用户名: 密码: 验证码:
爆炸品危险性分级程序改进及典型试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有爆炸品危险性分级程序存在的不足,通过分析联合国橘黄书和美国TB700-2中的爆炸品危险性分级程序,结合危险性分级程序最新的研究成果,提出通过联合国(UN)隔板试验、极不敏感的爆炸性物质(EIDS)隔板试验、实际样品尺寸的隔板试验和外部火烧试验对推进剂进行危险性分级,并将新提出的分级方法融合到联合国橘黄书的爆炸品危险性分级框架中,形成了新的爆炸品危险性分级程序,进而对相关试验方法的条件、判据等进行了研究。
     为确定UN和EIDS隔板试验的条件,分别用经验公式和锰铜压力计法计算和测量了UN隔板试验药柱的爆压、药柱与有机玻璃隔板界面处的冲击波压力,理论计算与试验测定的结果基本一致。利用锰铜压力计和AUTODYN数值模拟软件研究了UN隔板试验药柱(Pentolite)和EIDS隔板试验药柱(A-IX-I)的爆炸冲击波在有机玻璃隔板中的衰减规律,结果表明:这两种药柱产生7GPa冲击压力的有机玻璃隔板厚度分别为19.2mm和45.2mm,且数值模拟结果与试验结果基本一致,即可用AUTODYN软件预测其他不同规格的药柱产生7GPa压力的隔板厚度。
     为了研究确定隔板试验安全距离的方法,分别采用试验和数值模拟的方法研究了UN和EIDS隔板试验药柱在空气中的冲击波压力分布规律,结果表明,数值模拟的结果与试验结果符合性很好,均可用于确定隔板试验的安全距离。
     为获得隔板试验的量化判据,分别用离子探针和连续速度探针研究了两种非理想炸药在UN隔板试验中的爆速变化过程,两种方法测得的结果基本一致,即连续速度探针能够准确测量样品在隔板试验中的爆速。进而用连续速度探针研究了改性铵油炸药在隔板试验中的爆轰成长过程,结果表明,连续速度探针的测试结果可以较好地反映出改性铵油炸药在隔板试验中的爆轰成长过程,能够克服离子探针不能连续测量样品爆速的不足,可作为隔板试验的量化判据。
     为研究外部火烧试验中热辐射通量经验计算公式和热辐射计的适用范围,用氧弹式量热仪测量了三种推进剂和六种烟花药剂的燃烧热,用红外热成像仪研究了烟花样品在外部火烧试验中的火球温度和燃烧特征。根据样品的燃烧热和燃烧时间,分别用热辐射通量经验计算公式和热辐射计法研究了上述九个样品在外部火烧试验中的热辐射通量,结果表明:1)在稳定燃烧的条件下,燃烧时间大于5s时,热辐射计的测得的热辐射通量平均值与经验公式的计算值基本一致;2)当燃烧时间不大十5s或在燃烧过程中产生剧烈燃烧、爆炸、抛射等剧烈效应时,热辐射通量经验公式的计算值明显偏大,此时经验公式中设定的燃烧热转变为辐射热的比例(0.33)将远大于实际的转化率,应用热辐射计来测量样品的热辐射通量。
In this dissertation, the explosives hazard classification procedures of UN Orange Book and TB700-2 were studied. Aiming at the current problem that the propellant can not be exactly classified by the present hazard classification procedures, a new hazard classification procedure of propellant was put forward, namely, using UN gap test, extremely insensitive detonating substance (EIDS) gap test, actual size gap test and bonfire test to classify the propellants. The new explosives hazard classification procedure was formed, on the basis of incorporating the proposed procedures into the hazard classification procedure of UN Orange Book. And the test conditions and results criteria of related experimental methods were studied.
     The detonation pressure of booster charge, and the interface shock wave pressure between the booster charge and PMMA spacer of UN gap test, were obtained by managing gauges and graphing method. And the results show that the values of measured and calculated are basically the same. The output shock pressures of the booster charges of UN and EIDS gap tests, which are consist of Entoleter and A-IX-I respectively, were measured in the PMMA spacer with different thicknesses. According to the shock pressure attenuation law of booster charges in the PMMA spacer, the shock pressures of booster charges in UN and EIDS gap tests were 7GPa as the thickness of PMMA spacer are 19.2mm and 45.2mm respectively. The AUTODYN was used to simulate the attenuation process of the shock wave in the PMMA gap. The results of actual measurement and numerical simulation are consistent, namely, AUTODYN software can be used to predict the thickness of PMMA spacer in other sizes gap tests.
     The shockwave pressure distribution laws of the booster charges were studied by experiment and numerical simulation, and the results of numerical simulation were in accordance with the test results. According to the results, they can be used to determine the safe distance of gap test.
     In order to get the quantitative criterion of gap test, the average detonation velocity and continuous detonation velocity of two non-ideal explosives in the UN gap test were measured by electrometric method and continuous velocity probe. The detonation velocity measured by the continuous velocity probe method is in accordance with the traditional electrometric method, and the previous method can even give the true course of detonation development for non-ideal explosives. The continuous velocity probe was selected to study the continuous detonation velocity and detonation development of modified ANFO in the UN test. The results show that the continuous velocity probe can well reflect samples change process, i.e. the continuous detonation velocity of samples can be used as the quantitative criterion of gap test.
     Oxygen bomb calorimeter was used to measure the combustion heats of 9 samples, which include three propellants and six fireworks. The heat fluxes of these samples were measured and calculated by a radiometer and the estimation method respectively. The results show that, as the burning time is greater than 5s in the stable combustion process, the calculated heat flux is in accordance with the measured value; and as the burning time is not more than 5s, or violent effect appears in the combustion process, such as deflagration and explosion, measuring the heat flux by radiometer is prefered, because the ratio of radiant heat to combustion heat used in estimation method (0.33) is greater than the actual ratio, and it will lead to an abnormal calculated value.
引文
[1]王晓峰,王亲会,王宁飞.开展高能固体推进剂危险性分级研究的建议.火炸药学报,2003,26(1):59-61
    [2]俞统昌,王建灵,王晓峰.火炸药危险等级分级程序分析.火炸药学报,2006,29(1):10-13
    [3]ST/SG/AC.10/11/Rev.5. Recommendations on the transport of dangerous goods, tests and criteria,5th Rev. ed. New York:United Nations Publication,2009
    [4]TB700-2, NAVSEAINST 8020.8C, TO 11A-1-47,DLAR 8220.1. Department of defense ammunition and explosives hazard classification procedures. Washington, DC, Headquarters Department of the Army, the Navy, the Air force, and the Defense logistics Agency, May 2007
    [5]AASTP-3. Manual of NATO safety principles for the hazard classification of military ammunition and eexplosives. NATO International Staff-Defence Investment Division, March 1995
    [6]ST/SG/AC.10/1/Rev.16. Recommendations on the transport of dangerous goods, model regulations,16th Rev. ed. New York:United Nations Publication,2009
    [7]Report on defence trial No 8/638. Explosion effects of a large quantity of hazard division 1.2 Ammunition when subjected to tire. DSTO Report AT-009-508 (AR-001-527),3 July 1997
    [8]DOD 6055.9-STD. DOD ammuntition and explosives safety standards. Under Secretary of Defense for Acquisition and Technology, August 1997.
    [9]DOD 6055.9-STD. DOD ammuntition and explosives safety standards. Under Secretary of Defense for Acquisition, Technology & Logistics, October 5,2004.
    [10]DOD 6055.9-STD. DOD ammuntition and explosives safety standards. Office of the deputy under secretary of defense (Installations and Environment), February 29,2008
    [11]NATO STANAG 4396. SymPathetic reaction, munition test procedures. North Atlantic Treaty Organization, Apr 15,2003
    [12]NATO STANAG 4240. Liquid fuel/external fire, munition test procedures. North Atlantic Treaty Organization, Apr 15,2003
    [13]NATO STANAG 4241. Bullet imPact, munition test procedures. North Atlantic Treaty Organization, Apr 15,2003
    [14]NATO STANAG 4382. Slow heating, munition test procedures. North Atlantic Treaty Organization, Apr 15,2003
    [15]ST/SG/AC.10/11. Recommendations on the transport of dangerous goods, tests and criteria. New York:United Nations Publication,1986
    [16]Swisdak M M Jr. Hazard class/division 1.6:Articles containing extremely insensitive detonating substances (EIDS). Naval Surface Warfare Center, Silver Spring, MD, NSWC-TR-89-356, Dec.1,1989
    [17]ST/SG/AC.10/11/Rev.1. Recommendations on the transport of dangerous goods, tests and criteria, 1th Rev. ed. New York:United Nations Publication,1990
    [18]ST/SG/AC.10/11/Rev.2. Recommendations on the transport of dangerous goods, tests and criteria,2th Rev. ed. New York:United Nations Publication,1994
    [19]ST/SG/AC.10/11/Rev.3. Recommendations on the transport of dangerous goods, tests and criteria,3th Rev. ed. New York:United Nations Publication,1998
    [20]John Starkenberg, John D Sullivan, Warren W Hillstrom, et al. A summary of analysis and test support for the munitions surviability technology program. ARL-TR-2506, June 2001
    [21]ST/SG/AC.10/11/Rev.4. Recommendations on the transport of dangerous goods, tests and criteria,4th Rev. ed. New York:United Nations Publication,2003
    [22]AASTP-1. Manual of NATO safety principles for the storeage of military ammunition and eexplosives. NATO International Staff-Defence Investment Division. May 2006
    [23]AASTP-2. Manual of NATO safety principles for the transport of military ammunition and eexplosives. NATO International Staff-Defence Investment Division, September 2005
    [24]NATO STANAG 4123. Methods to determine and classify the hazards of military ammunition and explosives. North Atlantic Treaty Organization, May 03,1995
    [25]NATO STANAG 4439. Policy for introduction, assessment and testing for insensitive munitions (IM). North Atlantic Treaty Organization, Mar 17,2010
    [26]McQuaide P B. Test and evaluation of insensitive munitions. Test and Evaluation of the Tactical Missile, editied by E J Eichblatt Jr., Vol.119, Progress in Astronautics and Aeronautics, AIAA, Washington, DC,1989:203-232
    [27]Porada D. US Navy insensitive munitions overview. American Defense PreParedness Association, Insensitive Munitions Technology Symposium, Williamsburg, VA, June 15-18,1992
    [28]Serao P. US Army insensitive munitions overview. American Defense PreParedness Association, Insensitive Munitions Technology Symposium, Williamsburg, VA, June 15-18,1992.
    [29]Swierk T. U.S. Navy ordnance IM technology.1990 Joint Government/Industry Symposium on Insensitive Munitions, American Defense PreParedness Association, White Oak, MD, March 13-14,1990
    [30]TB700-2 NAVSEAINST 8020.8, TO 11A-1-47.DLAR 8220.1. DePartment of defense ammunition and explosives hazard classification procedures. Washington, DC, Headquarters DePartment of the Army, the Navy, the Air force, and the Defense logistics Agency, May 1980
    [31]TB700-2, NAVSEAINST 8020.8A, TO 11 A-1-47,DLAR 8220.1. DePartment of defense ammunition and explosives hazard classification procedures. Washington, DC, Headquarters DePartment of the Army, the Navy, the Air force, and the Defense logistics Agency,1989
    [32]William Herrera, Chester Grelecki, George Petino JR. Hazard classification of liquild propellants. Technical Report ARAED-TR-88018, September 1998
    [33]Qualification of energetic materials. NAVSE-AINST 8020.5B Naval Sea Systems Command, May 16,1988.
    [34]Amster A B. What's wrong with the NOL card gap test?.1980 JANNAF Propulsion Systems Hazards Meeting, Monterey, CA, Oct.1980
    [35]TB700-2. NAVSEAINST 8020.8C, TO 11A-1-47,DLAR 8220.1. DePartment of Defense Ammunition and Explosives Hazard Classification Procedures.[review draft]. Washington, DC, Headquarters DePartment of the Army, the Navy, the Air force, and the Defense logistics Agency, May 2005
    [36]GB14371-93.危险货物运输爆炸品分级程序.北京:国家技术监督局,1993
    [37]GB14372-1993.危险货物运输暴炸品分级试验方法和判据.北京:国家技术监督局,1 993
    [38]GB14371-2005.危险货物运输爆炸品认可、分项程序及配装要求.北京:中华人民共和国质量监督检验检疫总局中国国家标准化管理委员会,2005
    [39]GB14372-2005.危险货物运输爆炸品认可、分项试验方法和判据.北京:中华人民共和国质量监督检验检疫总局 中国国家标准化管理委员会,2005
    [40]GJB772A-97.炸药试验方法.北京:国防科学技术工业委员会,1997
    [41]Walker F E, Wasley R J. A general model for the shock initiation of explosives. Propellants and Explosives,1976,1:71-80
    [42]Bentley R. Peacetime stimuli potentially hazardous to air force munitions.1990 Joint Government/Industry Symposium on Insensitive Munitions, American Defense PreParedness Association, White Oak, MD, March 13-14,1990:35-41
    [43]Andersen W H. Approximate method of calculating critical shock initiation conditions and run distance to detonation. Propellants, Explosives and Pyrotechnics,1984,9:39-44
    [44]Liddiard T P, Jr. The initiation of burning in high explosives by shock waves.4th symposium (International) on Detonation, U. S. Naval Ordnance Lab., Oct.12-15,1965: 487-495
    [45]Ramsay J B, Popolato A. Analysis of shock wave and initiation data for solid explosives. Fourth Symposium (International) on Detonation, Naval Ordnance Lab., White Oak, MD, Oct.12-15,1965
    [46]Keefe R L. Delayed detonation in card gap tests.7th Symposium (International) on Detonation, Annapolis, MD, June 16-19,1981:265-272
    [47]Skocypec P D. An evaluation of cookoff, status and direction.1991 JANNAF Propulsion Systems Hazards Subcommittee Meeting, Albuquerque, NM, March 18-221991
    [48]Raun R L, Butcher A G., Caldwell D J, et al. An approach for predicting cookoff reaction time and reaction severity.1992 JANNAF Propulsion Systems Hazards Subcommittee Meeting, Silver Spring, MD, April 1992
    [49]Pakulak J M. Prediction and application of small-scale techniques to cookoff of full-scale motors.1990 JANNAF Propulsion Systems Hazards Subcommittee Meeting. Laurel, MD, April 1990
    [50]Vetter R F. Reduction of fuel fire cook-off hazard of rocket motors. Naval Weapons Center, China Lake, CA, NWC-TP 5921, June 1977.
    [51]Butcher G A. Propcllant response to cookoff as influenced by binder type. A1AA/SAE/ASME/ASEE 26th Joint Propulsion Conf., AIAA Paper 90-2524, Orlando, FL. July 1990
    [52]李上文(译),赵凤起(校).钝感推进剂及其研究方法.西安:火炸药燃烧国防科技重点实验室出版,2007
    [53]Lundstrom E A. Shock sensitivity testing and analysis for a mninimum smoke propellant. 1990 JANNAF Propulsion Systems Hazards Subcommittee Meeting, Albuquerque, NM, March 1991
    [54]Green L. Shock initiation of explosives by imPact of small diammeter cylindrical projectiles. Seventh Symposium (International) on Detonation, Naval Surface Weapons Center, White Oak, MD, NSWC, June 1981:273-277
    [55]James H R. Critical energy criterion for the shock initiation of explosives by projectiole imPact. Propellants, Explosives, Pyrotechnics,1988,13:35-41
    [56]James H R and Hewitt D B. Critical energy criterion for the initiation of explosives by spherical projectiles. Propellants, Explosives, Pyrotechnics,1989,14:223-233
    [57]Glenn J G. and Gunger M E. Super large scale gap test. Insensitive Munitions Technology Symposium, American Defense PreParedness Association, Williamsburg, VA, June 15-18,1992
    [58]Miller P J and Boggs T L. Recent hazard classification test data on SRM propellants. Proceedings of the 29th DoD Explosives Safety Seminar Held in New Orleans 18-20 July 2000
    [59]Boggs T L, Atwood A I, Lidfors A j and Pritchard R W. Hazards associated with solid propellants. Chapter 1.9 in Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, ed by V. Yang, T B Brill and W Ren, Vol 185 Progress in Astronautics and Aeronautics, Published by American Institute of Aeronautics and Astronautics,2000: 221-262
    [60]Graham K J. Issues in hazard classification-alternate tests for large rocket motors shock sensitivity and critical diammer. Insensitive Munitions & Energetic Materials Symposium, National Defense Industrial Association (NDIA), November 2000
    [61]Cocchiaro J E. Sub-scale fast cookoff testing and modeling for the hazard assessment of large rocket motors. Chemical Propulsion Information Agency, CPTP 72, March 2001
    [62]Rattanapot M K, Atwood A I, and Covino J. A survey of transportation and storage accidents involved in thermal events. Proceedings of 31st United States Department of Defense Explosives Safety Seminar, San Antonio, Texas, Aug 24-26,2004
    [63]Butcher, A G.. Development of a subscale bonfire test protocol. Proceedings of 31 st United States Department of Defense Explosives Safety Seminar, San Antonio, Texas, Aug 24-26,2004
    [64]Daniel F Schwartz, Rboert R Bennett, Kenneth J Graham and Thomas L. Boggs. Current Efforts to Develop Alternate Test Protocols for the Joint Technical Bulletin " DePartment of Defense Ammunition and Explosives Hazard Classification Procedures" (TB700-2, Date 5 January,1998),2000
    [65]Daniel F Schwartz, Alice I Atwood, D Tri Bui, et al. Overview of proposed joint air force andnavy subscale fast cook-off program.2005 JANNAF CS/APS/PSHS/MSS Joint Meeting Charleston, SC.13-17 June 2005
    [66]刘玉存.炸药粒度及级配对冲击波感度和输出的影响研究.[博士论文].北京理工大学,2000
    [67]陈熙蓉,王可,刘德润等.冲击波在不同材料隔板中的衰减特征.兵工学报,1991,12(2):75-79
    [68]工作山,刘玉存,郑敏等.爆轰冲击波在有机隔板中衰减模型的研究.应用基础与工程科学学报,2001,9(4):316-319
    [69]王海福,冯顺山.密实介质中冲击波衰减特性的近似计算.兵工学报,1996,17(1):79-82
    [70]韩秀凤,蔡瑞娇,严楠.雷管输出冲击波在有机玻璃中传播衰减的实验研究.含能材料,2004,12(6):329-332
    [71]曾贵玉,高大元,黄辉等.有机玻璃法测试硝铵炸药的爆压.兵工学报,2009,30(5):541-545
    [72]Kent R, Rat M. Explosion thermique (cook- off) des propergols solides. Propellants, Explosives, Pyrotechnics,1982,7(5):129-136
    [73]R W Waston. An alternative to thermal flux mearsurements in UN test 6(c). Sub-Committee of Experts on the Transport of Dangerous Goods, Committee of Experts on the Transport of Dangerous Goods, United Nations, ST/SG/AG.10/C.3/R.641/Add.1,1995
    [74]J Edmund Hay, R W Waston. Scaling studies of thermal radiation flux from burning propellants. Minutes of the Twenty-Fifth Explosives Safety Seminar Held in Anaheim CAon 18-20August 1992
    [75]Ken-ichi MIYAMOTO, Takehiro Matsunaga, Mitsuaki IIDA, et al. Measurement of heat flux for the UN bonfire test. Kayaku Gakkaishi,2001,62(2):95-101
    [76]陈新华,聂万胜.液体推进剂爆炸危害性评估方法及应用.北京:国防工业出版社.2005
    [77]何志光.FAE爆炸火球热辐射效应研究.[硕士论文].南京理工大学,2004
    [78]郭学永,李斌,王连炬等.温压药剂的爆炸温度场测量及热辐射效应研究.弹箭与制导学报,2008,5(8):119-121
    [79]TB700-2, NAVSEAINST 8020.8B, TO 11 A-1-47,DLAR 8220.1. DePartment of Defense Ammunition and Explosives Hazard Classification Procedures. Washington, DC, Headquarters DePartment of the Army, the Navy, the Air force, and the Defense logistics Agency, January 1998
    [80]孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社.1995
    [81]张熙和,云主惠编著.爆炸化学.北京:国防工业出版社.1998
    [82]吴雄Energetic Materials.1985,3(4):263-278
    [83]陈网桦,彭金华,胡毅亭.爆炸动力学讲义.南京:南京理工大学出版社,2005
    [84]北京工业学院八系.爆炸及其作用(上).北京:国防工业k出版社,1979
    [85]李维新.一维不定常流与冲击波.北京:国防工业出版社,2003
    [86]周镏麟.一维非定常流体力学.北京:科学出版社,1990
    [87]徐锡申,张万箱等.实用物态方程理论导引.北京:科学出版社,1986
    [88]李维新.凝聚介质的简化状态方程.爆炸与冲击,1983,3(2):30-38
    [89]张俊秀,刘光烈.爆炸及其应用技术.北京:兵器工业出版社,1998
    [90]张守中.爆炸与冲击动力学.北京:兵器工业出版社,1993
    [91]AUTODYN theory manual[DB/CD]. Century Dynamics Corporation,2005
    [92]Miller P J, Boggs T L, Graham K J. New shock sensitivity test proposed for hazard classification. Proceedings of the 29th DOD Explosives Safety Seminar Held in New Orleans 18-20 July 2000
    [93]陈朗,龙新平,冯长根,等.含铝炸药爆轰.北京:国防工业出版社,2004
    [94]郑孟菊,余统昌,张银亮.炸药的性能及其测试技术.北京:兵器工业出版社,1990
    [95]章国升.炸药爆速的连续测定技术.爆破器材.1994,23(5):32-34.
    [96]谢兴华,张涛.工业雷管连续爆速动态测量.淮南矿业学院学报,1995,15(2):47-53
    [97]赵根,王文辉.孔内炸药连续爆速测试新技术.工程爆破,2008,14(3):63-66
    [98]颜事龙,刘辉,工海华等.水胶炸药与乳化炸药低温下爆速的测试.爆破器材.1999,28(3):1-4
    [99]刘桂涛,吕春绪,曲虹霞.超细RDX爆速和作功能力的研究与测试.爆破器材,2003,32(3):1-3
    [100]陈天云, 吕春绪,谭小刚.改性铵油炸药研究.火炸药学报,1999,22(2):34-36
    [101]松全才,杨崇惠,金韶华.炸药理论.北京:兵器工业出版社,1997
    [102]吕春绪.工业炸药理论.北京:兵器工业出版社,2003
    [103]蔡异,魏晓安,王泽山.含发射药的粉状低爆速炸药研制.含能材料,2004,12(4):231-234
    [104]吕春玲,张景林,王晶禹,谭迎新.亚微米炸药的冲击波起爆研究.含能材料,2005,13(5):319-320
    [105]朱云贵,李学良,何建波.燃烧热测定实验方法的改进.合肥工业大学学报,2000,23(增刊):803-805
    [106]山东大学.物理化学与胶体化学实验.北京:高等教育出版社,1991
    [107]北京大学化学系物理化学教研室.物理化学实验.北京:北京大学出版社,1985
    [108]复旦大学.物理化学实验.北京:高等教育出版社,1993
    [109]孙尔康,徐维消,邱金恒.物理化学实验.南京:南京大学出版社,1994
    [110]Dr Anna E Wildegger-Gaissmaier. Aspects of thermobaric weaponry. ADF Health,2003, 4(1):3-6
    [111]惠君明,郭学永.云爆弹与热压弹.2002火炸药技术及钝感弹药学术研讨会论文集,2002:333-336
    [112]张明,曾令可.火焰温度场的红外热成像动态测试.激光与红外,1997,27(5):288-291
    [113]邓建平,王国林,黄沛然.用于高温测量的红外热成像技术.流体力学实验与测量,2001,15(1):43-47
    [114]王喜世,伍小平,秦俊,等.用红外热成像方法测量火焰温度的实验研究.激光与红外,2001,31(3):169-172
    [115]李秀丽,惠君明,张琳.光谱法遥感测定温压炸药爆炸温度的研究.弹道学报,2008,20(2):91-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700