scalartime series[J].Physcai D,1997,110:43-50.
    [128]向昌盛.基于支持向量机的时间序列组合预测模型[D].湖南农业大学,博士学位论文,2011.
    [129]陈其松.智能优化支持向量机算法及应用研究[D].贵州大学,博士学位论文,2009.
    [130] Chang H K,Kuo H,Wang Y Z.Novel grey model for diesel engine oil monitoring[J].Journel of ship research,2006,50(1):31-37.
    [131] V.N.Vapnik.The nature of statistical learning theory[M].New York: Springer-Verlag,1995.
    [132] Mercer J..Function of positive and negative type and their connection with the theoryof integral equations[J].Philosophical Transactions of the Royal Society of London,SeriesA,1909,209:415-446.
    [133]安金龙.支持向量机若干问题的研究[D].天津大学,博士学位论文,2004。
    [134] Smola A.J.,Scholopf B. A tutorial on support vector regression[J].Statistics andComputin,2004,14(3):199-222.
    [135]张楠.关于支持向量机中的参数优化的研究[D].西北工业大学,硕士学位论文,2008.
    [136]李艳英.基于支持向量机参数优化的群智能优化算法研究[D].天津大学,硕士学位论文,2007.
    [137] Eberhart R C,Kennedy J.A new optimizer using particles swarm theory[C].Pro SixthInternational Symposium on Micro Machine and Human Science,Nagoya,Japan,1995,39-43.
    [138] Shi Y H,Eberhart R C.A modified particle swarm optimizer[C].IEEE InternationalConference on Evolutionary Computation,Anchorage,Alaska,1998:69-73.
    [139] Zhigang Tian, LornaWong, NimaSafaei.A neural network approach for remaining usefullife prediction utilizing both failure and suspension histories [J].Mechanical Systems andSignal Processing24(2010)1542–1555.
    [140] Wahyu Caesarendra, Achmad Widodo, Bo-Suk Yang.Combination of probabilityapproach and support vector machine towards machine health prognostics[J],ProbabilisticEngineering Mechanics,201126:165-173.
    [141] Chaochao Chen, GeorgeVachtsevanos, Bearing condition prediction consideringuncertainty: An interval type-2fuzzy neural network approach, Robotics andComputer-Integrated Manufacturing,201228:509-516.
    [142] Van Tung Tran, Bo-Suk Yang, Andy Chit Chiow Tan, Multi-step ahead direct predictionfor the machine condition prognosis using regression trees and neuro-fuzzy systems,Expert Systems with Applications36(2009)9378–9387.
    [143]奚立峰,黄润青,李兴林,基于神经网络的球轴承剩余寿命预测,机械工程学报,200743(10):137-143
    [144]李陶深,赵文静.面向对象程序设计与方法[M].武汉:武汉理工大学出版社,2003.
    [145] Shaw Mary,Garlan David,Software Architecture:Perspectives on an EmergingDiscipline[M]. Prentice Hall,1996.
    [146]万建成,卢雷编.软件体系结构的原理、组成与应用[M].北京:科学出版社,2002.
    [147]赵仕健.Visual C++6.0编程与事例解析[M].北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700