乳腺自动全容积成像技术对乳腺癌诊断价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:首次前瞻性研究自动全乳容积成像技术(ABVS)对多灶性及多中心性乳腺癌(MMBC)的诊断价值,并以全乳连续切片病理检查作为金标准,与常规超声(HHUS)进行前瞻性平行对照,探讨此项新技术的临床应用价值。
     资料与方法:254例纳入者共取得94个全乳病理学标本,其中2例为同期双侧乳腺癌。所有研究对象术前均完成ABVS及常规超声检查,采用全乳病理检查作为金标准,分析ABVS诊断MMBC的敏感性、阳性预测值、准确性、真阳性、假阳性及假阴性,进一步确定ABVS的诊断效能与影响因素(病理类型、超声图像模式及病灶大小)之间的相互关系。比较常规超声及ABVS在上述诊断指标之间的差异性,以及两者的诊断差异与病理类型、超声图像模式及病灶大小之间的相关性。另一方面,分析ABVS假阴性病灶中浸润灶/非浸润灶比值及病灶大小与病灶特征,并进一步总结两种诊断方法在不同病理类型(浸润性癌或导管内原位癌)中的敏感性及阳性预测值差异。根据病灶数量及位置是否与病理一致,将结果分为低估诊断,准确诊断及高估诊断,明确ABVS诊断的准确率。全部资料进行相应统计学分析。
     结果:94个送检乳腺中,经病理证实单灶乳腺癌32个,多灶性乳腺癌46个以及多中心性乳腺癌16个,总计196个恶性病灶(171个浸润癌,25个原位癌)。常规超声总计发现155(90.6%)个浸润灶及11(44.0%)个非浸润灶,ABVS总计发现154(90.1%)个浸润灶及19(76.0%)个非浸润灶。全部病灶中,ABVS及常规超声诊断一致病灶172个(87.8%)。浸润灶中两者的一致性明显高于非浸润灶(91.8%vs.60.0%)。ABVS和常规超声诊断MMBC的总敏感性分别为84.7%及87.8%(p>0.05)。浸润癌中的敏感性分别为89.5%及90.6%(p>0.05)。原位癌中的敏感性分别为76.0%及44.0%(p<0.05)。常规超声及ABVS分别漏诊30个和24个癌灶。漏诊病灶直径中位数分别为7.5mm和8.0mm(p=0.923);漏诊病灶浸润/非浸润为1.1:1及3.0:1(p=0.101)。ABVS及常规超声诊断的PPV分别为86.0%和75.1%(p<0.05)。肿块型病灶中,ABVS和常规超声诊断的敏感性分别为92.5%和93.7%(p>0.05);PPV分别为86.6%和86.5%(p>0.05)。非肿块型病变中,敏感性分别为77.8%、60.4%(p<0.05);PPV分别为84.5%、48.5%(p<0.001)。ABVS对69例(73.4%)患者术前做出正确诊断,其中包括78.3%(36/46)的多灶性乳癌及56.3%(9/16)的多中心性乳癌。评估的准确率均高于常规超声(59.6%、52.2%及43.8%)。
     结论:ABVS对诊断MMBC具有较高敏感性及PPV,有助于检出常规超声隐匿的癌灶,可提高术前诊断MMBC的准确性。尤其针对DCIS癌灶、非肿物型病变及小病灶具有明显优势。ABVS在术前评价多发乳腺癌方面具有较好的临床应用前景,其对患者预后的影响尚需大规模研究进一步证实。
     目的:比较乳腺自动全容积成像技术(ABVS)与常规超声在术前检测和评估单纯性导管内原位癌(DCIS)病灶范围的诊断价值,并与组织病理学结果相对照。探讨此项新技术在制定手术方案中的应用价值。
     资料与方法:采用前瞻性研究。254例纳入者中,最终,经病理证实为单纯性DCIS的33例序贯女性患者(平均年龄:52岁;年龄中位数:49岁)进入统计学分析。所有研究对象均完成ABVS及常规超声检查,对两者所测肿瘤大小的准确性进行评价。对照组织病理学结果,根据常规超声及ABVS与病理结果之间的差异,将诊断结果分类。比较常规超声及ABVS所测DCIS病灶大小差异的显著性。此外,分析比较两种成像模式与病理之间的相关性。
     结果:ABVS所测定的DCIS病灶大小与术后病理未出现显著差异性(p=0.358)。ABVS准确诊断(±5mm)DCIS病灶的63.64%(N=21),低估病灶18.18%(N=6),高估病灶18.18%(N=6)。并对59%(13/22)的高级别病灶及73%(8/11)的非高级别病灶做出准确评价。ABVS与病理结果之间的差异较常规超声显著减低(p=0.006).ABVS与病理的相关系数明显高于常规超声(0.720,p<0.001vs.0.371,p<0.05)。
     结论:本研究显示,ABVS可以作为术前评估单纯性DCIS病灶范围的有效手段,其诊断准确性优于常规超声,尤其对于广泛分布的弥漫性原位癌病灶具有明显优势。ABVS的全容积成像特点有可能在保乳术前提供更加精确的诊断信息。此技术在不增加手术切缘阳性的同时,有助于确定适当的手术切缘,从而提高保乳手术的成功率。
Objective:This prospective study aims to evaluate the efficacy of preoperative automated breast volume scanner (ABVS) in the detection of multifocal multicentric breast carcinoma (MMBC), defined by pathology on surgical specimens, and the effect of ABVS information on therapeutic decisions.
     Materials and methods:Two hundred and fifty-four patients who were suspected of having breast cancer underwent ABVS examination prior to surgery and133women with breast carcinoma pathologically diagnosed on surgical specimens. The gold standard was pathologic examination of the whole excised breast (slice thickness,5mm). The radiologists were evaluated all neoplastic foci, and blinded to the original mammograms and conventional hand-held ultrasonography (HHUS) reports. With regards to ABVS, our considered size of the lesions, BI-RADS classification and imaging pattern and lesion characteristics. According to the histological size, the lesions were classified as:1st cancer,2nd lesion,3rd lesion,4th lesion, and5th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity and positive predictive values were calculated for ABVS and HHUS for detecting the presence of the index cancer as well as additional satellite lesions.
     Results:Of94breasts, pathologic findings revealed32unifocal,46multifocal, and16multicentric cancers for a total of196malignant foci (171invasive and25in situ). Overall sensitivity was84.7%(166/196) for HHUS and87.8%(172/196) for ABVS (not significant);90.6%(155/171) and89.5%(153/171) for invasive foci (not significant); and44.0%(11/25) and76.0%(19/25) for in situ foci (p<0.05), respectively. HHUS and ABVS missed30and24malignant foci, respectively, with median diameters of7.5mm and8.0mm (not significant) and an invasive-noninvasive ratio of1.1:1(16/14) and3.0:1(18/6)(not significant), respectively. The overall positive predictive value (PPV) was75.1%(166/221) for HHUS and86.0%(172/200) for ABVS (p<0.05). In malignant foci with a mass-like imaging pattern, sensitivity was93.7%for HHUS and92.5%for ABVS (not significant), and the PPV was86.5%and86.6%(not significant), respectively. In malignant foci with non-mass-like pattern, the sensitivity was60.4%and77.8%(p=0.01), and the PPV was48.5%and84.5%(p<0.001), respectively. ABVS imaging identified15HHUS occult malignant lesions. On the basis of these US findings, therapy was correctly changed in12patients (13.0%). The diagnostic performance in terms of understaging, correct staging, and overstaging on a breast-by-breast basis are13.8%,73.4%,12.8%for ABVS and17.0%,59.6%,23.4%for HHUS.
     Conclusions:In patients with MMBC, preoperative ABVS imaging is useful for detecting additional synchronous malignancies that are not detected on conventional HHUS. ABVS was more sensitive than conventional HHUS for the detection of multiple malignant foci in non-mass-like imaging pattern and non-invasive cancer foci. The use of preoperative ABVS imaging as an adjunct to conventional HHUS in women with MMBC is especially beneficial.
     Objective:The goal of the study described here was to compare the accuracy of an automated breast volume scanner (ABVS) with that of hand-held ultrasound (HHUS) in assessing the pre-operative extent of pure ductal carcinoma in situ (DCIS).
     Materials and methods:This prospective study consisted of33patients with histopathologically proven pure DCIS who received conventional HHUS and ABVS examinations. The discrepancy and correlation coefficients were calculated to assess differences in sizes determined by imaging and histopathologic examination.
     Results:Mean age was51.8y. Mean lesion size as assessed with the ABVS did not differ significantly from that determined by histopathology. Lesion size was adequately estimated, under-estimated or over-estimated with the ABVS in64%,15%and21%of patients, and with HHUS in42%,15%and42%, respectively (p<0.05). The coefficient of correlation between histopathologic and ABVS measurements was higher than that between histopathologic and HHUS measurements.
     Conclusions:The ABVS appears to assess the extent of the lesion better than HHUS and can provide more accurate information pre-operatively.
引文
1. Jemal A, Siegel R, Xu J,et al. Cancer statistics[J]. CA-A Cancer Journal for Clinicians,2010,(60):277-300.
    2. American Cancer Society. Breast cancer facts & figures [M]. Atlanta:American Cancer Society,2011.
    3. Stavros AT. Breast Ultrasound [M]. Philadelphia:Lippincott Williams & Wilkins, 2004.
    4. Barreau B, de Mascarel I, Feuga C, MacGrogan G, Dilhuydy MH, PicotV, Dilhuydy JM, de Lara CT, Bussieres E, Schreer I. Mammography of ductal carcinoma in situ of the breast:Review of 909 cases with radiographic-pathologic correlations. Eur J Radiol 2005;54:55-61.
    5. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer[J]. New England Journal of Medicine,2007,356 (3): 227-236.
    6. Boctor.E, Saad.A, Chang Der-Jen, et al. PC-Based System for Calibration, Reconstruction, Processing, and Visualization of 3D Ultrasound Data Based on Magnetic-Field Position and Orientation Sensing System [J]. Lecture Notes in Computer Science,2001, (2074):13-22.
    7. Watermann D.O., Foldi M, Hanjalic-beck. A, et al. Three dimensional Ultrasound for the Assessment of Breast Lesions[J]. Ultrasound Obstet Gynecol,2005,25(6): 592-598.
    8.韩志会,郑驰超,彭虎.三维超声成像综述[J].中国医疗器械信息,2011,17(7):9-14.
    9. Fenster A, Downey DB, Cardinal HN. Three-dimensional ultrasound imaging [J]. Physics in Medicine and Biology,2001,46(5):R67-R99.
    10. Fenster A, Downey DB.3-D ultrasound imaging:a review[J]. IEEE Engineering in Medicine and Biology Magazine,1996,15(6):41-51.
    11.钱超文,徐栋,边晔萍,等.应用三维超声重建成像诊断乳腺癌[J].癌变畸变突变,2005,17(6):374-376.
    12.白志勇,张武,苗立英,等.三维超声重建冠状断面检查诊断乳腺良恶性肿物的探讨[J].中国医学影像技术,2002,18(4):355-357.
    1. Bendifallah S, Werkoff G, Borie-Moutafoff C, et al. Multiple synchronous (multifocal and multicentric) breast cancer:clinical implications. Surg Oncol. 2010;19:1115-1123.
    2. Sobin LH, Greene FL:Multifocal/multicentric breast carcinoma. Cancer 2004, 100:2488-2489.
    3. Coombs NJ, Boyages J:Multifocal and multicentric breast cancer:does each focus matter? J Clin Oncol 2005,23:7497-7502.
    4. Litton JK, Eralp Y, Gonzalez-Angulo AM, et al. Multifocal breast cancer in women     5. Yerushalmi R, Kennecke H, Woods R, et al. Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence. Breast Cancer Res Treat.2009;117:365-370.
    6. Saha S, Sirop S, Korant A, et al. Nodal positivity in breast cancer correlated with the number of lesions detected by magnetic resonance imaging versus mammogram. Am J Surg.2011;201:390-394.
    7. Al-Hallaq HA, Mell LK, Bradley JA, et al. Magnetic resonance imaging identifies multifocal and multicentric disease in breast cancer patients who are eligible for partial breast irradiation. Cancer.2008;113:2408-2414.
    8. Jatoi I, Proschan MA. Randomized trials of breast-conserving therapy versus mastectomy for primary breast cancer:a pooled analysis of updated results. Am J Clin Oncol.2005;28:289-294.
    9. Veronesi U, Banfi A, Salvadori B et al. Breast conservation is the treatment of choice in small breast cancer:long-term results of a randomized trial. Eur J Cancer. 1990;26:668-670.
    10. Osteen RT. Selection of patients for breast-conserving surgery. Cancer 1994;74:366-371.
    11. Esserman L, Hyolton N, Yassa L, Barclay J, Frankel S, Sickles E. Utility of magnetic resonance imaging in the management of breast cancer:evidence for improved preoperative staging. J Clin Oncol 1999;17:110-119.
    12. Harms SE, Flaming DP, Hesley KL, et al. MR imaging of the breast with rotating delivery of excitation off resonance:clinical experience with pathological correlation. Radiology 1993;187:79-84.
    13. Morrow M, Schmidt R, Hassett C. Patient selection for breast conservation therapy with magnification mammography. Surgery.1995;118:621-626.
    14. Kolb TM, Lichy J, Newhouse JH. Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics. Radiology.1998;207:191-199.
    15. Drew PJ, Chatterjee S, Turnbill LW, et al. Dynamic contrast-enhanced magnetic resonance imaging of the breast is superior to triple assessment for the preoperative detection of multifocal breast cancer. Ann Surg Oncol 1999;6:559-603.
    16. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 2001;220:13-30.
    17. Hlawatsch A, Teifke A, Schmidt M, Thelen M. Preoperative assessment of breast cancer:sonography versus MR imaging. AJR 2002;179:1493-1501.
    18. Solin LJ. Counterview:pre-operative breast MRI is not recommended for all patients with newly diagnosed breast cancer. Breast.2010;19:7-9.
    19. Corsetti V, Ferrari A, Ghirardi M et al. Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts. Radiol Med.2006; 111:440-448.
    20. [No authors listed] Cancer statistics in developing countries:report on a WHO meeting, Nagoya, Japan,18-22 August,1981. World Health Stat Q 1983;36:213-217.
    21. Egan RL:Multicentric breast carcinomas:clinical-radiographic-pathologic whole organ studies and 10-year survival. Cancer 1982,49:1123-1130.
    22. Green FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG et al. editors. AJCC Cancer Staging Manual,6th ed. New York:Springer; 2002.
    23. American College of Radiology. BI-RADS:ultrasound.1st ed. In:Breast imaging reporting and data system:BI-RADS atlas.4th ed. Reston, VA:American College of Radiology,2003.
    24. Kotsianos-Hermle D,Hiltawsky KM, Wirth S,et al. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009;71(1):109-115.
    25. Lazarus E, Mainiero MB, Schepps B, et al. BIRADS lexicon for US and mammography:interobserver variability and positive predictive value. Radiology 2006;239(2):385-391.
    26. Japan Association of Breast and Thyroid Sonology. Guideline for breast ultrasound-management and diagnosis. Tokyo:Nankodo,2004:35-37,53-60.
    27. Drew PJ, Chatterjee S, Turnbill LW, et al. Dynamic contrast-enhanced magnetic resonance imaging of the breast is superior to triple assessment for the preoperative detection of multifocal breast cancer. Ann Surg Oncol 1999;6:559-603.
    28. Lagios MD. Multicentricity of breast carcinoma demonstrated by routine serial subgross and radiographic examination. Cancer 1997; 40:1726-1734.
    29. Holland R, Veling SHJ, Mravunac M, Hendriks JHCL. Histologic multifocality of Tis, T1-2 breast carcinomas:implications for clinical trials of breast-conserving surgery. Cancer 1985;56:979-990.
    30. Schwartz GF, Patchesfsky AS, Feig SA, Shaber GS, Schwartz AB. Multicentricity of non-palpable breast cancer. Cancer 1980; 45:2913-2916.
    31. Hlawatsch A, Teifke A, Schmidt M, Thelen M. Preoperative assessment of breast cancer:sonography versus MR imaging. AJR 2002;179:1493-1501.
    32. American College of Radiology. ACR standard for the performance of breast ultrasound examination. In:ACR Standards. Reston, Va:American College of Radiology,1998; 317-320.
    33. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules:use of sonography to distinguish between benign and malignant lesions. Radiology 1995;196:123-134.
    34. Zonderland HM, Coerkamp EG, Hermans J, Van De Vijver MJ, Van Voorthuisen AE. Diagnosis of breast cancer:contribution of US as an adjunctive to mammography. Radiology 1999; 213:412-422.
    35. Kolb TM, Lichy J, Newhouse JH. Occult cancer in women with dense breasts: detection with screening US—diagnostic yield and tumor characteristics. Radiology 1998;207:191-199.
    36. Buchberger W, DeKoekkoek-Doll P, Springer P, Obrist P, Dunser M. Incidental findings on sonography of the breast:clinical significance and diagnostic workup. AJR Am J Roentgenol 1999; 173:921-927.
    37. Bozzini A, Renne G, Meneghetti L, et al. Sensitivity of imaging for multifocal-multicentric breast carcinoma. BMC Cancer.2008;8:275-283.
    38. Watermann DO, Foldi M,Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 2005;25(6):592-598.
    39. Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA.2008;299(18):2151-2163.39
    40.Afonso N, Bouwman D. Lobular carcinoma in situ. Eur J Cancer Prev. 2008;17:312-316.
    41. Moon WK, Im JG, Noh DY, et al. Non-palpable breast lesions:evaluation with color Doppler U S and a microbubble contrast agent-initial experience. Radiology 2000;217(1):240-246.
    42. Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol,2010;20(3):734-742.
    43. Athanasiou A,Tardivon A,Ollivier L,et al. How to optimize breast ultrasound. Eur J Radiol 2009;69:6-13.
    44. Cho N,Moon WK, Cha JH, et al. Differentiating benign from malignant solid breast masses:comparison of two-dimensional and three-dimensional US. Radiology 2006; 240 (1):26-32.
    45. Kotsianos-Hermle D,Wirth S, Fischer T et al.First clinical use of a standardized three-dimensional ultrasound for breast imaging. Eur J Radiol 2009;71:102-108.
    46. Richter K, Heywang-Kobrunner SH, Winzer KJ, et al. Detection of malignant and benign breast lesions with an automated US system:results in 120 cases. Radiology 1997;205:823-830.
    47. Chou YH, Tiu CM, Chen J, et al. Automated Full-field Breast Ultrasonography:The Past and The Present. J Med Ultrasound 2007;15(1):31-44.
    48. Lin X, Wang JW, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with hand held ultrasound. Eur J Radiol.2011;doi:10.1016/j.ejrad.2011.02.038.
    49. Heron DE, Komarnicky LT, Hyslop T, Schwartz GF, Mansfield CM. Bilateral breast carcinoma:risk factors and outcomes for patients with synchronous and metachronous disease. Cancer 2000;88:2739-2750.
    50. Richter K, Heywang-Kobrunner SH,Winzer KJ,et al.Detection of malignant and benign breast lesions with an automated US system:results in 120 cases. Radiology 1997;205:823-830.
    51. Kalmantis K,Dimitrakakis C,Koumpis Ch, et al. The contribution of three-dimensional power Doppler imaging in the preoperative assessment of breast tumors:a preliminary report. Obstet Gynecol Int 2009;doi:10.1155/2009/530579.
    52. Dawson PJ. What is new in our under-standing of multifocal breast cancer. Pathol Res Pract 1993;189:111-116.
    1. Silverstein MJ, Parker R, Grotting JC, Cote RJ, Russell CA. Ductal carcinoma in situ (DCIS) of the breast:Diagnostic and therapeutic controversies. J Am Coll Surg 2001;192:196-214.
    2. Barreau B, de Mascarel I, Feuga C, MacGrogan G, Dilhuydy MH, PicotV, Dilhuydy JM, de Lara CT, Bussieres E, Schreer I. Mammography of ductal carcinoma in situ of the breast:Review of 909 cases with radiographic-pathologic correlations. Eur J Radiol 2005;54:55-61.
    3. Holland R, Hendriks JH. Microcalcifications associated with ductal carcinoma in situ:Mammographic-pathologic correlation. Semin Diagn Pathol 1994; 11:181-192.
    4. Holland R, Hendriks JH, Vebeek AL, Mravunac M. Schuurmans Stekhoven JH. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ. Lancet 1990;335:519-522.
    5. Van Goethem M, Schelfout K, Dijckmans L, Van Der Auwera JC, Weyler J, Verslegers I, Biltjes I, De Schepper A. MR mammography in the pre-operative staging of breast cancer in patients with dense breast tissue:Comparison with mammography and ultrasound. Eur Radiol 2004;14:809-816.
    6. Satake H, Shimamoto K, Sawaki A, Niimi R, Ando Y, Ishiguchi T, Ishigaki T, Yamakawa K, Nagasaka T, Funahashi H. Role of ultrasonography in the detection of intraductal spread of breast cancer:Ccorrelation with pathologic findings, mammography and MR imaging. Eur Radiol 2000; 10:1726-1732.
    7. Shin HJ, Kim HH, Kim SM, Kwon GY, Gong G, Cho OK. Screening-detected and symptomatic ductal carcinoma in situ:Differences in the sonographic and pathologic features. AJR Am J Roentgenol 2008; 190:516-525.
    8. Sundararajan S, Tohno E, Kamma H, Ueno E, Minami M. Role of ultrasonography and MRI in the detection of wide intraductal component of invasive breast cancer:A prospective study. Clin Radiol 2007;62:252-261.
    9. Koji T, Ayumi I, Naomi Y. One approach for breast cancer screening using both mammography and echoreaphy, with special reference to detection of nonpalpable minute invasive cancer [in Japanese with English abstract]. J Jpn Assoc Breast Cancer Screen 2007;16:60-65.
    10. Buchberger W, DeKoekkoek-Doll P, Springer P, Obrist P, Dunser M. Incidental findings on sonography of the breast:Clinical significance and diagnostic workup. AJR Am J Roentgenol 1999;173:921-927.
    11. Buchberger W, Niehoff A, Obrist P, DeKoekkoek-Doll P, Dunser M. Clinically and mammographically occult breast lesions:Detection and classification with high-resolution sonography. Semin Ultrasound CT MR 2000;21:325-336.
    12. Gordon PB, Goldenberg SL. Malignant breast masses detected only by ultrasound:A retrospective review. Cancer 1995;76:626-630.
    13. Tozaki M, Isobe S, Yamaguchi M, Ogawa Y, Kohara M, Joo C, Fukuma E. Optimal scanning technique to cover the whole breast using an automated breast volume scanner. Jpn J Radiol 2010;28:325-328.
    14. Lin X, Wang J, Han F, Fu J, Li A. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2012;81:873-878.
    15. Tozaki M, Fukuma E. Accuracy of determining preoperative cancer extent measured by automated breast ultrasonography. Jpn J Radiol 2010;28:771-773.
    16. Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, Zafrani B. Ductal carcinoma in situ:A proposal for a new classification. Semin Diagn Pathol 1994;11:167-180.
    17. American College of Radiology. ACR standard practice guideline for performance of the breast ultrasound examination. Reston, VA:American College of Radiology; 199-317.
    18. Richter K, Heywang-Kobrunner SH,Winzer KJ, Schmitt KJ, Prihoda H, Frohberg HD, Guski H, Gregor P, Blohmer JU, Fobbe F, Doinghaus K, Lohr G, Hamm B. Detection of malignant and benign breast lesions with an automated US system: Results in 120 cases. Radiology 1997;205:823-830.
    19. Silverstein MJ. The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast. Am J Surg 2003;186:337-343.
    20. Morimoto T, Okazaki K, Komaki K, Sasa M, Mori T, Tsuzuki H, Kamamura Y, Miki H, Monden Y. Cancerous residue in breastconserving surgery. J Surg Oncol 1993;52:71-76.
    1. Wild JJ. The scientific discovery of sonic reflection by soft tissues and application of ultrasound to diagnostic medicine and tumor screening. Third Meeting of the World Federation for Ultrasound in Medicine and Biology (Scientific Exhibit Section) Brighton, England—July 1982. (Cantab) Medico-Technological Research Institute of Minneapolis, Minneapolis, Minnesota, USA.
    2. ACR practice guideline for the performance of a breast ultrasound examination [M] Reston V A. ACR practice guidelines and technical standards:ACR,2002: 763-765.
    3. Alvarez S, Anorbe E, Alcorta P, et al. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer:a systematic review [J]. AJR Am J Roentgenol,2006,186 (5):1342-1348.
    4. Sapino A, Cassoni P, Zanon E, et al. Ultrasonographically guided fine-needle aspiration of axillary lymph nodes:role in breast cancer management [J]. Br J Cancer,2003,88 (5):702-706.
    5. De Kanter A Y, Menke-Pluijmers M B, Henzen-Logmans S C, et al. Reasons for failure to identify positive sentinel nodes in breast cancer patients with significant nodal involvement [J]. EurJ Surg Oncol,2006,32 (5):498-501.
    6. Deurloo EE, Tanis PJ, Gilhuijs KG, et al. Reduction in the number of sentinel lymph node procedures by preoperative ultrasonography of the axilla in breast cancer[J].Eur J Cancer,2003,39(8):1068-1073.
    7. Van Rijk M C, Deurloo EE, Nieweg OE, et al. Ultrasonography and fine-needle aspiration cytology can spare breast cancer patients unnecessary sentinel lymph node biopsy [J]. Ann Surg Oncol,2006,13(1):31-35.
    8. Kaufman CS, Jacobson L, Bachman B, et al. Intraoperative ultrasonography guidance is accurate and efficient according to results in 100 breast cancer patients [J]. Am J Surg,2003,186(4):378-382.
    9. Bennett I C, Greenslade J, Chiam H. Intraoperative ultrasound guided excision of nonpalpable breast lesions[J].World J Surg,2005,29(3):369-374.
    10.朱庆莉,姜玉新,孙强,等.超声引导定位切除临床触诊不清的乳腺肿块.中华医学超声杂志(电子版),2004,1(4):155-157.
    11. Thompson M, Henry-Tillman R, Margulies A, et al. Hematoma directed ultrasound-guided (HUG) breast lumpectomy [J]. Ann Surg Oncol,2007,14 (1):148-156.
    12. Levy L, Suissa M, Chiche J F, et al. BIRADS ultrasonography [J]. Eur J Radiol,2007,61(2):202-211.
    13. Costantini M, Belli P, Lombardi R, et al. Characterization of solid breast masses: use of the sonographic breast imaging reporting and data system lexicon[J].J Ultrasound Med,2006,25(5):649-659.
    14. Lee H J, Kim E K, Kim M J, et al. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound [J]. Eur J Radiol,2008,65(2):293-298.
    15. StavrosAT. Breast ultrasound. Philadelphia:Williams and Wilkins; 2004.
    16. Helmut M. The practice of breast ultrasound:techniques, findings, differential diagnosis. New York:Thieme; 2000,245-249.
    17. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules:use of sonography to distinguish between benign and malignant lesions. Radiology 1995;196:123-34.
    18. Jackson VP, Reynolds HE, Hawes DR. Sonography of the breast. Semin Ultrasound CT MR 1996; 17:460-75.
    19. Jackson VP. Management of solid breast nodules:what is the role of sonography? Radiology 1995;196:14-5.
    20. Paulinelli RR, Freitas-Junior R, Moreira MA,Moraes VA,Bernardes-Junior JR, Vidal CS, et al. Risk of malignancy in solid breast nodules according to their sonographic features. J Ultrasound Med 2005;24:635-41.
    21. Lee SW, Choi HY, Baek SY, Lim SM. Role of color and power Doppler imaging in differentiating between malignant and benign solid breast masses. J Clin Ultrasound 2002;30:459-64.
    22. Wilkens TH, Burke BJ, Cancelada DA, Jatoi I. Evaluation of palpable breast masses with color Doppler sonography and gray scale imaging. J Ultrasound Med 1998;17:109-15.
    23. Del Cura JL, Elizagaray E, Zabala R, Legorburu A, Grande D. The use of unenhanced Doppler sonography in the evaluation of solid breast lesions. AJR 2005;184:1788-94.
    24. Sehgal CM, Arger PH, Rowling SE. Quantitative vascularity of breast masses by Doppler imaging:regional variations and diagnostic implications. J Ultrasound Med 2000; 19:427-40.
    25. Albrecht T, Patel N, Cosgrove DO,et al. Enhancement of power Doppler signals from breast lesions with the ultrasound contrast agent Echogen emulsion:subject-ive and quantitative assessment. Acad Radiol 1998;5(1):195-198.
    26. Huber S, Helbich T, K ettenbach J,et al. Effects of a microbubble contrast agent on breast tumors:computer-assisted quantitative assessment with color Doppler US:early experience. Radiology 1998;208(2):485-489.
    27. Prompeler HJ, Del FC, Haekeloer BJ,et al. A new Doppler signal enhancing signal agent for flow assessment in breast lesions. Eur J Ultrasound 2000;12(2):123-130.
    28. Yang WT, Metreweli C, Lam PK, et al. Benign and malignant breast masses andaxillary nodes:evaluation with echo-enhanced color power Doppler US Radiology 2001;220(3):795-802.
    29. Sever A, Jones S, Cox K, et al. Preoperative localization of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasonography in patients with breast cancer.Br J Surg 2009;96:1295-1299.
    30. Coreioni B, Seatilli L, Quercia s, et al. Constrast-enhanced US and MRI for assessing the response of breast cancer to neoadjuvant chemotherapy. J Ultrasound 2008;11(4):143-150.
    31. Cho KR, Seo BK, Lee JY, et al. A comparative study of 2D and 3D ultrasonography for evaluation of solid breast masses. Eur J Radiol 2005;54(3):365-70.
    32. Watermann DO, Foldi M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 2005;25(6):592-8.
    33. Cho N, Moon WK, Kim HY. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. Ultrasound Med 2010;29(1): 1-7.
    34. Raza S, Odulate A, Ong EM. Using realtime tissue elustography for breast lesion evaluation:our initial experience. Ultrasound Med 2010;29(4):551-563.
    35. Srinivasan S, Pogue BW, Brooksby B, et al. Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction. Technol Cancer Res Treat 2005;4(5):513-26.
    36. Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971; 285(21):1182-1186.
    37. Zhu Q, Cronin EB, Currier AA, et al. Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology 2005;237(1):57-66.
    38. Zhu Q, Kurtzma SH, Hegde P, et al. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia.2005;7(3):263-70.
    39. You SS, Jiang YX, Zhu QL, et al. US-guided diflfused optical tomography:a promising functional imaging technique in breast lesions. Eur Radiol 2010; 20(2):309-17.
    40. Zhu Q, Cronin EB, Currier AA, et al. Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology 2005;237(1):57-66.
    41. Chou YH, Tiu CM, Chen J, et al. Automated Full-field Breast Ultrasonography: The Past and The Present. J Med Ultrasound 2007;15(1):31-44.
    42. Lin X, Wang J, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2011;81(5):873-878.
    43. Wohrle NK, Hellerhof K, Notohamiprodjo M, et al. Automated Breast Volume Scanner (ABVS). A new approach for breast imaging (in German). Der Onkologe 2011;50(11):973-981.
    44. Zhang J, Lai XJ, Zhu QL, et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner. Eur J Radiol 2012; 81(9):2178-2183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700