电针对大鼠脊髓损伤后内源性神经干细胞分化与BMP-2表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]:1.建立可靠的急性脑动脉瘤夹钳夹型大鼠脊髓损伤模型;2.探讨电针对大鼠脊髓损伤后内源性神经干细胞的分化影响;3.探讨电针治疗脊髓损伤后局部脊髓BMP-2的表达变化;4.为电针治疗脊髓损伤提供实验依据。
     [方法]:将SD大鼠随机分成假手术组、脊髓损伤组、电针组,动物模型采用医用脑动脉瘤临时夹钳夹的急性钳夹型大鼠脊髓损伤模型,分别于损伤后1d、3d、7d、14d、21d、28d进行取材。1.通过BBB评分、光镜、电镜病理学检查,SEP电生理检测、MRI影像学客观完整监测,对急性钳夹型大鼠脊髓损伤模型的稳定性进行评估;2.电针后采用BBB行为学评分进行损伤后的功能评定;3.取各组受损脊髓的组织行冰冻切片、染色后行病理分析、测定损伤后局部脊髓组织的内源性神经干细胞、少突胶质细胞及其前体细胞、星形胶质细胞的表达;4.取各时间段各组损伤局部脊髓组织,提取蛋白经电泳成像与数据分析,测定损伤后局部脊髓组织内的BMP-2的表达变化。
     [结果]:
     1.经两组数据纵向比较,BBB评分结果提示,假手术组明显高于损伤组;每组数据随着术后时间的增长逐渐增高;同一组内不同时间点差异有统计学意义(P<0.05)。同一时间点不同组间比较差异有统计学意义(P<0.05)。
     2.假手术组SEP的波形正常,术后潜伏期略延长,波幅略降低,随后恢复正常。脊髓损伤组SEP测定:术后短期(7d内)未引出波形,7d以后SEP的潜伏期长,波幅低;随着时间的增长,潜伏期缓慢下降,波幅逐渐增高。假手术组各时间段的潜伏期、波幅对比差异无统计学意义(P>0.05);脊髓损伤组各时间段的潜伏期、波幅对比差异有统计学意义(P<0.05)。
     3.MRI结果:术后6h胸段脊髓创伤部位呈局限性点状T2WI高信号影;术后1d-3d,胸段脊髓肿胀,损伤处及尾端脊髓呈大片状T2高信号改变;术后7d-14d,胸段脊髓内片状T2WI高信号区范围缩小;术后21d-28d,胸段脊髓内仅有小片T2WI高信号影,脊髓远端直径较正常明显缩小。假手术组在各时间点脊髓MRI均无明显改变。
     4.HE染色病理结果:损伤后6h-1d脊髓灰白质出血水肿、结构紊乱、灰质板层消失,3d-7d神经元结构逐渐破坏,神经细胞肿胀,核固缩;7d-14d炎性细胞大量浸润,神经细胞水肿减轻;21d-28d可见神经细胞水肿逐渐减轻,炎性细胞开始消退,胶质细胞增生;假手术组组织结构清晰。
     5.电针治疗可提高BBB行为学评分,随电针治疗时间延长BBB评分逐渐升高。
     6.同一时间点不同组之间,内源性神经干细胞数目比较,电针组高于其他组;组之间的差异有统计学意义(P<0.05)。电针组之间不同时间点对比,随着电针时间的增长,细胞数不断增长;不同时间点之间的差异有统计学意义(P<0.05)。
     7.同一时间点不同组之间,少突胶质细胞数目比较,电针组明显高于其他组;组之间的对比有显著差异。电针组之间不同时间点对比,随着电针时间的增长,细胞数不断增长;不同时间点之间的差异有统计学意义(P<0.05)。
     8.同一时间点不同组之间,OPCs数目比较,电针组明显高于其他组;组之间的差异有统计学意义(P<0.05)。电针组之间不同时间点对比,随着电针时间的增长,细胞数不断增多;不同时间点之间的差异有统计学意义(P<0.05)。电针组Brdu阳性细胞与NG2阳性细胞免疫荧光共表达细胞增多(P<0.05)。
     9.同一时间点不同组之间,星形胶质细胞数目比较,电针组明显低于其他组;组之间的差异有统计学意义(P<0.05)。电针组之间不同时间点对比,随着电针时间的增长,细胞数不断减少;不同时间点之间的差异有统计学意义(P<0.05)。电针组Brdu阳性细胞与GFAP阳性细胞共免疫荧光共表达细胞减少(P<0.05)。
     10.BMP-2的表达在大鼠脊髓损伤后7d-14d出现明显增强,高表达持续至28d以后,电针组BMP-2的表达低于脊髓损伤组,差异有统计学意义(P<0.05),这种差异随时间推移更加明显,差异有统计学意义(P<0.05)。
     [结论]:1.急性钳夹型大鼠脊髓损伤模型制作简单,具有稳定性、可重复性和可控性;2.电针治疗可提高大鼠脊髓损伤后BBB行为学评分,从行为学角度上提示电针治疗对大鼠脊髓损伤有明确治疗效果。电针刺激对大鼠脊髓损伤后损伤远端脊髓内源性神经干细胞增殖,分化为少突胶质前体细胞、少突胶质细胞有促进作用,而对分化为胶质细胞有抑制作用;3.电针治疗脊髓损伤,促进脊髓功能恢复与抑制BMP-2有关;4.电针刺激治疗脊髓损伤有实验依据。
Objective1. To establish a reliable model of the acute clip-type spinal cord injury in rats;2. To explain the effect of electro-acupuncture on the spinal cord injury and the differentiation of the endogenous neural stem cells;3. To research the expression of BMP-2in SCI after the electro-acupuncture treatment.4. To provide experimental basis for electro-acupuncture treatment of spinal cord injury
     Methods:SD rats were randomly divided into the SCI group, the SHAM group and the EA group. Aneurysm-clipping(temporary) methods were used to make up an acute spinal cord injury model and draw materials on the1st,3rd,7th,14th,21st and28th day respectively after the injury. The reliability of the acute clip-type SCI model was evaluated through BBB score, SEP, MRI, pathological section. The neural function was assessed after EA treatment with the use of the BBB scores. After the DAB staining to frozen sections, the proliferations of OPCs, APCs, eNSCs and ASs in the spinal cord anterior horn were viewed and the expression of the BMP-2in the injured spinal cord tissue in each group observed by WB.
     Results:
     1. The Comparison of the BBB score data of the two groups vertically suggested that the data of the SHAM group were significantly higher than those of the SCI group. Each set of the data increased gradually with the prolongation of the postoperative time. There was significant difference as to the different time points within the same group (P<0.05) and the statistical comparison of the points at the same time between different groups was significant (P<0.05).
     2. SEP waveform of the SHAM group was normal, with the latency prolonged slightly after the operation, the wave amplitude being reduced slightly and then being back to normal. As to SEP of the SCI group, no waveform could be detected short term after the operation (<7days). The latency was longer and the amplitude was after7days. However, the latency would decrease slowly and the wave amplitude would increase gradually with time. In comparison, there was no statistical significance as to the latency and amplitude in each time point of the SHAM group (P>0.05) and there was also obviously statistical significance as to the latency and amplitude in each time point of the SCI group (P<0.05).
     3. MRI results:The injured region on the thoracic spinal cord showed a regional spot-like high T2WI signal6hrs after the operation, and with the swelling of the thoracic spinal cord, large areas of the injured region and caudal spinal cord presented high T2signal1-3days postoperatively. T2WI high signal area was narrowed7-14days after the operation and the T2WI high signal remained little and the diameter in distal spinal cord was reduced conspicuously21-28days after the operation. MRI of the SHAM group at various time points had no distinct change.
     4. Pathological findings of the HE staining:Such signs as the hemorrhage, the edema, the structural disorder and the disappearance of gray matter layer were found with the examination of the spinal cord6hrs and lday postoperatively and the neuron structure was damaged along with the nerve cell swelling and nuclear pyknosis3-7days postoperatively. However,7-14days after the operation, the edema in nerve cells began to be relieved along with the infiltration of inflammatory cells.21-28days postoperatively, the edema in nerve cells significantly was alleviated, inflammatory cells began to fade away. As a result, glial cells began to proliferate and the tissue structure of the SHAM group was clear.
     5. The electric-acupuncture treatment could obviously improve the BBB ethology score and higher scores could be gained with time.
     6. Compared to the other two groups at the same time, the number of eNSC in EA group was significantly higher and there was statistical significance between the different groups (P<0.05). The quantity of cells between the different time points in EA group increased gradually as the time of the treatment went on, indicating that there was statistical significance between the different time (P<0.05).
     7. In comparison to the number of oligodendrocyte between the different groups at the same time, the number in EA group was significantly higher than that in the other two groups and there was statistical significance between the different groups (P<0.05). Also the amount of cells between the different time points in EA group increased gradually as the time of the treatment went on. The contrast between the different time points was significant statistically (P<0.05).
     8. Compared with the other two groups at the same time, the number of OPCs in EA group was significantly higher than that of the other two groups, which indicated that there was statistical significance between the different groups (P<0.05). In comparison between the different time points in EA group, the number of cells increased gradually as the time fo the treatment went on. The contrast between the different time points was significant statistically (P<0.05). Brdu positive cells and NG2positive cells were increased express with immunofluorescence in EA group (P <0.05).
     9. As contrasted with the other two groups at the same time, the number of astroglia in EA group was significantly lower and there was statistical significance between the different groups (P<0.05). Compared between different time points in EA group, the number of cells decreased gradually with the time going. The contrast between the different time points was significant statistically (P<0.05). Brdu positive cells and GFAP positive cells were decreased express with immunofluorescence in EA group (P <0.05).
     10.7-14days after the injury, the expression of BMP-2appeared obviously enhanced and by the time this high-level expression continued up to28days, the expression of BMP-2in the EA group was lower than that in the SCI group. The difference was highly significant statistically with the passage of time (P<0.05).
     Conclusion:
     1. It is simple to make the model of the acute clip-type spinal cord injury in rats and it is stable, can be used repeatedly and can be controlled
     2. Electric-acupuncture can significantly improve the BBB behavior score of rats in spinal cord injury and from the perspective of ethology it obviously has a therapeutic effect on the spinal cord injury. Electric-acupuncture could induce the proliferation and differentiation of eSCs,OLs and its precursor cells in the remote segment behind the injury point. Also, it could inhibit the proliferation and differentiation of astroglia in the remote segment behind the injury point.
     3. Electric-acupuncture might promote the functional recovery after the spinal cord injury by inhibiting the expression of BMP-2.
     4. Providing experimental basis for electro-acupuncture treatment of spinal cord injury
引文
1.何竞,李齐寅,丁明甫.针灸治疗脊髓损伤文献计量分析[J].中国医学康复杂志,2010,25(11):1093.
    2. Devivo MJ.Epidemiology of traumatic spinal cord injury:trends and future implications. [J].Spinal Cord,2012,50(5):365-372.
    3. Lenehan B, Street J, Kwon BK, et al. The epidemiology of traumatic spinal cord injury in british Columbia, Canada[J]. Spine,2012,37(4):321-329.
    4. Kurokawa R, Murata H, Ogino M, et al. Altered blood flow distribution in the rat spinal cord under chronic compression[J].Spine,2011,36(13):1006-1009.
    5. Baptiste DC, Fehlings MG.Pharmacological approaches to repair the injured cord [J].JNeurotrauma,2006,23:318-334.
    6. Hagen EM, Rekand T,Gilhus NEvv, et al. Traumatic spinal cord injuries--incidence, mechanisms and course[J].Tidsskr Nor Laegeforen,2012,132(7):831-837.
    7.蒋涛,任先军.组织工程脊髓损伤修复的种子细胞选择[J].重庆医学,2011,40(7):705-707.
    8. Bunge MBVR,Holets ML,Bates,et al.Characterization of photolchemically induced spinal cord leision in the rat by light and electron microscopy[J].Exp Neurol,1994,127:76-93.
    9. Allen AR.Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column[J].J Am Med Assoc,1911,9:878-880.
    10. Watson BDR,Prado WD.Dietrich.Photochemically induced spinal cordinjury in the rat[J].Brain Res.,1986,367:296-300.
    11. Tarlov IM,Klinger S.Vitale.Spinal cord compression studies I.Experimental techniques to produce acute and gradual compression[J].Neurol Psych,1953,70:813-819.
    12. Rivlin ASCH,Tator.Effect of duration of acute spinal cord compression in a new acute model in the rat[J].Surg Neurol,1978,10:39-43.
    13. Allen AR. Surgery of experimental lesions of the spinal cord equivalent to crush injury of fracture dislocation of the spinal column:a preliminary report[J].JAMA,1911;57:878-880.
    14.陈秉耀,游思维,刘惠玲,等.大鼠脊髓切断术后神经纤维残留量与运动功能恢复的关系[J].解剖学报,2001,32(2):127-131.
    15. Rivlin AS,Tator CH.Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat[J].Surg Neurol,1978,10:38-43.
    16. Scheff SW, Rabchevsky AG, Fugaccia I, et al. Experimental modeling of spinal cord injury: characterization of a force-defined injury device[J].J Neurotrauma,2003,20:179-193.
    17. Ghasemlou N, Kerr BJ, David S. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury[J]. Exp Neurol,2005,196:9-17.
    18. Peter C,Poon BS,Dimpy Gupta,et al.Clip Compression Model Is Useful for Thoracic Spinal Cord Injuries[J].SPINE,2007,32:2853-2859.
    19. Borghese L, Dolezalova D, Opitz T, et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays Gl/S phase transition and accelerates neuronal differentiation in vitro and in vivo[J].Stem Cells,2010,28(5):955-964.
    20. Agrawal QThakor NV,A11 AH.Evoked potential versus behavior to detect minor insult to spinal cord in rat model[J].J Clin Neurosci,2009,16(8):1052-1055.
    21. Berens SA,Colvin DC,Yu CG,et al.Evaluation of the pathologic characteristics of excitotoxic spinal cord injury with MR imaging[J].Am J Neuroradiol,2005,26,1612-1622.
    22. Nuwer MR,Spinal cord monitoring with somatosensory techniques.[J] J Clin Neurophysiol,1998,15:183-193.
    23. Mihai G.Nout YS,Tovar CA,et al.Longitudinal comparison of two severities of unilateral cervical spinal cord injury using magnetic resonance imaging in rats [J].J Neurotrauma,2008,25:1-8.
    24. Mihai G, Nout YS, Tovar CA, et al. Longitudinal comparison of two severities of unilateral cervical spinal cord injury using magnetic resonance imaging in rats [J].J Neurotrauma,2008,25:1-18.
    25. Gensel JC.Tovar CA,Hamers FP,et al.Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats[J].J Neurotrauma,2006,23:36-54.
    26. Rivlin AS,Tator CHEf.fect of duration of acute spinal cord compression in a new acute model in the rat. [J].Surg Neurol,1978,10:39-43.
    27.杨拯,何彦芳,陈建敏,等.电针在脊髓损伤功能康复中的研究[J].时珍国医国药,2011,22(1):249-250.
    28.刘丽霞,邰浩清.电针对脊髓损伤作用机制的研究[J].长春中医药大学学报,2011,27(3):405406
    29. Ding Y,Yan Q,Ruan JW.et al.Electro2acupuncture promotes survival,differentiation of the bone marrow mesenchymal stemn cells as well as functional recovery in the spinal cord2transected rats[J].BMC Neurosci,2009,10(1):35-47.
    30. Almad A,Sahinkaya FR,McTigue DM.Oligodendrocyte fate after spinal cord injury [J].Neurotherapeutics,2011,8(2):262-273.
    31. Mekhail M,Almazan G,Tabrizian M.Oligodendrocyte-protection and remyelination post-spinal cord injuries:A review[J].Prog Neurobiol,2012,96(3):322-339.
    32. Sellers DL, Maris DO, Horner PJ. Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury[J].J NeuroSCI,2009,29(2):6722-6733.
    33. Gage FH. Stem cell of the central nervous system [J].Curropin neurobiol,1998,8(5):671-676.
    34. Bang YH, Kim JH, Paik SW.et al.Histopathology of apocrine bromhidrosis[J].Plast Reconstr Surg, 1996,98(2):288-92.
    35. Hernandeza J,Torres-Espina A,Navarro X.Adult stem cell transplants for spinal cord injury repair: current state in preclinical research[J].Curr Stem Cell Res Ther,2011.6(3):273-287.
    36. Hwang DH,K.im BG,Kim EJ,et al.Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury [J].BMC Neuro SCI,2009,22(10):117.
    37. McDonald JW. Repairing the damaged spinal cord[J].SCI Am,1999,281(3):64-73.
    38. McDonald JW, Becker D. Spinal cord injury:promising interventions and realistic goals [J].Am J Phys Med Rehabil,2003,82(10):S38-S49.
    39.宗兆文,张连阳,沈岳,等BDNF基因修饰真皮多能干细胞移植对脊髓损伤的修复作用[J].重庆医学,2011,40(29):2913-2917.
    40. Von Euler M, Seiger A, Sundstrom E. Clip compression injury in the spinal cord:a correlative study of neurological and morphological alterations[J].Exp Neurol,1997,145:502-510.
    41. Poon P C,Gupta D,Shoichet MS,et al.Clip compression model is useful for thoracic spinal cord injuries:histologic and functional correlates[J].Spine,2007,32(25):2853-2859.
    42. Joshi M,Fehlings MG.Development and characterization of a novel,graded model of clip compressive spinal cord injury in the mouse:Part 2. Quantitative neuroanatomical assessment and analysis of the relationships between axonal tracts, residual tissue, and locomotor recovery[J].J Neurotrauma,2002,9:191-203.
    43. Li HF, Jiang XH,Zou DQ,et al.Expression of bone morphogenetic protein receptor IA in rats after contusive spinal cord injury[J].Nan Fang Yi Ke Da Xue Bao,2011,31(7):1124-1130.
    44. Zhang D, Mehler MF,Song Q,et al.Develop-ment of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkc expression[J].J Neurosci,1998,18:3314-3326.
    45. Parikh P,Hao Y,Hosseinkhani M,et al.Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smadl signaling pathway in adult neurons[J].Proc Natl Acad Sci USA,2011,108(19):99-107.
    46. Davies SJ,Shih CH,Noble M, et al.Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury[J].PLo One,2011,6(3):173-178.
    47.李经辉,黄辉,余化霖,等.钳夹型急性大鼠脊髓损伤模型的建立与评估[J].昆明理工大学学报,自然科学版,2012,37(6):67-75.
    48.何川.脊髓损伤动物模型的制作:[硕士学位论文].沈阳:中国医科大学,2002.
    49. Joshi M,Fehlings MG.Development and characterization of a novel,graded model of clip compressive spinal cord injury in the mouse:Part 1.Clip design,behavioral outcomes,and histopathology[J].J Neurotrauma,2002,19:175-190.
    50. De Girolami U.Frosch MP,Tator CH.Regional neuropathology diseases of the spinal cord and vertebral column. In:Graham DI, Lantos PL, eds. Greenfield's Neuropathology,7th ed. London: Arnold,2002,1063-1071.
    51.杨迎暴,朴英杰.脊髓损伤模型的建立及其评价标准[J].中华创伤杂志,2002,18:187-190.
    52. Basso DM,Beattie MS,Bresnahan JC.Grad-ed histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transaction[J].Exp Neurol,1996,139:244-256.
    53.孟步亮,巴迎春,宋士娜,等.脊髓全横断大鼠模型的构建[J].中国组织工程研究与临床康复,2011,15(7):1215-1218.
    54. Feehlongs MT,Badonic Y,Olsson A.Holtz.Astrocytic reaction after graded spinal cord compression in rats:immunohistochemical studies on glial fibrillary acidic protein and vimentin[J].J Neurotrauma,1995,12:41-52.
    55. Prado RD,Dietrich BD.Watson.et al.Photochemically induced graded spinal cord infarction:Behavioral,electrophysiological,and morphological correlates[J]J Neurosurg,1987, 67:745-753.
    56. Von Euler ME.Akesson EB.Samuelsson,et al.Motor performance score:A new algorithm for accurate behavioral testing of spinal cord injury in rats[J].Exp Neurol,1996.137:242-254.
    57. Mia von Euler,Ake Seiger.Erilk Sundstrom.Clip compression injury in the spinal cordical alterations[J].Exprerimental Neurology,1997,145:502-510.
    58.李经辉,黄辉,余化霖,等.大鼠钳夹脊髓损伤模型的磁共振影像与感觉诱发电位的相关研究[J].昆明理工大学学报,自然科学版,2013,38(1):80-84.
    59. Agrawal G,Thakor NV,All AH,Evoked potential versus behavior to detect minor insult to spinal cord in rat model[J].J Clin Neurosci,2006; 16(8):1052-1055.
    60. Basso D,Beattie M,Bresnahan J.Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection[J].Exp Neurol,1996,139:244-256.
    61. Sherman DL. Atit MK, Geocadin RG, et al. Diagnostic instrumentation for neurological injury[J]. IEEE Instru Measur Mag,2002,55:28-35.
    62. Angelo HA,Gracee A,Piotr W.etal. Evoked potential and behavioral outcome for experiment automimmune encephalomyelitis in Lewis rats[J].Neurol Sci,2010,21:595-601.
    63. Agrawal G, Thakor NV, All AH. Evoked potential versus behavior to detect minor insult to spinal cord in rat model[J].J Clin Neurosci,2009,16(8):1052-1055.
    64. Bunge MB,Holets ML,Bates,et al.Characterization of photolchemically induced spinal cord leision in the rat by light and electron microscopy[J].Exp Neurol,1994,127:76-93.
    65. Farooque MT,Olsson A,Holtz. Astrocytic reaction after graded spinal cord compression in rat:immunohistochemical studies on glial fibrillary acidic protein and vimentin[J]J.Neurotrauma, 1995,12:41-52.
    66. Hatten ME.Liem ML,Shelanski,et al.Astroglia in CN Injury[J].Glia,1991,4:233-243.
    67. Shao YKD,McCarthy.Plasticity of astrcytes[J].Glia,1994,11:147-155.
    68. Kempski OF,Staub M,Jansen,F.et al.Glial swelling during extracellular acidosis in citro[J].Stroke,1988,19:385-392.
    69. Martin D J,Schoenen P,Delree,et al.Experimental acute traumatic injury of the adult rat spinal cord bysubdural inflatable balloon:Methodology,behavioral analysis,and histopathology[J]. J Neurosci,1992,32:539-550.
    70. Dumont RJ,Okonkwo DO,Verma S,et al.Acute spinal cord injury, part I:pathophysiologic mechanisms.[J].ClinNeuropharmacol,2001,24:254-264.
    71. Laura M,Sundberg, Juan J, et al. In Vivo Longitudinal MRI and Behavioral Studies in Experimental Spinal Cord Injury[J].Neurotrauma Joural,2010,27(10):1753-1767.
    72. Tator CH,and Fehlings MG.Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms[J].J Neurosurg,1991,75:15-26.
    73. Noble LJ,Wrathall JR.Spinal cord contusion in the rat:morphometric analyses of alterations in the spinal cord [J]. Exp Neurol,1985,88:135-149.
    74. Narayana P,Abbe R, Liu SJ,et al.Does loss of gray-and white-matter contrast in injured spinal cord signify secondary injury? In vivo longitudinal MRI studies [J]. Magn Reson Med,1999,41:315-320.
    75. Sharma HS.Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. [J].Curr Pharm Des,2005,11:1353-1389.
    76. Weirich SD,Cotler HB,Narayana PA,et al.Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model [J].Spine,1990,15:630-638.
    77. Berens SA,Colvin DC,Yu CG,et al.Evaluation of the pathologic characteristics of excitotoxic spinal cord injury with MR imaging[J].Am J Neuroradiol,2005,26,1612-1622.
    78. Bilgen M,Abbe R,Liu SJ,et al.Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury:in vivo magnetic resonance imaging[J].Magn Reson Med,2000,43:594-600.
    79. Weber T,Vroemen M.Behr V,et al.In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord[J].Am J Neuroradiol,2006,27:598-604.
    80. Schwab JM.chtel K,MuellerCA,et al.Experimental strategies to promote spinal cordregeneration-an integrative perspective[J].Prog Neurobiol,2006,78(2):91-116.
    81. Duncan EG,Lemaire C.Armstrong RL,et al.High-resolution magnetic resonance imaging of experimental spinal cord injury in the rat[J].Neurosurgery,1992,31:510-519.
    82.范睿,蔡亚非,张昱,等.小鼠脊髓损伤模型的建立及其评价[J].生物学杂志,2009,26(5):77-79.
    83.林扬元,王玮.大鼠脊髓横断伤后护理对生存质量及功能评分的影响[J].局解手术学杂志,2006,15(6):361-362.
    [1].Casha S,Yu WR,Fehlings MG.Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat.[J].Neuroscience,2001,103:203-218.
    [2]. Lee SM,Yune TY,Kim SJ,et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat[J].J Neurotrauma,2003,20:1017-1027.
    [3].McDonald JW,Belegu VDemyelination and remyelination after spinal cord injury[J].J Neurotrauma,2006,23(3-4):345-359.
    [4].Schwab ME. Repairing the injured spinal cord[J].Science,2002,295:1029-1031.
    [5].时素华,电针对大鼠脊髓损伤后细胞凋亡相关因子及神经再生的影响:[博士学位论文].北京:北京中医药大学,2011.
    [6].杨成,刘同慎,吴洪华.电针对脊髓损伤后少突胶质细胞再髓鞘化的影响[J].解剖学杂志,2005,28(4):392.
    [7].何丽娜,袁章,陈炜.电刺激治疗脊髓损伤的实验及临床研究进展[J].中国康复理论与实践,2009,15(8):720.
    [8].吴永刚,孙申田,贺燕,等.实验性脊髓损伤早期针刺治疗的时间窗口-中度(50g-CM)脊髓损伤血流量的研究[J].针灸临床杂志,1997,13(10):16-19.
    [9].李连欣,张进禄,周东生.电针对实验性脊髓损伤后兴奋性氨基酸含量的影响[J].中国针灸,2000,(12):741-742.
    [10].吴永刚,孙忠人,李志刚,等.针刺对实验性脊髓损伤早期大鼠自由基改变的影响[J].中医杂志,1999,40(10):620-621.
    [11]. Yang WO, Huang YL, Da CD, et al. Electroacupuncture reduces rat's neuronal ischemic injury and enhances the expression of basic fibroblast growth factor[J].Acupunct Electrother Res, 1999,24(1):1-10.
    [12].王新家,孔抗美,齐伟力.针刺影响慢性脊髓损伤大鼠BDNF及其受体TrkF3的表达[J].汕头大学医学院学报,2002,15(1):20-22.
    [13].Anchez I,Hassinger L,Paskevich PA,et al.Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation[J].J Neurosci,1996,16:5095-5105.
    [14].Smith PM,Jeffery ND.Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury[J]. Brain Pathol,2006,16:99-109.
    [15].Totoiu MO,Keirstead HS.Spinal cord injury is accompanied by chronic progressive demyelination[J].J Comp Neurol,2005,486:373-383.
    [16].Shi R,Kelly TM,Blight AR.Conduction block in acute and chronic spinal cord injury:different dose-response characteristics for reversal by 4-aminopyridine[J].Exp Neurol,1997,148:495-501.
    [17].Utzschneider DA,Archer DR,Kocsis JD.et al.Transplantation of glial cells enhances action potential conduction of amyelinated spinal cord axons in the myelin-deficient rat[J].Proc Natl Acad Sci U.S.A,1994,91:53-57.
    [18].Kocsis JD,Akiyama Y.Lankford KL,et al. Cell transplantation of peripheral myelin forming cells to repair the injured spinal cord[J].J Rehabil Res Dev,2002,39:287-298.
    [19].王民,王栋琪,宋焕瑾.脊髓损伤后大鼠后肢运动功能恢复不同评分标准的比较[J].西安交通大学学报(医学版),2006,27:243-245.
    [20].Keirstead HS.Nistor G,Bernal G,et al.Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury[J].J Neurosci,2005,25:4694-4705.
    [21].Ishii K,Toda M,Nakai Y,et al.Increase of oligodendrocyte progenitor cells after spinal cord injury[J].J Neurosci Res,2001,65(6):500-507.
    [22].McTigue DM, Horner PJ,Stokes BT, et al.Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord[J].J Neurosci,1998,18(14):5354-5365.
    [23].Barres BA, Raff MC. Axonal control of oligodendrocyte development[J].J Cell Biol 1999,147:1123-1128.
    [24].Beattie MS. Inflammation and apoptosis:linked therapeutic targets in spinal cord injury[J].Trends Mol Med 2004,10:580-583.
    [25].Shuman SL, Bresnahan JC, Beattie MS. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats[J].J Neurosci Res 1997,50:798-808.
    [26].Lepore AC,O'Donnell J,Bonner JF, et al.Spatial and temporal changes in promoter activity of the astrocyte glutamate transporter GLT1 following traumatic spinal cord injury[J].J Neurosci Res, 2011,89(7):1001-1017..
    [27].Labombarda F, Gonzalez S, Lima A, et al. Progesterone attenuates astro-and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury[J]. Exp Neurol, 2011,231(1):135-146.
    [28].Fang Sun, Chien-Liang Glenn Lin, Dana McTigue,et al. Effects of axon degeneration on oligodendrocyte lineage cells:Dorsal rhizotomy evokes a repair response while axon degeneration rostral to spinal contusion induces both repair and apoptosis[J].Glia,2010,58(11):1304-1319.
    [29].Rabchevsky AG, Sullivan PG, Scheff SW. Temporal-spatial dynamics in oligodendrocyte and glial progenitor cell numbers throughout ventrolateral white matter following contusion spinal cord injury[J].Glia,2007,55(8):831-843.
    [30].Barres BA, Raff MC. Proliferation of oligodendrocyte precursor cells dependents on electrical activity in axons[J].Nature,1993,361:258-260.
    [31].Demerens D, Stankoff B, Logak M, et al.Induction of myelination in the central nervous system by electrical activity[J].Proc Natl Acad Sci,1996,93:9887-9892.
    [32].Qun Li, Marcel Brus-Ramer, John H. Martin,et al. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat[J].Neurosci Lett,2010,479(2):128-133.
    [33].Kukley M, Capetillo-Zarate E, Dietrich D. Vesicular glutamate release from axons in white matter[J].Nat Neurosci,2007,10:311-320.
    [34].Redondo C, Lopez-Toledano MA, Lobo MVT, et al. Kainic acid triggers oligodendrocyte precursor cell proliferation and neuronal differentiation from striatal neural stem cells[J].J Neurosci Res.2007,85:1170-1182.
    [35].Calver AR, Hall AC, Yu WP, et al. Oligodendrocyte population dynamics and the role of PDGF in vivo[J]. Neuron,1998,20:869-882.
    [36].Engel U, Wolswijk G. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord:In vitro characteristics and response to PDGF, bFGF and NT-3[J].Glia,1996, 16:16-26.
    [37]. Rivers LE.A/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice[J].Nat Neurosci,2008,11:1392-1401.
    [38].Fields RD, Stevens B. ATP:an extracellular signaling molecule between neurons and glia[J].Trends Neurosci,2000,23:625-633.
    [39], Fields RD. Volume transmission in activity-dependent regulation of myelinating glia[J]. Neurochem Internat,2004,45:503-509.
    [40].Stevens B,Porta S,Haak LL.et al. Adenosine:a neuron-glial transmitter promoting myelination in the CNS in response to action potentials[J].Neuron,2002,36:855-868.
    [41 J.Reynolds R, Wilkin GP. Oligodendrocyte progenitor cells but not oligodendroglia divide during normal development of the rat cerebellum[J].J Neurocytol,1991,20:216-224.
    [42].Ludwin SK. Proliferation of mature oligodendrocytes after trauma to the central nervous system [J].Nature,1984,308:274-275.
    [43], Wood PM, Bunge RR. The origin of remyelinating cells in the adult central nervous system:the role of the mature oligodendrocyte[J].Glia,1991,4:225-232.
    [44].Nguyen KB, Pender MP. Survival and mitosis of myelinating oligodendrocytes in experimental autoimmune encephalomyelitis:an immunocytochemical study with Rip antibody [J]. Acta Neuropathol,1999,98:39-47.
    [45].Ludwin SK, Bakker DA. Can oligodendrocytes attached to myelin proliferate? [J]. J Neurosci. 1988,8:1239-1244.
    [46]. Van Heyningen P, Calver AR, Richardson WD. Control of progenitor cell number by mitogen supply and demand[J].Curr Biol,2001,11:232-241.
    [47]. Frost EE, Nielsen JA, Le TQ, Armstrong RC. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demylination[J].J Neurobiol,2003,54:457-472.
    [48]. Li Q, McDonald JW. Abstract Viewer/Itinerary Planner. Washington, DC:Society for Neuroscience; 2003. Dose dependent effect of Baclofen on neural proliferation in damaged spinal coed:A quantitative analysis. Program No.245.21. CD-ROM.
    [49]. Becker D,Gary DS,Rosenzweig ES,et al. Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats[J].Exp Neurol,2010,222:211-218.
    [50]. Bruce W,Kuhlmann T,Stadelmann C.Remyelination in multiple sclerosis[J].J Neurol Sci,2003,206:181-185.
    [51].McDonald JW, Belegu V. Demyelination and remyelination after spinal cord injury[J].J Neurotrauma,2006,23:345-359.
    [52].Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS [J].Neuron,1997,19:197-203.
    [53].Horner PJ, Power AE, Kempermann G. et al.Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord[J].J Neurosci,2000,20:2218-2228.
    [54].Belci M, Catley M, Husain M,et al. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients[J].Spinal Cord,2004,42:417-419.
    [55].Raff Mc,Miller Rh,Noble M.A glial progenitor cell that develops invitro into antrocyte or an oligodendrocyte depending on the culture medium[J].Nature,1983,303(5916):390-396.
    [56]. 李振鹏,孔抗美等.神经胶质纤维酸性蛋白在电针治疗大鼠脊髓损伤中的变化及意义[J].汕头大学医学院学报,2011,(3),163-165.
    [57]. Ying Ding, Qing Yan,et al. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats[J]. BMC Neuroscience,2009,20(10):35.
    [58]. Liu H,Yang K. Implanted electro-acupuncture electric stimulation improves outcome of stem cells' transplantation in spinal cord injury[J]. Artif Cells Blood Substit Immobil Biotechnol,2012 Mar 2,[Epub ahead of print].
    [59].Davies JE, Huang C, Proschel C et al. Astrocytes derived from glial-restricted precursors promote spinal cord repair[J].J Biol 2006;5:7.
    [60].Kim BG, Hwang DH, Lee SI et al. Stem cell-based cell therapy for spinal cord injury[J].Cell Transplant 2007,16:355-364.
    [61].Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury [J].Exp Neurol 2008,209:368-377.
    1. 陈学秋.17-β 雌二醇在同型半胱氨酸诱导成骨细胞氧化损伤的保护作用及其信号机制研究,[硕士学位论文].昆明,昆明医学院,2010.
    2. Fehlings MG,Hawryluk WJ.Scarring after spinal cord injury[J].J Neurosurg Spine,2010,13: 165-168.
    3. Huang SF, Ding Y, Ruan JW, et al. An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide[J].Neurosci Res,2011,70(3):294-304.
    4. Ha-Neui Kim, Yu-Ri Kim, Ji-Yeon Jang, et al. Electroacupuncture Confers Antinociceptive Effects via Inhibition of Glutamate Transporter Downregulation in Complete Freund's Adjuvant-Injected Rats[J]. Evidence-Based Complementary and Alternative Medicine,2012:1-11.
    5. Sun T,Cui CB,Luo JG,et al.Effect of electroacupuncture on the expression of spinal glial fibrillary acidic protein,tumor necrosis factor-alpha and interleukin-lbeta in chronic neuropathic pain rats[J]. Zhen Ci Yan Jiu,2010,35(1):12-16.
    6. Mehler MF.Mabie PC,Zhang D.Bone morphogenetic proteins in the nervous system. Trends Neurosci[J].1997,20:309-317.
    7. Wrana JL, Attisano L, Carcamo J,et al.TGF beta signals through a heteromeric protein kinase receptor complex[J].Cell,1992,71:1003-1014.
    8. Ding Y, Yan Q, Ruan JW,et al.Bone marrow mesenchymal stem cells and electroacupuncture downregulate the inhibitor molecules and promote the axonal regeneration in the transected spinal cord of rats[J].Cell Transplant,2011,20(4):475-491.
    9. Dewulf N,Verschueren K,Lonnoy O,et al.Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis[J]. Endocrinology,1995,136:2652-2663.
    10. Zhang D,Mehler MF,Song Q,et al.Develop-ment of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression[J].J Neurosci.1998,18:3314-3326.
    11. Panchision DM,Pickel JM,Studer L,et al.Sequential actions of BMP receptors control neural precursor cell production and fate[J].Genes Dev,2001,15:2094-2110.
    12. Mehler MF,Mabie PC,Zhu G,et al.Developmental changes in progenitor cell respon-siveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate[J].Dev Neurosci,2000,22:74-85.
    13. Bonni A,Sun Y,Nadal-Vicens M,et al.Regulation of gliogene-sis in the central nervous system by the JAK-STAT sig-naling path way [J]. Science,1997,278:477-483.
    14. Nakashima K.Yanagisawa M,Arakawa H,et al.Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300[J].Science,1999,284:479-482.
    15.Dmitriev AE,Farhang S, Lehman RA Jr,et al. Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury penetrates intrathecally and elicits a functional signaling cascade[J]. Spine, 2010,10(1):16-25.
    16. Dmitriev AE,Castner S,Lehman RA Jr, et al. A Iterations in recovery from spinal cord injury in rats treated with recombinant human bone morphogenetic protein-2 for posterolateral arthrodesis[J].J Bone Joint Surg Am,2011,93(16):1488-1499.
    17.Li HF,Jiang XH,Zou DQ,et al.Expression of bone morphogenetic protein receptor IA in rats after contusive spinal cord injury[J].Nan Fang Yi Ke Da Xue Bao,2011,31(7):1124-1130.
    18. Parikh P,Hao Y, Hosseinkhani M,et al.Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smadl signaling pathway in adult neurons[J].Proc Natl Acad Sci USA,2011,108(19):99-107.
    19. Davies SJ,Shih CH, Noble M, et al. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury[J].PLo One,2011,6(3):173-178.
    20. Sahni V,Mukhopadhyay A,Tysseling V,et al.BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury[J].J Neurosci,2010,30(5):1839-1855.
    21. Park YM, Lee WT, Bokara KK,et al.The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells[J].PLoS One,2013,8(1):153-191.
    1. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column a preliminary report[J] Journal of the American Medical Association, 1911,57(11):878-880.
    2. Lammertse D,Tuszynski MH, Steeves JD, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel:clinical trial design [J].Spinal Cord, 2007,45(3):232-242.
    3. 徐帆,陈建敏,张晓.脊髓损伤动物模型的制备及神经功能评价[J].创伤外科杂志,2007,9(1):91-93.
    4. Falconer JC,Narayana PA,Bhattacharicc M,et al. Characterization of an experimental spinal cord injury model using waveform and morphometric analysis[J].Spine,1996,21(1):104-112
    5. Rivlin AS,Tator CH.Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat[J].Surg Neurol,1978,10:38-43.
    6. Scheff SW,Rabchevsky AQFugaccia I,et al.Experimental modeling of spinal cord injury: characterization of a force-defined injury device[J].J Neurotrauma,2003,20(2):179-193.
    7. Ghasemlou N,Kerr BJ,David S.Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury[J].Exp Neurol,2005,196(1):9-17.
    8. Peter C,Poon BS, Dimpy G,et al.Clip Compression Model Is Useful for Thoracic Spinal Cord Injuries[J].SPINE,2007,32(25):2853-2859.
    9. 李经辉,黄辉,余化霖,等.钳夹型急性大鼠脊髓损伤模型的建立与评估.[J].昆明理工大学学报.自然科学版,2012,37(6):67-75.
    10. Rivlin AS,Tator CH.Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat[J].Surgical neurology,1978,10(l):38-43.
    11. Sheng H,Wang H,Homi H M,et al.A no-laminectomy spinal cord compression injury model in mice[J] Journal of neurotrauma,2004,21 (5):595-603.
    12. Xiong Y,Hall ED,et al.Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury[J].Exp Neurol,2009,216(1):105-114.
    13. Hakan T,Toklu HZ,Biber N,et al.Meloxicam exerts neuroprotection on spinal cord trauma in rats[J].Int J Neurosci,2011,121 (3):142-148.
    14. Tralov IM. Spinal cord comp ression studies[J].A rch Neuro 1 Psychiary,1953,70 (9):813-819.
    15.张峡,王正国,朱佩芳.脊髓腹侧压迫损伤模型的建立与病理学观察[J].创伤外科杂志,2004,6(3):164-166.
    16.纪江峰,冯世庆.脊髓损伤动物模型研究进展[J].中华实验外科杂志,2006,23(9):1151-1152.
    17. Joshi M,Fehlings MG,Development and characterization of a novel,graded model of clip compressive spinal cord injury in the mouse:Part l.Clip design, behavioral outcomes,and histopathology[J].Journal of neurotrauma,2002,19(2):175-190.
    1 8.孙宇星,唐文静,黄海霞,等.兔脊髓压迫器的研制及其评价[J].中国临床解剖学杂志,2010,28(2):208-213
    19. Dabney KW, Ehrenshteyn M, Agresta CA, et al. A model of experimental spinal cord trauma based on computer controlled intervertebral distraction:characterization of graded injury[J].Spine,2004,29(21):357-2364.
    20.徐帆.陈建敏,张晓.脊髓损伤动物模型的制备及神经功能评价[J].创伤外科杂志,2007,9(1):91-93.
    21.周子强,李佛保,陈裕光.脊髓牵拉性损伤动物模型的建立[J].中国脊柱脊髓杂志,2000,10(5):269-273.
    22. Tarlov IM, Klinger H, Vitale S. Spinal cord compression studies:I. experimental techniques to produce acute and gradual compression[J].Archives of Neurology and Psychiatry,1953, 70(6):813.
    23. Fukuda S,Nakamura T.Kishigami Y.et al. New canine spinal cord injury model free from laminectomy[J]. Brain research protocols,2005,14(3):171-180.
    24. Kurt G,Ergun E.Cemil B.et al.Neuroprotective effects of infliximab in experimental spinal cord injury[J].Surgical neurology,2009,71(3):332-336.
    25.李明军,戴闽.依达拉奉对急性SCI后的大鼠神经组织氧化损害保护作用的研究[J].江西医药,2007,10(42):874-877.
    26. Zivin JA, DeGirolami U.Spinal cord infarction:a highly reproducible stroke model[J]. Stroke,1980,11(2):200-202.
    27. Marsala M,Yaksh T L.Transient spinal ischemia in the rat:characterization of behavioral and histopathological consequences as a function of the duration of aortic occlusion[J] Journal of Cerebral Blood Flow & Metabolism,1994,14(3):526-535.
    28. Georgios HS,Sharma A.Rodent spinal cord injury model and application of neurotrophic factors for neuroprotection[M].Neurotrophic Factors. Humana Press,2012:393-415.
    29. Kanellopoulos GK,Kato H,Hsu CY,et al.Spinal cord ischemic injury development of a new model in the rat[J].Stroke,1997,8(12):2532-2538.
    30.伍亚民,王正国,朱佩芳,等.脊髓缺血损伤模型及行为学的实验研究[J].中华创伤杂志2000,16(3):157-159.
    31. Martinez -Arizala A,Mora RJ,Madsen PW,et al.Dorsal spinal venous occlusion in the rat.[J].J Neurotrauma,1995,12(2):199-208.
    32.周长满,王雪岷.海人藻酸致大鼠脊髓损伤模型的光镜和电镜研究[J].神经解剖学杂志,1995,11(4):375-378.
    33.高梁斌,廖维宏,胡文辉,等.脊髓纵向压缩过程中脊髓诱发电位、血流量和微循环变化[J].中国脊柱脊髓杂志,1992,2(5):209-214.
    34. Lonjon N,Kouyoumdjian P,Prieto M,et al.Early functional outcomes and histological analysis after spinal cord compression injury in rats:Laboratory investigation[J] Journal of Neurosurgery: Spine,2010,12(1):106-113.
    35. Piao MS, Lee JK, Jang JW,et al.A mouse model of photochemically induced spinal cord injury[J].J Korean Neurosurg Soc,2009,46(5):479-483
    36.孙宇星,唐文静,黄海霞,等.兔脊髓压迫器的研制及其评价[J].中国临床解剖学杂志,2010,28(2):37-41.
    37. Saklayen M QGoldstein D L,Park Y S, et al. Animal model of spinal cord infarction induced by cholesterol embolization[J].The American journal of the medical sciences,1995,309(1):49-52.
    38.陈长青,李家顺,贾连顺,等.脊髓火器伤动物模型的建立[J].中国骨与关节损伤杂志,2005,20(9):611-613.
    39. Reis FM,Esteves AM,Tufik S,et al.Plasma iron levels appraised 15 days after spinal cord injury in a limb movement animal model[J].Spinal cord,2010,49(3):361-364.
    40. Min SH,Lee SH,Shim H,et al.Development of complete thoracic spinal cord transection model in rats for delayed transplantation of stem cells[J].Spine,2011,36(3):155-163.
    41. Sadlaoud K,Tazerart S,Brocard C,et al.Differential plasticity of the GABAergic and glycinergic synaptic transmission to rat lumbar motoneurons after spinal cord injury[J].Journal of Neuroscience,2010,30(9):3358-3369.
    42. Kim QKang YM,Phi JH, et al.Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model[J].Cytotherapy,2010,12(6):841-845.
    43. Becker D,Sadowsky CL,McDonald JW.Restoring Function after spinal cord injury[J].Neurologist. 2003,9(1):1-15.
    44. Raineteau O,Schwab ME.Plasticity of motor systems after incomplete spinal cord injury[J].Nat Rev Neurosci,2001,2:263-273
    45. Profyris C,CheemaSS,Zang D,et al.Degenerative and regenerative mechanisms governing spinalcord injuy[J].Neurobiol Dis,2004,15(3):415-436
    46. Deng W, Poretz RD.Oligodendmglia in developmental neurotoxicity[J].Neurotoxicology, 2003,24(2):161-178.
    47. Baumann N,Pham-Dinh D.Biology of oligodendrocyte and myelin in the mammalian central nervous system[J].PhysiolRev,2001,81 (2):871-927
    48. Gomes LW,Corkill DJ,Ferier MA,et al.Astrcoytosis, micorglia activation,oligod-endorcyte degeneration and pyknosis following acute spinlacord injury[J].ExpNeurol,2004,190(2):456-467
    49. Atkinson S,LI YQ,Wong S. Changs in oligodendrocytes and myelin gene expression afte radiation in the rodent spinal cord[J].J Radia Oncology Biol Phys,2003,57(4):1093-1100.
    50. Qun Li.Electrical Stimulation Promote Proliferation and Differentiation of Endogenous Neural Stem Cells in Normal and Injury Spinal Cord[J].Acupuncture Research,2008,33:34-36.
    51.扬成,刘同慎,吴洪华,等.电针对脊髓损伤后少突胶质细胞再髓鞘化的影响[J].解剖学杂志,2005,28(4):391-394.
    52. Franklin RJ,Blakemore WF.Requierments for Schwann cell migration.Wihtin theCNS environments:A viewpoint Int[J].J Dev Neurosci,1993,11(5):461-469.
    53. Ruitenberg MJ,Vukovic J.Sarich J,et al.Olfactory ensheathing cells:characteristics, genetic engineering, and therapeutic potential[J].J Neurotrauma,2006,23(3-4):468-478
    54. Franklin RJ,Gilson JM,Franceschinni IA,et al.Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS[J].Glia,1996,17(3):217-224
    55.黄红云,王洪美,陈琳,等.嗅鞘细胞移植治疗晚期脊髓损伤临床试验初步报告[J].立体定向和功能性神经外科杂志,2004,17(6):348-350.
    56.黄红云.王洪美,修波,等.嗅鞘细胞移植治疗脊髓损伤临床试验的初步报告[J].海军总医院学报,2002,15(1):18-21.
    57. Su Z,Yuan Y,Chen J,et al.Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-a[J].J Neurotrauma,2011.28(6):1089-1100.
    58. Sun F,Lin CL,McTigue D,et al.Effects of axon degeneration on oligodendrocyte lineage cells: dorsal rhizotomy evokes a repair response while axon degeneration rostral to spinal contusion induces both repair and apoptosis[J].Glia,2010,58(11):1304-1319
    59. Keirstead HS,Ben-Hur T,Rogister B,et al,PSA-NCAM positive CNS precursors generate both oligodendrogytes and Schwann cells to remyelinate the CNS following transplantation[J].J Neurosci,1999,19(17):7529-7536.
    60. Targett MP,Sussman J,Scolding N,et al.Failure to achieve remyeliantion of demyelianted rat axons following transplantion of glials cells obtained from the adult human brain.Neuropathol Appl [J].Neurobiol,1996,22(3):199-206.
    61.李明.大鼠实验性脊髓损伤后小胶质和少突胶质细胞的变化[J].安徽医药,2010,14(3):301-303.
    62. Labombarda F,Gonzalez S, Lima A,et al.Progesterone attenuates astro-and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury[J].Exp Neurol, 2011,231(1):135-146.
    63.吴波,孙磊,任先军,等.少突胶质前体细胞移植治疗对大鼠脊髓损伤轴突髓鞘化的影响[J].中华创伤杂志,2010,26(11):1035-1039.
    64. Florencia L,Susana G,Maria C et al.Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord[J].J Neuortraum,2006,23:181-192.
    65. Michael S,Rachida QFrancoise R,et al.Local synthesis and dual actions of progesterone in the nervous system:neuroprotection and myelination[J].Growth Horm IGF Res,2004,14:18-23.
    66.李立新,徐启武等.甲基强的松龙和脑源性神经生长因子联合治疗促进大鼠脊髓损伤后髓鞘再生和功能恢复[J].中华创伤杂志,2002,18(7):420-422.
    67. Kim Y,Park YK,Cho HY,et al.Long-term changes in expressions of spinal glutamate transporters after spinal cord injury[J].Brain Res,2011,1389:194-199.
    68. Zeng J,Yao J,Wang Q,et al.Effect of propofol on spinal excitatory amino acid accumulation, [J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2009,23(6):723-726.
    69. Kotipatruni RR,Dasari VR,Veeravalli KK,et al.p53-and Bax-mediated apoptosis in injured rat spinal cord[J].Neurochem Res,2011,36(11):2063-2074..
    70. Yang P.Lentiviral vector mediates exogenous gene expression in adult rat DRG following peripheral nerve remote delivery[J].J Mol Neurosci,2012,47(1):173-179.
    71. Urist M R. Bone:formation by autoinduction[J].Science,1965,150(3698):893-899.
    72. Miyazono K,Maeda S,Imamura T.BMP receptor signaling:transcriptional targets.regulation of signals, and signaling cross-talk[J].Cytokine & growth factor reviews,2005,16(3):251-263.
    73. Matsuura I,Taniguchi J,Hata K,et al.BMP inhibition enhances axonal growth and functional recovery after spinal cord injury[J].Journal of neurochemistry,2008,105(4):1471-1479.
    74.王亚平.大鼠钝性脊髓损伤后骨形态发生蛋白(BMPs)的表达分布及作用[D].中南大学,2007.
    75. Dewulf N,Verschueren K,Lonnoy O, et al.Distinct spatial and temporal expression patterns of two type 1 receptors for bone morphogenetic proteins during mouse embryogenesis[J].Endocrinology, 1995,136(6):2652-2663.
    76. Zhang D.Mehler MF,Song Q,et al.Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression[J].The Journal of neuroscience, 1998,18(9):3314-3326.
    77. Panchision DM,Pickel JM.Studer L,et al.Sequential actions of BMP receptors control neural precursor cell production and fate[J].Genes & development,2001,15(16):2094-2110.
    78. Mehler MF, Mabie PC, Zhu G, et al. Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate[J]. Developmental neuroscience,2000,22(1-2):74-85.
    79. Bonni A,Sun Y,Nadal-Vicens M,et al.Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway[J].Science,1997,278(5337):477-483.
    80. Nakashima K.Yanagisawa M,Arakawa H,et al.Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300[J].Science,1999,284(5413):479-482.
    81. Dmitriev A E,Farhang S,Lehman R A,et al.Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury penetrates intrathecally and elicits a functional signaling cascade[J].The Spine Joumal,2010,10(1):16-25.
    82. Parr AM,Kulbatski I.Tator CH.Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury[J].Journal of neurotrauma,2007,24(5):835-845.
    83. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences[J].Developmental neuroscience,2009,32(12):638-647.
    84. Hobohm C,Gunther A,Grosche J,et al.Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats[J].Journal of neuroscience research,2005,80(4):539-548.
    85. Berry M,Maxwell WL,Logan A, et al.Deposition of scar tissue in the central nervous system[J]. Acta neurochirurgica Supplementum,1983,32:31-53.
    86. Alonso G.NG2 proteoglycan-expressing cells of the adult rat brain:possible involvement in the formation of glial scar astrocytes following stab wound[J].Glia,2005,49(3):318-338.
    87. West H,Richardson WD,Fruttiger M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes development[J] Journal of neuroscience research, 2005,132(8):1855-1862.
    88. Kozuka N,Itofusa R,Kudo Y,et al.Lipopolysaccharide and proinflammatory cytokines require different astrocyte states to induce nitric oxide production[J] Journal of neuroscience research, 2005,82(5):717-728.
    89. Schachtrup C,Ryu JK,Helmrick MJ,et al.Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage[J].The Journal of Neuroscience, 2010,30(17):5843-5854.
    90. Setoguchi T,Nakashima K,Takizawa T,et al.Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor[J].Experimental neurology,2004,189(1):33.
    91.马敏杰,贺西京,王国毓,等.大鼠脊髓损伤后骨形态发生蛋白-2表达变化的规律及意义[J].中国脊柱脊髓杂志,2011,21(4):329-333.
    92.张萌,张开放,赵海恩,等.大鼠脊髓损伤后BMP-7表达相关性研究[J].陕西中医,2012,33(8):1090-1091.
    93.李华凤,江兴华,邹定全,等.大鼠钝性脊髓损伤后BMP-la型受体的表达[J].南方医科大学学报,2011,31(7):1124-1130.
    94. Dmitriev AE,Castner S,Lehman RA,et al. Alterations in Recovery from Spinal Cord Injury in Rats Treated with Recombinant Human Bone Morphogenetic Protein-2 for Posterolateral Arthrodesis. [J].The Journal of Bone & Joint Surgery,2011,93(16):1488-1499.
    95. Li HF, Jiang XH,Zou DQ, et al. Expression of bone morphogenetic protein receptor IA in rats after contusive spinal cord injury [J].Journal of Southern Medical University,2011,31(7):1124-1130.
    96. Parikh P,Hao Y,Hosseinkhani M,et al.Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smadl signaling pathway in adult neurons[J].Proceedings of the National Academy of Sciences,2011,108(19):99-107.
    97. Davies SJ,Shih CH,Noble M,et al.Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury[J].PloS one,2011,6(3):173-178.
    98. Sahni V,Mukhopadhyay A.Tysseling V,et al. BMPRa and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury[J].The Journal of Neuroscience,2010,,30(5):1839-1855.
    99. Gazzerro E,Canalis E. Bone morphogenetic proteins and their antagonists.Reviews in Endocrine and Metabolic[J].Disorders,2006,7(1-2):51-65.
    100. Chiba S,Kurokawa MS,Yoshikawa H,et al.Noggin and basic FGF were implicated in forebrain fate and caudal fate, respectively of the neural tube-like structures emerging in mouse ES cell culture[J].Experimental brain research,2005,163(1):86-99.
    101. Hampton DW, Asher RA, Kondo T, et al. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo[J].European Journal of Neuroscience,2007,26(11):3024-3035.
    102.孙弦,周盛年,张明丽,等.转染Noggin丛囚的骨髓丛质干细胞体外分化为神经元样细胞的研究[J].中国老年学杂志,2009,29(8):930-933.
    103. Matsuura I,Taniguchi J,Hata K, et al.BMP inhibition enhances axonal growth and functional recovery after spinal cord injury[J].Journal of neurochemistry,2008,105(4):1471-1479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700