滨里海盆地典型盐下碳酸盐岩油藏地震成像和储层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨里海盆地典型盐下碳酸盐岩油藏由于上部有巨厚盐丘(盐层厚度变化从数十米到3700m不等),盐丘和围岩间存在巨大的速度差异,因此造成盐下地震波场十分复杂,地震资料的分辨率和信噪比低,盐丘侧翼和盐下构造地震成像困难;另外盐下碳酸盐岩储集体非均质性强,油气成藏控制因素复杂,加上盐丘对地震信号的畸变,导致储层识别和预测难度大。本文以滨里海盆地肯基亚克和让纳若尔油田为研究对象,开展了地震成像和储层预测研究。
    在研究工作中,本文提出了创新链和创新组合的概念,在重视创新点的前提下、更加强调创新链和创新组合的作用,并将这种认识成功应用到盐下碳酸盐岩油藏的地震成像和储层预测过程中。
    在地震成像中,应用了叠前去噪、面元均化、子波整形、时频域振幅补偿和球面扩散补偿、三维DMO叠加、Stolt偏移等多项关键技术,经过新一轮有针对性的攻关处理,使地震剖面的波组特征更加清楚、分辨率有所提高、各种地质现象更加清晰、局部偏移归位更加合理,为储层预测打下了坚实基础。
    本文提出了正反演联合储层预测的思路,强调地质正演模型分析的思想,针对不同成因的储层,优选不同的储层预测方法,将地质模型和预测结果有机地结合起来,相互刻度,循环验证,大大减少了地震反演的多解性。
    建立了该地区高分辨率层序地层格架,将盐下石炭系巴什基尔阶和谢尔普霍夫阶共分为6个准层序组,共16个准层序,层序划分结果为储层预测研究提供格架,从而提高储层预测的精度。
    综合应用地质、地震、测井、油藏等多方面资料,以建立不同成因储层的地球物理响应特征(测井和地震响应特征)作为储层预测的关键,以地震储层预测方法为主线,综合应用各种地震属性、地震道波形分类、分频信息、相干体属性和三维可视化手段,沿着由岩相寻找有利沉积相带、由物性寻找有利储层、由裂缝寻找高产带的步骤,建立了断裂、岩相、岩溶和裂缝的地质模型,形成了一套比较完整的盐下碳酸盐岩储层预测的配套技术和方法。
    根据预测结果,提出了5口加密井部署方案,实施后原油平均单井日产量由原来的70吨提高到269吨,其中两口井单井日产量超过500吨,一口井单井日产量突破1000吨,经济效益十分显著。
    盐下碳酸盐岩油气藏储层预测研究不仅具有重大的理论意义,而且具有非常显著的社会意义。
For pre-salt carbonate reservoirs in Pre-Caspian Sea basin, there are massive saltdomes whose thickness varies from several dozen meters to 3700m and velocitydifference is big from that of the wall rock, which makes the seismic wave field onpre-salt domes becoming very complicated, seismic resolution and signal noise ratiobeing very low, and seismic imaging on salt dome's flanks and pre-salt structuresbecoming very difficult. On the other hand, pre-salt carbonate formations have seriousheterogeneity and the controlling factors to form reservoir are very complicated,which, combined with the seismic events being distorted duo to the effect of saltdomes, enlarges the difficulty in reservoir identification and prediction. This paper,taking the Kenjiyak and Zarnor pre-salt reservoirs of the Pre-Caspian Sea basin as itsresearch objects, presents the study on seismic imaging and reservoir prediction.
    In the process of study, this paper provides the concepts of the innovation chainand the innovation combination. On the premise of thinking much of innovation spots,we emphasize the function of the innovation chain and the innovation combinationand apply this idea through seismic imaging into reservoir prediction of the carbonatereservoirs successfully.
    In seismic imaging, a series of techniques for enhancing resolution and signalnoise ratio were adopted, such as pre-stack de-noising, averaging bin size, waveletsform normalization, amplitude compensation in time and frequency domains andspherical spreading compensation, 3D DMO stack as well as Stolt migrationtechniques. Through new round tackling ken problems on seismic processing, seismicprofile quality and seismic resolution were improved, seismic migration locationbecame more reasonable, varied geology bodies became clearer, which then lay downa solid foundation for reservoir prediction.
    This paper sets forth the united forward and inversion reservoir prediction, whichemphasizes the analysis of geological forward model and screening separately thebest prediction methods for reservoirs of different origins. This approach integratesthe geological forward model with prediction results organically and calibrates andcorrects them interactively to reduce significantly the multi-solutions of seismicinversion.
    High resolution sequence stratigraphy study was done on this area. Throughstratigraphic correlation, 6 para-sequence group and 16 para-sequences wereidentified in C Formation. Sequence stratigraphy results can provide the frame for
    reservoir prediction, and so enhance the precision of reservoir prediction.For the features of extraordinarily low porosity and permeability, minor fracturesystem and cave growing in carbonate reservoirs, as well as many other kinds ofinformation such as geology, seismic, logging and reservoir data were combinativelyused to generate the geophysical(log and seismic) response features to differentreservoirs of various origin, which is used as the key prediction factor. Taking seismicprediction as the main thread, and comprehensively using varied seismic attributes ,seismic trace wave classification, spectrum decomposition, coherence property and3D visualization, looking for favorable sediment facies by lithofacies study, searchinggood beds by petrophysical study, and identifying high productive zone by fracturestudy were carried out and then relatively completed workflow and techniques forthe reservoir prediction were formedBased on the result of prediction, a five well in-fill drilling program was set andafter the program was implemented the average daily production rate per well wasraised from 70 to 269 tons, showing very good economic benefit.Pre-salt carbonate reservoir prediction not only has a great theoretical meaning,but produces vast social values.
引文
[1]马永生,梅冥相,陈小兵,等.碳酸盐岩储层沉积学.地质出版社:1999,141-144
    [2]冯增昭.沉积岩石学,下册.北京:石油工业出版社:1993,286-318
    [3]Shaw, A.B., 1972: Time in stratigraphy, p.42-49
    [4]M.L.Irwin 著.1965,冯增昭译.陆表海清水沉积作用的一般原理.见阿斯兰尼等著,冯增昭等译:石油地质学译文集,第四集,碳酸盐岩沉积环境,科学出版社:1980,10-24
    [5]Laporte L.F., Recognition of a transgressive carbonate sequence within an epeiric sea: Helderberg Group (Lower Devonian) of New York state, In: Friedman, G.M.,1969:Depositional environments in carbonate rocks, SEMP Special Publication,17, 1969,p98-119
    [6]L.M. Young 等著,1965,冯增昭译.北阿肯色奥陶系碳酸盐相,见阿斯兰尼等著,冯增昭等译:石油地质学译文集,第四集,碳酸盐岩沉积环境,科学出版社:1980,80-93
    [7]Armstrong, A.K., Carboniferous carbonate depositional models, preliminary lithofacies and paleotectonics maps, Arctic Alaska. Bulletin AAPG, V.58, No.4, 1974, p.621-645
    [8]Wilson J.L., Carbonate facies in geology history: New York, Springer-Verlag, 1975,
    [9]Eberli G.P., and R.N.Ginsburg, Cenozonic Progradation of northwestern Great Bahama Bank, a record of lateral platform growth and sea level fluctuations in P.D.Crevello, J.L.Wilson, J.F.Sarg, and J.F.Read, Eds., Controls on Carbonate Platform and Basin Development:SEPM Special Publication No.44, 1989,p 339-351
    [10]Handford C.R. and R.G.Loucks, Dynamic response of carbonate systems tracts to relative sea level changes and the development of carbonate sequences in platforms and ramps(abstract):AAPG Bulletin,v 74, 1990,p 669
    [11]Handford C.R. and R.G.Loucks, Unique signature of carbonate strata and the development of deposition sequence and systems tract models for ramps,rimmed shelves, and detached platforms: AAPG Bulletin,v.75, 1991,p 588
    [12]Hardie L.A., E.Newton-Wilson, and R.K.Goldhammer, Cyclostratigraphy and dolomitization of the Middle Triassic Latemar buidup, the Dolomites, northern Italy: Guidebook Excursion F, Dolomieu Coference on Carbonate Platforms and Dolomitization, Oritiser, Italy, 1991, p.56
    [13]Jacquin T., A.Amaud-Vanneau, H.Amaud, C.Ravene, and P.R.Vail, Systems outcrops from platforms to basin at the scale of seismic lines: Marine and Petroleum Geology, v.8, 1991,p 122-139
    [14]Sarg, J. F., Carbonate sequence stratigraphy, in C. k. Wilgus, B.S. Hastings, etc., eds., Sea level Changes: An Integrated Approach: SEPM Special Publication No.42, ,1988, p.155-181
    [15]James,N. P. ,Facies models 9. Introduction to carbonate facies models, in R.G. Walker,ed., Facies Models: Geoscience Canada Reprint Series 1, p.105-107
    [16]Schlager, W. and O. Camber, Submarine slope angles, drowing unconformities, and self-erosion of limestone escarpments: Geology,v.14, 1986,p.762-765
    [17]Davies, P.J.P.A.Symonds, D.A.Feary, and C.J.Pigram, The evolution of the carbonate platforms of northeast Australia, in P.D.Crevello, J.L.Wilson, J.F.Read, Eds., Controls on Carbonate Platform and Basin Development:SEPM Special Publication No.44, 1989, p.233-258
    [18]Hopley, D., The Geomorphology of the Great Barrier Reef: New York, John Wiley and Sons, 1982, p.453
    [19]Schlager, W., Depositional bias and environmental change – important factors in sequences stratigraphy: Sedimentary Geology,v.70, 1991,p.109-130
    [20]Robert G.Loucks and J.Frederick 主编,马永生,刘波,梅冥相等译,碳酸盐岩层序地层学-近期进展及应用,海洋出版社:2003,6:391-398
    [21]R.L. Folk 著,1962,冯增昭译石灰岩类型的划分,见地质资料汇编,第三集,科学技术文献出版社重庆分社: 1975,1-19
    [22]R.J. Dunham 著,1962,冯增昭译.碳酸盐岩的沉积结构分类,见地质资料汇编,第三集,科学技术文献出版社重庆分社:1975,p 37-45
    [23]冯增昭.沉积岩石学,上册,北京:石油工业出版社:1993,p 240-272
    [24]Vail P.R., Seismic stratigraphy interpretation using sequence stratigraphy, in A.W.Bally, ed., Atlas of Sesmic Stratigraphy: AAPG Studies in Geology 27,v.1, 1987,1-10
    [25]Vail P.R., Mitchum R.M., Jr. and Thompson S., Seismic stratigraphy and global changes of sea leavl, Part: relative changes of sea level from coastal onlap. Am. Assoc.Petroleum Geology Memoir 26, 1977,63-81
    [26]邓宏文.高分辨率层序地层学.石油与天然气地质,16(2):1995,89-97
    [27]顾家裕,邓宏文,朱筱敏主编.层序地层学及其在油气勘探开发中的应用,石油工业出版社,1997,p 82-86
    [28]朱筱敏编著.层序地层学, 石油大学出版社,2000,p11-41
    [29]M. T. Whalen, Jed Day, Gregor P. Eberli, Peter W. Homewood;Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada , Palaeogeography, 2001,9:p127-151
    [30]Schalager w., Depositional bias and environmental changes – important factors in sequence stratigraphy: Sedimentary Geology, v.70, 1991,p 109-130
    [31]T. Pawellek,T. Aigner,Stratigraphic architecture and gamma ray logs of deeper ramp carbonates (Upper Jurassic, SW Germany),Sedimentary Geology,2003,159:203-240
    [32]刘震编著.储层地震地层学,北京:地质出版社,1997,p 51-54
    [33]池秋鄂,龚福华编著.层序地层基础与应用,北京:石油工业出版社,2001,p 66-81
    [34]D.Olivero,Zoophycos distribution and sequence stratigraphy. Examples from the Jurassic and Cretaceous deposits of southeastern France , Palaeogeography, Palaeoclimatology, Palaeoecology,1996,123:p 273-287
    [35]E.A.Mancini , T . Markham Puckett and Berry H . Tew,Integrated biostratigraphic and sequence stratigraphic framework for Upper Cretaceous strata of the eastern Gulf Coastal Plain , USA,Cretaceous Research,1996,17 :p 645 – 669
    [36]Haq B.U., J.Hardenbol, and P.r.Vail, 1987, Chronology of fluctuating sea levels since the Triasic: Science,v.235,1156-1166
    [37]Markus Wilmsen ,Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in orthern Germany,Cretaceous Research,2003,24:p 525-568
    [38]McLean, D.J., Mountjoy, E.W., Allocyclic control on Late Devonian buildup development, Canadian Rocky Mountains. J. Sediment. Res. 64, 1994,p 326-341
    [39]李庆忠. 走向精确勘探的道路. 北京:石油工业出版社,1994
    [40]高军等.时频域球面发散与吸收补偿.石油地球物理勘探. VOL31,NO 6,1996,p 865~866
    [41]凌云等.三维地震数据的分析和监测方法研究.石油地球物理勘探. VOL37,NO5: 2002,433~440
    [42]李承楚等.地震勘探新技术.石油工业出版社,1999
    [43]凌云等.纵波 VTI 介质理论与应用研究.石油地球物理勘探,2002, VOL37,NO 6 : p 267~275
    [44]穆龙新.油藏描述的阶段性及特点.石油学报,2000;21(5):p 103~108
    [45]尹寿鹏,王贵文.测井沉积学研究综述.地球科学进展,1999;14(5):p 440~445
    [46]曾文冲.油气藏储集层测井评价技术.北京:石油工业出版社,1991:88-91
    [47]王兆年.川西白马庙地区蓬莱镇组储层测井评价方法.天然气工业,2001;21( 3 )
    [48]Amaefule J and Alrunbay M. .Enhanced reservoir description: using core and log data to identify hydraulic units and predict permeability in uncored intervals well.SPE26436,1993
    [49]袁志祥.鄂尔多斯盆地塔巴庙地区奥陶系风化壳岩溶地震相特征与天然气勘探. 天 然 气 工 业,2001;21(3)
    [50] Dubrukle O etal. Geostatistical reservoir characterization constrained by 3-D seismic data. Petroleum Geoscience, Vol 4,1998.47-57
    [51]F.X.Jian 等,胡恒、文武译.预测岩石物理性质的成因法.国外油气勘探, 1995;7(2)
    [52]陈遵德.储层地震属性优化方法.石油工业出版社,1998
    [53] Victor Linari et al.Seismic Facies Analysis Based 3D Multi-Attribute Volume ClassificationThe Leading Edge 2003,22(1)
    [54]中国石油天然气股份有限公司勘探与开发生产分公司编. 储层预测技术及应用实例. 北京:石油工业出版社,2000
    [55]Tjolsen C.B., etc. . Seismic data can improve stochastic facies modeling. SPE Formation Evaluation,1996;11(3):141-145
    [56]高先志,戴建春,曾洪流等. 用层间地震速度差异预测地层的岩性及含油气性.石油大学学报,1996,20(2):17~22
    [57] M.Bahorich and S.Farmer;3-D Seismic discontinuity for faults and stratigraphic features: The coherence cube, The Leading Edge,Vol.14,1995
    [58]倪逸,杨慧珠,郭玲萱等. 储层油气预测中地震属性优选问题探讨. 石油地球物理勘探,1999,34(6):614~626.
    [59]张应波,张骥东,地震岩性预测新方法探索. 石油地球物理勘探,1999,34(6):711~722
    [60]秦月霜,陈显森,王彦辉. 用优选后的地震属性参数进行储层预测.大庆石油地质与开发,2000,19(6):44~45
    [61]张娥,高书琴,侯成福等. 利用地震属性预测砂岩储集层厚度及含油饱和度. 石油勘探与开发,2000,27(1):92~94
    [62]王玉梅,季玉新,李东波等. 应用地震属性技术预测 A 地区储层. 石油物探,2001,40(4):69~76
    [63]乐友喜. 利用模型技术研究地震属性的地质意义. 物探与化探,2001,25(3):191~197
    [64]刘宪斌,林金逞,韩春明等. 地震储层研究的现状及展望. 地球学报,2002,23(1):73~78
    [65]Chen Q Sidney S. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge,1997, 16(5):445~450
    [66]Kalkomey C T. Potential risks when using seismic attributes as predictors of reservoir properties. The Leading Edge,1997, 16(3):247~251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700