畦沟灌溉水流运动模型与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畦灌和沟灌是我国目前最主要和使用最广泛的灌水方式之一,与微、喷灌等压力灌溉相比,其具有田间工程设施简单、运行成本低、易于实施等优点;但畦灌和沟灌同时存在田间水浪费严重和低的田间灌水效率等一些缺点。因此研究畦灌和沟灌的理论,改进、完善畦灌和沟灌灌水技术,是灌溉农业发展的一个重要课题。故本研究选取畦灌和沟灌作为研究对象,在理论分析和数值模拟的基础上,结合室内和大田试验,对畦灌和沟灌的土壤水分入渗和水流运动模型进行了系统研究,得出了以下几点结论:
     1.以非饱和土壤水分运动理论为基础,分别建立了畦灌和沟灌的土壤水分入渗动力学模型,对所建模型进行求解,并用试验资料对模拟结果进行对比验证,两者基本吻合。用所建模型分别对不同试验处理下畦灌一维入渗过程和沟灌二维入渗过程进行模拟,得出了影响畦灌和沟灌入渗过程的主要因素;并在此研究基础上建立了以湿周为主要参数的沟灌累积入渗量简化计算模型和多参数的沟灌湿润锋运移距离预测模型;通过以上研究可进一步了解畦灌和沟灌入渗过程的入渗机理,为改进畦灌和沟灌灌水技术、优化设计其灌溉系统提供理论依据。
     2.以水量平衡原理为基础,建立了畦灌水流推进解析模型。通过分析畦灌下渗水形状系数zσ的变化规律,发现zσ主要受入渗参数α的影响,并对大量的文献资料数据进行分析,提出了确定畦灌过程中zσ值的两种计算方法;并对畦灌水流推进过程中地表储水形状系数hσ分别取值为0.70、0.75、0.80,以研究hσ的不同取值对模型精度的影响。结合已有文献资料和大田试验对所建的畦灌解析模型进行验证,结果表明模型计算方便,精度较高,具有较强实用性,且说明畦灌时地面储水形状系数hσ在0.7~0.8之间取值是合理的;也表明所提出的计算下渗水形状系数zσ的公式是可靠的。
     3.以水量平衡原理为基础,建立了沟灌水流推进解析模型。通过理论分析并结合沟灌过程中水力学特点,避开了沟灌过程中难以准确测定的沟首平均过水断面面积这一难题;对下渗水形状系数zσ与水流推进关系的进行理论分析;并采用matlab软件对所建沟灌水流推进解析模型进行迭代计算,克服了下渗水形状系数zσ难以直接给定的问题,并成功的模拟了沟灌的水流运动过程。结合已有的文献资料和田间试验对模型进行验证,结果表明建立的沟灌水流推进解析模型有高的精度。
     4.针对畦灌和沟灌田间平均入渗参数和综合糙率系数难以确定的问题,建立了利用水流推进过程同步推求田间平均Philip入渗参数和田面综合糙率的模型。通过分析畦灌和沟灌地面水流运动规律,对畦灌和沟灌水流推进过程中地表水面线进行概化,并将Philip入渗公式等同为α= 0.5的Kostiakov修正模型的情况下,利用灌水过程中多组不同灌水时间t和相应的水流推进距离l值,采用matlab软件进行参数寻优计算,得出不同地表储水形状系数σh取值下的入渗参数S、f和田面综合糙率n值,发现σh的不同取值对入渗参数S和f值无影响,对田面综合糙率n值有较大影响;结合现有的文献资料和田间试验对所建模型进行验证,结果表明所建模型同步推求不同地表储水形状系数σh取值下各灌水田块平均Philip入渗参数S、f和田面综合糙率n值是可靠的,同时表明田面综合糙率对水流运动过程的敏感性较低。
     5.通过对大田灌水试验的灌水质量进行评价,然后采用SRFR软件对大田灌水试验的灌水质量进行模拟,将实测结果与模拟结果进行对比,结合田间工程实际可认为两者误差在一个合理的范围内,表明SRFR软件模拟畦灌和沟灌灌水质量是可行的。通过分析本文的研究结果,得出SRFR软件模拟时所需输入的基本参数。以SRFR软件模拟为基础,通过改变不同灌水技术要素组合,找出了不同条件下的畦灌和沟灌灌水技术要素的合理组合。研究的结果可用来指导农民的生产灌溉工作,减少水资源的浪费,提高灌溉水利用效率和灌水均匀度,达到常规地面灌溉的节水灌溉目的。
     畦灌和沟灌水流运动是一个十分复杂的问题,涉及到土壤水分入渗和地表水流运动两个方面,其影响因素众多。论文对畦灌和沟灌的土壤水分入渗和水流运动模型进行了较为系统深入的研究,但如何将两者有机的结合起来,形成更加系统完整的畦灌和沟灌水流运动模型体系,是目前国内外研究中一个仍待突破的难题,这还需今后做进一步深入的研究。
Worldwide, border irrigation and furrow irrigation are more commonly used compared with pressurized irrigation systems, such as sprinkler and micro-irrigation systems. They have the advantages of lower investment and operating costs and convenient management. But border irrigation and furrow irrigation can have disadvantages, such as possible water wastage and lower irrigation efficiency. So research is justified into the theory of border and furrow irrigation, to improve and perfect irrigation design. From a combination of laboratory and field experiments, a theoretical analysis and numerical simulation is proposed for border irrigation and furrow irrigation practices. The major elements include:
     1. Mathematical models of border irrigation and furrow irrigation were set up, based on unsaturated soil water movement theory. The software models and simulation results were verified by laboratory experiments, achieving good agreement between predictions and measurement. The main factors influencing border irrigation and furrow irrigation infiltration characteristics were determined. Key parameters of soil wetting movement linked to a two-dimensional infiltration model were established which included the wetted perimeter beneath furrows. The analysis provides understanding of the infiltration mechanism related to border irrigation and furrow irrigation. This is a sound basis for improving surface irrigation practice through optimization.
     2. The literature on border irrigation and related infiltration functions was examined. Assuming that the trajectory of the advance of the water front in border can be represented by a simple power function relating advance distance and time and that the infiltration function has the familiar Kostiakov-Lewis characteristic form then two methods were proposed to predict infiltration and the water advance process. Assumptions of both methods included using the Lewis-Milne equation to derive a volume balance model. The power function advance parameter was found to take the values 0.70, 0.75 and 0.80 and a simplified analytical model of border irrigation was created. The model was checked using laboratory and field experiment data, showing that the model is reasonable and has some advantages. It has a strict physical foundation, is simple to calculate and gives solutions of high accuracy. It is also found that advance parameter values of 0.7~0.8 are reasonable, and indicated that two solution methods proposed to determine power function advance parameters are reliable.
     3. Area shape factor parameters for wetted area were derived through theoretical analysis to identify an analytical model of furrow irrigation. An iterative algorithm was developed to solve the model equations using Matlab software. The results show that the problem of getting the figure coefficient of infiltration water directly with difficulty was solved .So the water flow process of furrow irrigation was successfully simulated.
     4. Using the volume balance approach with a generalized surface water profile, a Philip infiltration formula equivalent to the Kostiakov–Lewis model and an infiltration parameterα= 0.5, then the Philip infiltration parameter and channel roughness values were deduced from border and furrow irrigation data. Analysis by Matlab software suggested that the infiltration parameters do not have major influence but that the Manning roughness is important when the power function advance parameter takes different values. The model was checked using field data to show that determinations of the Philip infiltration parameter and Manning roughness are reliable. It also showed that progress of advance was not very sensitive to the Manning roughness values.
     5. Field experiments were undertaken to determine field application efficiency and to compare these values with values simulated by the SRFR software. Results show that the margin of error is reasonable, indicating that the SRSF software is appropriate for analysis of border and furrow irrigation. Based on simulation using the SRSF software, the correlation of irrigation technique element was changed, the result discovered that the optimized correlation of reasonable irrigation technique element under different condition of border irrigation and furrow irrigation. It can be used to guide the farmers’irrigation, reduce the waste of water resources, enhance the irrigation application efficiency and distribution efficiency, and attain the aim of saving water.
     Border and furrow irrigation water movement involves soil water infiltration and surface water movement, the influencing factors are numerous and very complicated. In this paper, border and furrow irrigation model on soil water infiltration and water movement was studied systematically and deeply, but how to combine these two aspects more systematically is a very complex problem in irrigation research, and it needs to do more researchers in future.
引文
[1]中华人民共和国水利部. 2006年中国水资源公报.中国水利网,2007.09.27.
    [2]李世英.对我国节水灌溉技术发展的几点思考[J].节水灌溉,2001,(1):30-31.
    [3]许迪,蔡林根,王少丽,等.农业持续发展的农田水管理研究[M].北京:中国水利水电出版社,2000.
    [4]段爱旺,白晓军.美国灌溉现状分析[J].灌溉排水,1999,18(1):53-56.
    [5]魏新平,苏永新,李录虎,等.地面灌溉理论及灌水新技术的研究现状[J].甘肃水利水电技术,1997,(1):52-55.
    [6]李益农,许迪,李福祥.影响水平畦田灌溉质量的灌水技术要素分析[J].灌溉排水,2001,20(4):10 -14.
    [7]李益农,许迪,李福祥.田面平整精度对畦灌系统性能影响的模拟分析[J].农业工程学报,2001,17(4):43-48.
    [8] Raghuwanshi N.S., Wallender W.W. Optimization of furrow irrigation schedules, designs and net return to water [J]. Agric. Water Manage., 1998, 35(3):209-226.
    [9]李久生,饶敏杰.地面灌溉水流特性及水分利用率的田间试验研究[J].农业工程学报,2003,19(3):54-58.
    [10]史学斌,马孝义.关中西部畦灌优化灌水技术要素组合的初步研究[J].灌溉排水,2005,24(2):30 -43.
    [11]孙西欢,王文焰.沟灌入渗参数影响因素的试验研究[J].西北农业大学学报,1994, 22(4):102-106.
    [12] Strelkoff T.S., Souza F.Modeling effect of depth on furrow infiltration [J].Journal of Irrig. and Drain. Eng. ASCE., 1984, 110(4):375-387.
    [13] Shatanawi M.R., Strelkoff T.S. Management contours for border irrigation [J].Journal of Irrig. and Drain. Eng. ASCE., 1984, 110 (4):393-399.
    [14] Fok Y.S., Derivation of Lewis-Kostiakov intake equation[J].Journal of Irrig. and Drain. Eng. ASCE., 1986, 112 (2):164-171.
    [15] Hartley D.M. Interpretion of Kostiakov infiltration parameters for borders [J]. Journal of Irrig. and Drain. Eng. ASCE., 1992, 112 (2):156-165.
    [16] Oyonarte N.A., Mateos L., Palomo M.J. Infiltration variability in furrow irrigation [J]. Journal of Irrig. and Drain. Eng. ASCE., 2002, 118(1):26-33.
    [17] Schwankl L.J.,Wallender W.W. Zero Inertia furrow modeling with variable infiltration and hydraulic characteristics [J]. Trans. ASAE., 1988,31 (5):1470-1475.
    [18]康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996.
    [19]周国逸,潘淮俦.林地土壤的降雨入渗规律[J].水土保持学报,1990,4(21):79-84.
    [20]石生新.高强度人工降雨条件下影响入渗数率因素的试验研究[J].水土保持通报,1992,12(2):49-54.
    [21] Helalia A.M. The relation between soil infiltration and effective porosity in different soil [J]. Agric. Water Manage., 1993.24:39-47.
    [22]费良军,谭奇林,王文焰,等.充分供水条件下多因子点源入渗模型研究[J].西安理工大学学报.2000,16(1):19-22.
    [23]马娟娟,孙西欢,李占斌.蓄水坑灌条件下变水头作用的垂直一维土壤入渗参数实验研究[J].农业工程学报, 2005, 21(S1):38-41.
    [24]张振华,潘英华,蔡焕杰,等. Green-Ampt模型入渗率显式近似解研究[J].农业系统科学与综合研究,2006, 22(4):308-311.
    [25]郑健,胡笑涛,蔡焕杰,等.局部控制地下浸润灌溉土壤入渗特性研究[J].西北农林科技大学学报, 2007,35(3):227-232.
    [26] Green R.E., Ampt G.A. Studies on soil physics, flow of air and water through soils [J].Agric. Sci., 1911, 76(4):1-24.
    [27] Richards L.A. Capillary conduction of liquids in porous mediums [J]. Physics. 1931, 1(5): 318-333.
    [28] Kostiakov A.N. On the dynamics of the coefficient of water percolation in sails and on the necessity of studying it from dynamic point of view for parpose of amelioration [J]. In 6th Commission, International Society of Soil Science., 1932, Part A: 15-21.
    [29] Horton R.E. An approach to ward a physical interpretation of infiltration-capacity [J].Soil Sci. Soc. AM. J., 1940,5 (3):399-417.
    [30] Philip J.R. The theory of infiltration about sorptivity and algebraic infiltration equations [J]. Soil Sci., 1957, 84(4):257-264.
    [31]方正三,杨文治,周佩华.黄河中游黄土高原梯田的调查研究[M].北京:科学出版社, 1958.
    [32] Holton H.N. A concept for infiltration estimates in watershed engineering [J].Dept. Agric. Res. Service., 1961, 39(30):41-51.
    [33] Smith R.E., Parlange J.Y. The infiltration envelope results from a theoretical infiltrometer [J].Journal of Hydrology., 1972, 17(1):1-21.
    [34]蒋定生,黄国俊.黄土高原土壤的入渗速率研究[J].土壤学报,1986,23(4):299-304.
    [35]王利环.波涌沟灌条件下土壤水分入渗的研究:[硕士学位论文][D].太原:山西农业大学,2004.
    [36]孙西欢,王文焰.多参数沟灌入渗模型的试验研究[J].西北水资源与水工程,1993, 4(3):46-56.
    [37]张新燕,蔡焕杰,王健.沟灌二维入渗影响因素实验研究[J].农业工程学报,2005,21(9):38-41.
    [38] Neuman S.P. Saturated-unsaturated seepage by finite elements [J]. Journal of Hydraulic. Div. ASCE., 1973, 99(12):2233-2250.
    [39] Vogel T., Hopmans J.W. Two-dimensional analysis of furrow infiltration [J]. Journal of Irrig. And Drain. Eng. ASCE., 1992,118(5):791-806.
    [40] Nour el-Di M.M., King I.P., Tanji K.K. Salinity management model:Ⅰdevelopment [J]. Journal of Irrig. And Drain. Eng. ASCE., 1987,113(4):440-453.
    [41]刘亶仁,路京选.沟灌二维入渗条件下累计入渗量变化规律的研究[J].水利学报, 1989, (4) 11-21.
    [42] Rawls W.J., Brakensiek D.L., Elliot W.J. et al. Prediction of furrow irrigation final infiltration rate [J]. Trans. ASAE., 1990, 33(5):1601-1604.
    [43] Trout T.J. Flow velocity and wetted perimeter effects on furrow infiltration [J]. Trans. ASAE., 1992, 35(3):855-863.
    [44] Sepaskhah A.R., Afshar-Chamanabad H. Determination of infiltration rate for every-other furrowirrigation [J]. Biosystems Engineering., 2002, 82(4):479-484.
    [45] Rasoulzadeh A., Sepaskhah A.R. Scaled infiltration equations for furrow irrigation [J]. Biosystems Engineering., 2003, 83(6):375-383.
    [46] Lewis M.R., Milne W.E. Analysis of border irrigation [J]. Agric. Eng., 1938, 19:267-272.
    [47] Levien S.L.A., Souza F. Algebraic computation of flow in furrow irrigation [J]. Journal of Irrig. and Drain. Eng. ASCE., 1987, 113(3):367-377.
    [48] Alazba A.A. Design procedure for border irrigation [J].Irrg.Sci., 1997, (18):33-43.
    [49]缴锡云,王文焰,雷志栋,等.估算土壤入渗参数的改进Maheshwari法[ J].水利学报.2001, (1): 62-67.
    [50]张新民,王根绪,胡想全,等.用畦灌试验资料推求土壤入渗参数的非线性回归法[J].水利学报. 2005, (1): 28-34.
    [51] Maheshwari B.L., Sensitivity analysis of parameters of border irrigating models [J]. Agric. Water Manage., 1990, 18 (1): 277-287.
    [52] Valiantzas J.D.Surface water storage independent equation for predicting furrow irrigation advance [J]. Irrg.Sci., 2000. (19):115-123.
    [53] Kanya L., Khatri R.J.S. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation [J]. Irrg.Sci., 2006. (25):33-43.
    [54] Fok Y.S., Bishop A.A. Analysis of water advances in surface irrigation [J]. Irrig. and Drain. Div. ASCE., 1965, 91(1):99-117.
    [55] Hall W.A. Estimating irrigation border flow [J]. Agric. Eng., 1956, 37(4): 267-272.
    [56] Kruger W.E., Bassett D.L. Unsteady flow of water over a porous bed having constant infiltration [J]. Trans. ASAE., 1965, 8(1):60-62
    [57] Walker W. R.,Skogerboe G.V.Surface irrigation: Theory and practice [M]. Prentice-Hall Inc,New Jersey,1968.
    [58] Bassett D.L. Mathematical model of water advance in border irrigation [J]. Trans. ASAE., 1972, 15(5):992-995.
    [59] Bassett D.L., Fitzsimmons D.W. Simulation over land flow in border irrigation [J]. Trans. ASAE., 1976, 19(4):674-680.
    [60] Singh V., Murty S.B. Complete Hydrodynamic Border-Strip Irrigation Model [J]. Journal of Irrig. And Drain. Eng. ASCE., 1996, 122(4):189-197.
    [61]刘钰,惠士博.畦灌最优灌水技术参数组合的确定[J].水利学报,1986,(1):1-10.
    [62]刘钰.畦田水流运动的数学模型及数值计算[J].水利学报,1987, (2):1-10.
    [63]刘才良,路振广.成层土上畦灌非恒定流方程的求解[J].河海大学学报,1993,(3):59-64.
    [64] Katapodes N.D., Strelkoff T. Hydrodynamic of border irrigation complete model [J]. Journal of Irrig.and Drain. Eng.ASCE., 1977, 103(3):309-324.
    [65] Strelkoff T, Katapodes N.D., Border irrigation hydraulics using zero inertia [J].Journal of Irrig.and Drain. Eng. ASCE., 1977, 103(3):325-342.
    [66] Souza F. Nonlinear hydrodynamic model of furrow irrigation [D]. Thesis presented to the Universityof California, at Davus, Calif., in partial fulfillment of the requirements for the degree of Doctor Philosophy. 1981.
    [67] Elliott F.E., Walker W.R., Skogerboe G.V. Zero-inertia modeling of furrow irrigation advance [J]. Journal of Irrig. and Drain. Eng. ASCE., 1982, 108(3):179-195.
    [68] Sherman B., Singh V.P. A Kinematics model for surface irrigation [J]. Water Resour. Res., 1978, 14(2):357-367.
    [69] Sherman B., Singh V.P. A Kinematics model for surface irrigation: an extension [J]. Water Resour. Res., 1982, 18(3):659-667.
    [70] Wallender W.W.,Reyej M. Zero-inertia Surge Model with Wet dry Advance. Thesis Presented at 1984 Winter Meeting ASAE Pape, 1984.
    [71] Fariborz A., Mohammad S., Jan F.Evaluation of various surface irrigation numerical simulation models [J]. Journal of Irrig. and Drain. Eng. ASCE., 2003,129 (3):208-213.
    [72] Schmitz G.H., Gunther J.S. Analytical model of level basin irrigation [J]. Journal of Irrig. and Drain. Eng. ASCE., 1990,115(1): 78-95.
    [73] Schmitz G.H., Gunther J.S. Mathematical Zero-Inertia modeling of surface irrigation: Advanced in Borders[J]. Journal of Irrig. and Drain. Eng. ASCE., 1990,116(5): 603-615.
    [74] Oweis T.Y. Surge flow irrigation hydraulics with Zero-inertia. Thesented Presented to Uath State University at Logan Uath, 1983.
    [75]林性粹,郭相平.阶式水平畦灌数学模型及其应用[J].西北农业大学学报,1995,11(3):1-4.
    [76]郭相平,林性粹.水平畦灌设计理论的研究进展[J].水利水电科技进展,1996,16(5):1-3.
    [77]汪志荣,王文焰,沈晋,等.波涌灌溉灌水方案优化设计[J].西北水资源与水工程,1996,7(3):1-7.
    [78]费良军,王文焰.由波涌灌灌水资料推求土壤入渗参数和减渗率系数[J].水利学报,1999,(8):26-29.
    [79]王文焰,张江辉,丁新利,等.膜孔灌溉地表水流运动的计算机模拟[J].河北工程技术高等专科学校学报, 1999, (1):1-6.
    [80]吴军虎,费良军,王文焰.膜孔灌溉田面综合糙率系数的确定[J].灌溉排水,2001,20(1):32-54.
    [81]吴军虎,费良军,王文焰,等.根据零惯量模型推求膜孔灌溉田面综合糙率系数[J].西安理工大学学报,2003,19(2):130-134.
    [82] Chen, C.L. Surface irrigation using Kinematics-Wave method [J]. Journal of Irrig.and Drain. Eng. ASCE., 1970, 96(1):39-46.
    [83] Smith R.E., Border irrigation advance and ephemeral flood waves [J]. Journal of Irrig.and Drain. Eng. ASCE., 1972, 98(2):289-305.
    [84] Lzuno F.T., Podmore T.H. Kinematic wave model for surge irrigation research in furrows [J]. Trans. ASAE., 1984, 27(4):1145-1150.
    [85] Rayej M., Wallender W.W. Time solution of Kinematics-wave model with stochastic infiltration [J]. Journal of Irrig. And Drain. Eng. ASCE., 1988, 114(4):605-621.
    [86]路京选,刘亶仁,惠士博,等.地面灌溉节水技术研究——沟灌水流运动的数值模拟及其应用[J].自然资源学报,1989,4(4):330-343.
    [87] Shayya W.H. Kimematic-wave furrow irrigation analysis: a finite element approach [J]. Trans. ASAE., 1993, 36(6):1733-1742.
    [88] Reddy J.M., Singh V.P. Modeling and error analysis of Kinematics-wave equations of furrow irrigation [J]. Irrigation Science., 1994, 15(2):113-121.
    [89]李力,沈冰.不同地表状况耕地的田面糙率研究[J].农业工程学报, 2008, 24(4): 72-75.
    [90] Fang X. Yu, Singh,V. P. Analytical model for border irrigation. Journal of Irrig.and Drain. Eng. ASCE. 1989, 115(6): 982-999.
    [91]王文焰,费良军,汪志荣,等.浑水波涌灌溉的节水机理与效果[J].水利学报,2001,(5):5-10.
    [92] Gerd H.S., Gunther J.S. Mathematical Zero-inertia modeling of surface irrigation: advance in borders[J].Journal of Irrig.and Drain. Eng. ASCE., 1990,116(5), 603-615.
    [93] Ree W.O. Hydraulic characteristics of vegetation for vegetated waterways [J]. Agric. Eng., 1949, 30:184-187,189.
    [94]蔡焕杰译.畦灌条件下满宁糙率系数的估算[J].灌溉排水,1991,10(4):36-38.
    [95] Harun-ur-Rashid M. Estimation of Manning's roughness coefficient for basin and border irrigation [J]. Agric. Water Manage., 1985, 18(1):29-33.
    [96]刘作新,李哲,孙中和,等.田间满宁糙率系数的推求[J].灌溉排水,1998,17(3):5-9.
    [97]汪志农,林性粹,黄冠华,等.灌溉排水工程学[M].中国农业出版社,2000.
    [98]匡尚富,高占义,许迪.农业高效用水灌排技术应用研究[M].中国农业出版社,2001.
    [99] Holzapfel E.A. Performance irrigation Parameters and their relation ship to surface irrigation designs variables and yield [J]. Agric. Water Manage., 1985, 10(2):159-174.
    [100]路京选,关志华.有效田间灌水质量指标体系初探[J].自然资源学报,1992,7(1):1-9.
    [101]刘洪禄,杨培岭.畦灌田面行水流动的模型与模拟[J].中国农业大学学报,1997,2(4):66-72.
    [102]王文焰.波涌灌溉试验研究与应用[M].西北工业大学出版社,1994.
    [103]石新生.波涌灌溉理论与技术发展综述[J].山西水利科技,1996,111(2):57-59.
    [104]徐首先,魏玉强,聂新山,等.膜孔灌溉理论与实用技术初步研究[J].水土保持研究,1996, 3(3):23-30.
    [105]谭奇林.充分供水条件下的点源入渗试验研究[D].陕西西安:西安理工大学,1998.
    [106]缴锡云.膜孔灌溉理论与技术要素的试验研究[D].陕西西安:西安理工大学,1999.
    [107]吴军虎.膜孔灌溉入渗特性与技术要素试验研究[D].陕西西安:西安理工大学,2000.
    [108] Mualem,Yechezkel.A new model for predicting the hydraulic conductivity of unsaturated porous media[J].Water Resour Res., 1976,12:513-522.
    [109] Van G.M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Sci. Soc.Am.J., 1980,44(5):892-898.
    [110]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报, 1982, 19(2): 141-152.
    [111] Yakov P, Dennis T, Walter R. Generalized Richards' equation to simulate water transport in unsaturated soils [J]. Journal of Hydrology., 2003, 272(1): 3-13.
    [112] Jolanta L, Jean L.A. Modelling of unsaturated water flow in soil with highly permeable inclusions [J].C. R. Mecanique., 2004, 332(1): 91-96.
    [113]李渊,张德生.入渗、蒸发条件下土壤水分运动的数值模拟[J].延安大学学报, 2005, 24(3): 27-30.
    [114]李燕,高明,魏朝富.等.紫色土水分一维水平运动的数值模拟[J].西南农业大学学报, 2006, 28(4): 627-632.
    [115]李毅,王全九,王文焰.等.入渗、再分布和蒸发条件下一维土壤水运动的数值模拟[J].灌溉排水学报. 2007, 26(1): 5-8.
    [116] Gottardi G, Venutelli M. Richards: computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil [J]. Computer & Geosciences., 1993, 19(9):1239-1266.
    [117]郭维东,李宝筏,纪志军,等.坐水播种时耕层土壤水分入渗的二维数值模拟[J].农业工程学报, 2001, 17(2): 24-27.
    [118]池宝亮,黄雪芳,张冬梅,等.点源地下滴灌土壤水分运动数值模拟及验证[J].农业工程学报, 2005, 21(3): 56-59.
    [119] Alvarez J.A.R. Estimation of advance and infiltration equations in furrow irrigation for untested discharges [J]. Agric. Water Manage., 2003, 60(3): 227-239.
    [120] Blair A.W., Smerdo E.T. Modeling surge irrigation infiltration [J]. Journal of Irrig.and Drain. Eng. ASCE., 1987, 1l3(4): 497—51.
    [121] Holzapfel E.A, Jara J., Zuniga C., et al. infiltration parameters for furrow irrigation [J]. Agric. Water Manage., 2004, 68(1): 19-32.
    [122] Van G.M.T., Leij F.J., Yates S.R. The RETC code for quantifying the hydraulic functions of unsaturated soils [M]. California:U.S.A. Salinity Laboratory, 1999.
    [123] Yu F.X., Singh V.P. Analytical model for border irrigation [J]. Journal of Irrig.and Drain. Eng., 1989, 8(1):982-999.
    [124] Walker W.R. Guidelines for designing and evaluation surface irrigation systems [M]. Rome: FAO Irrigation and drainage paper NO.45., 1989. 137pp.
    [125]周振民,刘月.畦田灌溉水流演进计算简化模型研究[J].灌溉排水. 2005, 24(2): 23-26.
    [126]王维汉,缴锡云,彭世彰,等.畦灌土壤入渗参数估算的线性回归[J].水利学报. 2007, 38(4): 468-472.
    [127]王全九,王文焰,张江辉.根据畦田水流推进过程水力因素确定Philip入渗参数和田面平均糙率[J].水利学报.2005, 36(1): 125-128.
    [128]缴锡云,王文焰,张江辉,等.推求土壤入渗参数的改进Esfandiari法[J].西安理工大学学报.2000, (2): 165-169.
    [129] Hart W. E., Bassett D. Strelkoff T. Surface irrigation hydraulics-kinematics [J]. Irrig .Drain. Div. ASCE., 1968, 94: 419-440.
    [130]莫正涛,刘彦珍,董月德,等.畦田灌溉试验分析[J].中国农村水利水电. 2004, (3): 9-11.
    [131] Maheshwari B.L., Turner A.K., Mcmahon T.A, et al. An optimization technique for estimating infiltration characteristics in border irrigation [J]. Agric. Water Manage., 1988, (13):13-24.
    [132]王亚竹.确定畦灌技术参数的水力计算试算法[J].甘肃水利水电技术.2003, 39(2): 98-102.
    [133]史学斌.畦灌水流运动数值模拟与关中西部灌水技术指标研究[D].杨凌:西北农林科技大学,2005.
    [134] Fekersillassie D,Einsenhauer D.E. Feedback-controlled surge irrigation:Ⅰ.model development [J]. Trans. ASAE., 2000, 43(6):1621-1630.
    [135] Serralheiro R.P. Furrow irrigation advance and infiltration equations for a Mediterranean soil [J]. Journal of agriculture engineering research., 1995, 62 (2): 117 -126.
    [136]章少辉,许迪,李益农,等.基于SGA和SRFR的畦灌入渗参数与糙率系数优化反演模型(Ⅰ)———模型建立[J].水利学报. 2006, 37(11):1297-1302.
    [137]刘群昌,刘文朝,杨永振,等.微地形对波涌畦灌灌水质量的影响[J].灌溉排水学报. 2003, 22(1):73-75.
    [138]闫庆健,李久生.地面灌溉水流特性及水分利用率的数学模拟[J].灌溉排水学报. 2005, 24(2):62-66.
    [139] Luciano M., Nicolas A.O. A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability [J]. Agric. Water Manage., 2005, 76(1):62-75.
    [140]刘钰,蔡甲冰.甘肃景泰提水灌区田间灌水技术评价与改进[J].中国农村水利水电. 2002, (7):9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700