~(99m)Tc标记Bombesin & ~(177)Lu标记RGD多肽放射性药物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了蛙皮素BN和RGD多肽的放射性标记物在肿瘤受体显像中的应用,考察了不同协同配体和双功能螯合剂对放射性标记物的化学性质、药代动力学和生物特性的影响。
     首先,已经报道的放射性核素标记的蛙皮素BN多用于前列腺癌的诊断和治疗,而Cassano等的研究表明HT29结肠癌肿瘤细胞也过度表达GRP受体,为了开发此靶点的受体显像剂,我们尝试以~(99m)Tc标记连有双功能螯合剂HYNIC的蛙皮素类似物BN(7-14)NH_2片段(HYNIC-β-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH_2)用于结肠癌的诊断显像。在其~(99m)Tc标记方法中,分别以TPPTS(三苯基膦三间磺酸钠盐)、IsoNIC(异烟酸)和PDA(2,5-二羧酸吡啶)作为协同配体得到三种三重配体标记物[~(99m)Tc(HYNIC-BN)(Tricine)(TPPTS)]、[~(99m)Tc(HYNIC-BN)(Tricine)(IsoNIC)]和[~(99m)Tc(HYNIC-BN)(Tricine)(PDA)]。研究发现,三种标记物都能获得高标记率,且都有良好的体外稳定性;通过荷HT29结肠癌裸鼠体内分布和代谢实验发现,亲水性最好的标记物[~(99m)Tc(HYNIC-BN)(Tricine)(TPPTS)]具有最佳的体内代谢分布特征,表现在其胃肠道放射性浓聚少,肾清除快,能显著地降低腹腔正常组织的放射性本底。选其用于荷瘤鼠的γ显像,我们得到了肿瘤定位显影非常清晰的γ显像图。以上实验数据表明,不同的协同配体能对HYNIC-BN的~(99m)Tc标记物的生物性质产生了显著性的影响。而γ显像结果则证明,~(99m)Tc标记的BN多肽示踪剂可应用于结肠癌显像,其中[~(99m)Tc(HYNIC-BN)(Tricine)(TPPTS)]将是一种候选的有潜力的结肠癌受体显像剂。
     其次,我们用~(177)Lu标记三种不同双功能螯合剂偶联的RGD多肽E[c(RGDfK)]_2,并对其体内外性质进行评价。三种标记物~(177)Lu-DTPA-Bz-E[c(RGDFK)]_2、~(177)Lu-DOTA-E[c(RGDFK)]_2和~(177)Lu-DOTA-Bz-E[c(RGDFK)]_2均可获得满意的标记率和放化纯,且在生理盐水和胎牛血清(FBS)体系中均有良好的稳定性。三种标记物的脂水分配系数LogP_(o/w)没有显著性差异,这与它们的HPLC保留时间相一致。三种化合物DTPA-Bz-E[c(RGDFK)]_2、DOTA-E[c(RGDFK)]_2和DOTA-Bz-E[c(RGDFK)]_2与U87MG细胞表达的整合素α_vβ_3结合的IC_(50)值分别为3.23±0.78 nM、2.35±0.75nM和5.88±0.35nM,表明它们与整合素α_vβ_3结合能力没有显著性差异。三种标记物因为双功能螯合剂不同而有不同的~(177)Lu螯合结构、带有不同的分子电荷和不同的供电原子,但它们在荷U87MG神经胶质瘤裸鼠体内的生物分布和体内代谢特征很类似。选取~(177)Lu-DOTA-Bz-E[c(RGDFK)]_2进行荷瘤裸鼠的γ显像,得到了令人满意的显像效果。实验证明环状E[c(RGDfK)]_2二聚体结构是其~(177)Lu标记物生物性质的决定性因素,而本实验中的三种双功能螯合剂没有引起标记物生物活性的显著性差异,本研究为进一步研制靶向整合素α_vβ_3的肿瘤治疗剂奠定了基础。
In this study, the bombesin (BN) and RGD (Arg-Gly-Asp) peptides were labeled with ~(99m)Tc and ~(177)Lu, respectively, for tumor molecular imaging. We evaluated the impact of coligands and bifunctional chelators (BFCs) on the chemical and biological properties as well as pharmacokinetics of these radiotracers.
     We attempted ~(99m)Tc-labeled bombesin analogue BN(7-14)NH_2 (HYNIC-β-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH_2) for imaging of colon cancer. A ternary ligands system was used in the ~(99m)Tc labeling of HYNIC-BN(7-14)NH_2, using tricine (Tris(hydroxymethyl)methylglycine) and water-soluble TPPTS (trisodium triphenyl-phosphine-3,3',3"-trisulfonate), IsoNIC (isonicotinic acid), and PDA (2,5-pyridine-dicarboxylicacid) as coligands. These radiotracers ~(99m)Tc(HYNIC-BN(7-14)NH_2)(tricine) (L)](L=TPPTS/IsoNIC/PDA) showed excellent labeling yield and in vitro stability. It was found that three coligands had significant impact on the properties of raiotracers. Among the three radiotracers, [~(99m)Tc(HYNIC-BN(7-14)NH_2)(tricine)(TPPTS)] had the best hydrophilicity, so that it was excreted fast from kidneys, minimizing radioactivity accumulation in intestine and stomach. The clear images of [~(99m)Tc(HYNIC-BN(7-14)NH_2) (tricine)(TPPTS)] in nude mice bearing HT29 human colon cancer xenografts were obtained at 1 h and 4 h postinjection. [~(99m)Tc(HYNIC-BN(7-14)NH_2)(tricine)(TPPTS)] is a promising candidate for diagnosis of colon cancer.
     We chose different BFCs to prepared ~(177)Lu-labeled RGD dimmer, DTPA-Bz-E[c(RGDfK)]_2 (a), DOTA-E[c(RGDfK)]_2 (b), DOTA-Bz-E[c(RGDfK)]_2 (c), and evaluated their in vitro and in vivo characteristics. The radiolabeling yield of three preparations was more than 95%, with radiochemical purity (RCP) was more than 99% after purification. Receptor binding experiments were performed on U87MG human glioma cells for three compounds, with the IC_(50) values were 3.23±0.78 nM (a), 2.35±0.75 nM (b) and 5.88±0.35 nM (c), respectively. There was no significant difference on integrin a_vβ_3 binding. The stability of three radiotrcers in saline and FBS solution was excellent with RCP > 95% during 24 h after labeling. There was no significant difference in Log P_(o/w) values of three radiotracers within the experimental error, which is consistent with their similarity in HPLC retention time. In general, all three radiotracers have very similar biodistribution patterns despite their difference in the ~(177)Lu chelates with respect to the molecular charge, chelator framework and donor atoms. The selective images of U87MG xenografted tumors were obtained at 4 h postinjection for ~(177)Lu-DOTA-Bz-E[C(RGDFK)]_2. The current study validates the feasibility of ~(177)Lu-labeled RGD dimmer for the therapy of integrin a_vβ_3-positive tumors.
引文
[1]北京大学生命科学院学院编写组,生命科学导论,高等教育出版社,2000.
    [2]贺师鹏、受体研究技术,北京大学医学出版社,2004.
    [3]刘志民.临床受体研究现况及其展望.中华内分泌代谢杂志,1999,15(5):257.
    [4]张春丽,王荣福.肿瘤受体显像.国外医学放射医学核医学分则,2000,24(3):124-127.
    [5]刘长征,王浩丹等.实验医学与核药学,1999.
    [6] D Blok RI, J Feitsma, Pvermeij. Peptide radiopharmaceuticals in nuclear medicine. Eur J Nuclr med, 1999, 26:1511-1519.
    [7] Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors.Cancer Metastasis Rev, 1990, 9: 253-266.
    [8]王荣福.肿瘤影像核医学进展.中国医学影像技术,2004,20(11):1792—1797.
    [9] Schilaci O, Scopinaro F, Angeletti S. SPECT improves accuracy of somatostatin receptor scintigraphy in abdominal carcinoid tumors. J Nucl Med, 1996, 37(9):1452-1456.
    [10] Fichna J, Janecka A. Synthesis of Target-Specific Radiolabelled Peptides for Diagnostic Imaging. Bioconjugate Chem, 2003,14(1): 3-17.
    [11] Liu S, Radiolabeled Multimeric Cyclic RGD Peptides as Integrin avB3 Targeted Radiotracers for Tumor Imaging(reviews).Molecular Phamaceutics, 2006, 3 (5):472-487.
    [12] Soresi E, Bombardieri E, Chiti. 111Indium-DTPA-octreotide scintigraphy modu lation by treatment with unlabelled stomatostatin analougue in small-cell lung cancer. Lung cancer, 1995,13: 230-231.
    [13] Thakur M L, Kolan H, Li J Wiaderkiewicz. Radiolabelled somatostatin analogues in prostate cancer. Nucl Med Bio, 1997, 24: 105-113.
    [14]肖伦.放射性同位素技术,原子能出版社,2000.
    [15] Okarvi SM. Peptide-Based Radiopharmaceuticals: FutureTools for Diagnostic Imaging of Cancers and Other Diseases. Medicinal Research Reviews, 2004, 24, (3):357-397.
    [16] Banerjee S, Das T, Chakraborty S, et al. 177Lu-DOTA-lanreotide: a novel tracer as a targeted agent for tumor therapy. Nucl Med Biol, 2004, (6): 753-759.
    [17] Liu S, Cheung E, Rajopadyhe M, Ziegler MC and Edwards DS. 90Y- and 177Lu-labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconj Chem, 2001,12: 559-568.
    [18] Cremonesi M, Ferrari M, Bodei L, et al. Dosimetry in Peptide radionuclide receptor therapy: a review. J Nucl Med, 2006, 47(9): 1467-1475.
    [19] Zhang YM, Liu N, Zhu ZH, Rusckowski M, Donald J. Hnatowich Influence of different chelators (HYNIC, MAGs and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA European Journal of Nuclear Medicine, 2000, 27, (11):1700-1707.
    [20] Georg R and Clemens D. Peptide Targeted Imaging of Cancer. Cancer Biotherapy & Radiopharmceuticals, 2003,18 (5): 675-687.
    [21]王世真.分子核医学(第一版),中国协和医科大学出版社,2000.
    [22] Peter J Ell. Highlights of the Annual Congress of the European Association of Nuclear Medicine, Helsinki 2004, and a dash of horizon scanning. Eur J Nucl Med Mol Imaging, 2005, 32:113-126.
    [23] Bieke VDB and Christophe VW. Receptor Imaging in Oncology by Means of Nuclear Medicine: Current Status. Journal of Clinical Oncology. 2004, 22 (17): 3593-3607.
    [24]于巍.当代PET显像技术的特点及其应用.医疗卫生设备,2000,6:31-34.
    [25] Sharma V, Luker GD, Piwnica-Worms D. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging, 2002,26(4): 336-351.
    [26] Toi, Scott M, Jones CL, Kane MA, Clinical correlates of bombesin-like peptide receptor subtype expression in human lung cancer cells. Lung Cancer, 1996, 15(3):341-354.
    [27] Sun B, Schally A V, Halmos G. Presence of receptors for bombesin/ gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate,2000,42 (4): 295-303.
    [28] Sano H, Feighner SD, Hreniuk DL. Characterization of the bombesin-like peptide receptor family in primates. Genomics, 2004, 84(1): 139-146.
    [29] Sun B, Schally AV, Halmos G. The presence of receptors for bombesin/GRP and mRNA for three receptor subtypes in human ovarian epithelial cancers. Regul Pept,2000, 90(123): 77-84.
    [30] Aprikian L,Tremblay K ,Chevalier. Bombesin stimulatesthe motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integr in associated proteins. Int J Cancer, 1997, 72: 498-504.
    [31] De Castiglione R, Gozzini L. Bombesin receptor antagonists. Crit Rev Oncol Hematol,1996,24(2): 117-151.
    [32]李瑛,陈本川.蛙皮素受体拮抗剂的抗肿瘤作用.国外医药-合成药生化药制剂分册,2000,21(3F):135-137.
    [33] Gali H, Owen H. In vitro and in vivo evaluation of 111In-labeled DOTA-8-Aoc-BN[7-14]NH2 conjugate for specific targeting of tumors expressing gastrin releasing peptide receptors (GRP-R). J Nucl Med, 2000,41 (Suppl 5): 119.
    [34] Srinivasa R, Karra, Roger S. 99mTc-Labeling and in Vivo Studies of a Bombesin Analogue with a Novel Water-Soluble Dithiadiphosphine-Based Bifunctional Chelating Agent. Bioconjugate Chem, 1999,10: 254-260.
    [35] Christophe VW, Filip D, Rudi VB. Technetium-99m RP527, a GRP analogue for visualization of GRP receptor-expressing malignancies. Nucl Med Bio, 2000, 15:211-220.
    [36] Bella RL, Garayoa G. 99mTc(I)-Postlabeled High Affinity Bombesin Analogue as a Potential Tumor Imaging Agent. Bioconjugate Chem, 2002,13: 599-604.
    [37] Fang H, Cathy S, Cutlerb. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-Ala-BN(7-14)NH2. Nucl Med Bio, 2002, 29: 423-430.
    [38] Jeffrey S, Hariprasad G, Gary L, Sieckmanc. Radiochemical investigations of
    ~(177)Lu-DOTA-8-Aoc-BN[7-14]NH_2: in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Bio, 2003,30:101-109.
    [39] Rogers BE, Manna DD, Safavy A. In vitro and in vivo evaluation of a ~(64)Cu-labeled polyethylene glycol-bombesin conjugate. Cancer Biother Radiopharm, 2004, 19: 25-34.
    [40] Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, et al. Synthesis and evaluation of bombesin derivatives on the basis of panbombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res, 2004, 64: 6707-6715.
    [41] Faintuch BL, Santos RLSR, Souza ALFM, Hoffman TJ, Greeley M, Smith CJ. ~(99m)Tc-HYNIC-Bombesin(7-14)NH_2: radiochemical evaluation with co-ligands EDDA (EDDA=ethylenediamine-N,NV-diacetic acid), Tricine, and nicotinic acid. Synt React Inorg Met-Org Nano-Met Chem, 2005, 35: 43-51.
    [42] Yang YS, Zhang X, Xiong Z, Chen X. Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostateadenocarcinoma. Nucl Med Biol, 2006,33: 371-380.
    
    [43] Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987,48: 549-554.
    [44] Chen X, Park R, Anthony H. Shahinian JR, Bading JR, Conti PS. Pharmacokinetics and tumor retention of ~(125)I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 2004, 31:11-19.
    [45] Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, Conti PS. MicroPET Imaging of Breast Cancer av-IntegrinExpression with ~(64)Cu-Labeled Dimeric RGD Peptides. Molecular Imaging and Biology, 2004, 6(5): 350-359.
    
    [46] Folkman J. Addressing tumor blood vessels. Nature Biotechnol, 1997,15(6): 510.
    [47] Ruoslahti E. Specialization of tumour vasculature. Nat Rev Cancer, 2002, 2:83-90.
    [48] Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994, 264:569-571.
    [49] Carmeliet P. Angiogenesis in health and disease. Nat Med, 2003,9:653-660.
    
    [50] Folkman J. Tumor angiogenesis: therapeutic implications. N Eng J Med, 1971, 285:1182-1186.
    [51] Harris TD, Kalogeropoulos S, Nguyen T, Liu S, Bartis J, Ellars C, et al. Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm, 2003, 18: 627-641.
    [52] Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med. 1999, 40: 1061-1071.
    [53] Ogawa M, Hatano K, Oishi S. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo α_vβ_3 integrin related tumor imaging. Nuclear Medicine and Biology, 2003,30:1-9.
    [54] Wester HJ, Hamacher K and Stocklin G. A Comparative Study of N.C.A. Fluorine-18 Labeling of Proteins via Acylation and Photochemical Conjugation. Nuclear Medicine & Biology, 1996,23: 365-372.
    [55] Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med, 2001,42: 326-336.
    [56] Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using ~(18)F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001, 61:1781-1785.
    [57] Liu S, Robinson SP, Edwards DS. Integrin α_vβ_3 directed radiopharmaceuticals for tumor imaging. Drugs of the Futhure, 2003, 28(6): 551-564.
    [58] Harris JM, Martin NE and Modi M. Pegylation: A Novel Process for Modifying Pharmacokinetics. Clin Pharmacokinet, 2001,40 (7): 539-551.
    [59] Haubner R, Wester HJ. Radiolabeled Tracers for Imaging of Tumor Angiogenesis and Evaluation of Anti-Angiogenic Therapies. Current Pharmaceutical Design, 2004, 10: 1439-1455.
    [60] Chen X, Park R, Anthony H. Shahinian JR, Bading JR, Conti PS. Micro-PET Imaging of α_vβ_3-Integrin Expression with F-Labeled Dimeric RGD Peptide. Molecular Imaging, 2004, 3(2): 96-104.
    [61] Van Hagen PM, Breeman WA, Bernard HF, Schaar M, Mooij CM, Srinivasan A, et al. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer, 2000, 90:186-198.
    [62] Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled alpha(v) beta(3) integrin binding peptides in a nude mouse model. Cancer Res, 2002, 62: 6146-6151.
    [63] Janssen MLH, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS, et al. Comparison of a Monomeric and Dimeric Radiolabeled RGD-Peptide for Tumor Imaging. Cancer Biother Radiopharm, 2002,17: 641-646.
    [64] Liu S, Hsieh WY, Kim YS, and Mohammed SI. Effect of coligands on biodistribution characteristics of ternary ligand ~(99m)Tc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconj Chem, 2005,16:1580-1588.
    [65] Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, Liu S, and Wang F. ~(99m)Tc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin α_vβ_3 expression. Bioconjugate Chem, 2006,17:1069-1076.
    [66] Wu Y, Zhang X, and Chen X. MicroPET Imaging of Glioma Integrin α_vβ_3 Expression Using ~(64)Cu-Labeled Tetrameric RGD Peptide. J Nucl Med, 2005,46:1707-1718.
    [67] Wu Y, Zhang XZ, Xiong ZM, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen X. MicroPET imaging of glioma α_v-integrin expression using ~(64)Cu-labeled tetrameric RGD peptide. J Nucl Med, 2005,46,1707-1718.
    [68] Cassano G, Resta N, Gasparre G, Lippe C, Guanti G The proliferative response of HT29 human colon adenocarcinoma cells to bombesin-like peptides. Cancer Letter, 2001,172:151-157.
    
    [69] Liu S, He Z, Hsieh WY. Impact of PKM Linkers on Biodistribution Characteristics of the ~(99m)Tc-Labeled Cyclic RGDfK Dimer. Bioconjugate Chem, 2006, 17: 1499-1507.
    [70] Liu S. The role of coordination chemistry in development of target-specific radiopharmaceuticals. Chem Soc ReV, 2004, 33: 1-18.
    [71] Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med, 2001, 42: 326-336.
    [72] Liu S, Robinson SP, Edwards DS. Integrin α_vβ_3 directed radiopharmaceuticals for tumor imaging. Drugs of the Futhure, 2003, 28(6): 551-564.
    [73] Harris JM, Martin NE and Modi M. Pegylation: A Novel Process for Modifying Pharmacokinetics. Clin Pharmacokinet, 2001, 40(7): 539-551.
    [74] Chen X, Park R, Anthony H. Shahinian JR, Bading JR, Conti PS. Pharmacokinetics and tumor retention of ~(125)I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 2004, 31:11-19.
    
    [75] Liu S, Hsieh WY, Kim YS and Mohammed SI. Effect of coligands on biodistribution characteristics of ternary ligand ~(99m)Tc complexes of a HYNIC-conjugated cyclic RGDfK dimer.Bioconj. Chem, 2005,16: 1580-1588.
    
    [76] Barrett JA, Crocker AC, Damphousse DJ, Heminway SJ, Liu S, Edwards DS, Lazewatsky JL, Kagan M, Mazaika TJ and Carroll TR. Biological evaluation of thrombus imaging agents utilizing water soluble phosphines and tricine as coligands when used to label a hydrazinonicotinamide-modified cyclic glycoprotein Hb/IIIa receptor antagonist with ~(99m)Tc. Bioconj Chem, 1997, 8: 155-160.
    
    [77] Babich JW and Fischman AJ. Effect of "co-ligand" on the biodistribution of ~(99m)Tc-labeled hydrazino nicotinic acid derivatized chemotactic peptides. Nucl. Med. Biol, 1995, 22: 25-30.
    
    [78] Decristoforo C, and Mather SJ. Preparation ~(99m)Tc-labeling and in vitro characterization of HYNIC and N_3S modified RC-160 and [Tyr~3]octreotide. Bioconj Chem, 1999, 10: 431-438.
    [79] Decristoforo C, and Mather SJ. Technetium-99m somatostatin analogues: effect of labelling methods and peptide sequence. Eur J Nucl Med, 1999, 26: 869-876.
    [80] Laverman P, Behe M, Oyen WJG, Willems PHGM, Corstens FHM, Behr TM, and Boerman OC. Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. Bioconj. Chem, 2004,15: 561-568.
    [81] Liu S, Harris TD, Ellars CE and Edwards DS. Anaerobic 90Y- and 177Lu-Labeling of a DOTA-Conjugated Nonpeptide Vitronectin Receptor Antagonist. Bioconjugate Chem,2003,14:1030-1037.
    [82] Liu S, Cheung E, Ziegler MC, Rajopadhye M and Edwards DS. 90Y and 177Lu Labeling of a DOTA-Conjugated Vitronectin Receptor Antagonist Useful for Tumor Therapy. Bioconjugate Chem, 2001,12: 559-568.
    [83]177Lu-DOTA-Bz-RGD dimer和177Lu-DOTA-Bz-PEG4-RGD dimer的制备及生物评价.史继云,余子磷,贾兵,赵慧云,王凡.同位素,已接收.
    [84] Chen X, Tohme M, Park R, Hou Y, Bading JR and Conti PS. Micro-PET Imaging of avB-Integrin Expression with 18F-Labeled Dimeric ROD Peptide Molecular Imaging.
    [85] Moi MK, Meares CF, McCall MJ, Cole WC and DeNardo SJ. Copper chelates as probes of biological systems: stable copper complexes with macrocyclic bifunctional chelating agent. Anal Chem, 1985,148: 249-253.
    [786] Moi MK and Meares CF. The peptide way to macrocyclic bifunctional chelating agents: synthesis of 2-(p-nitrobenzyl)-l,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid and study of its yttrium(Ⅲ) complex. J Am Chem Soc, 1988,110:6266-6267.
    [87] Deshpande SV, DeNardo SJ, Kutis DL, Moi MK, McCall MJ, DeNardo GL and Meares CF. Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med, 1990, 31: 473-479.
    [88] Li M, and Meares CF. Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjugate Chem, 1993, 4: 275-283.
    [89] Morphy JR, Parker D, Alexander R, Bains A, Carne AF, Eaton MAW, Harrison A, Millican A, Phipps A, Rhind SK, Titmas R and Weatherby D. Antibody labeling with functionalized cyclam macrocycles. J Chem Soc Chem Commun, 1988, 156-158.
    [90] Morphy JR, Parker D, Kataky R, Eaton MAW, Millican AT, Alexander R, Harrison A and Walker C. Towards tumor targeting with copper-radiolabeledmacrocycle-antibody conjugates: Synthesis, antibody linkage, and complexation behaviour. J Chem Soc Perkin Trans, 1990,573-585.
    [91] McMurry TJ, Brechbiel M, Kumar K and Gansow OA. Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjugate Chem, 1992, 3:108-117.
    [92] Mischra AK, Gestin JF, Benoist E, Faive-Chauvet A and Chatal JF. Simplified synthesis of the bifunctional chelating agent 2-(4-aminobenzyl)-1,4,7,10- tetraazacyclododecane-N,N'N",N'"-tetraacetic acid. New J Chem, 1996, 20: 585-588.
    [93] Mishra AK, Draillard K, Faive-Chauvet A, Gestin JF, Curtet C and Chatal JF. A convenient, novel approach for the synthesis of polyaza macrocyclic bifunctional chelating agents. Tetrahedron Lett, 1996,37: 7515-7518.
    [94] Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR and Conti PS. MicroPET Imaging of Breast Cancer av-Integrin Expression with ~(64)Cu-Labeled Dimeric RGD Peptides. Mol Imaging Biol, 2004, 6: 350-359.
    [95] Chen X, Park R, Tohme M, Shahinian AH, Bading JR and Conti PS. MicroPET and autoradiographic imaging of breast cancer av-integrin expression using F- and ~64)Cu-labeled RGD peptide. Bioconj Chem, 2004,15: 41-49.
    [96] Thumshirn G, Hersel U, Goodman SL and Kessler H. Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry, 2003, 9: 2717-2725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700