基于叶片高光谱指数的水稻氮素及色素含量监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物生长光谱监测的主要任务是要确立能够反映作物生长状态的敏感波段和特征指数,并建立光谱指数与农学参数之间的定量关系。高光谱遥感波谱具有连续、精细的特点,可显著增强对植株生物理化参数的探测手段和能力,为定量估测植株单一生化组分状况提供了有效途径。本研究以水稻为对象,以系列田间试验为依托,综合运用高光谱信息分析、生理生化测试及数理统计建模等技术手段,分析不同氮素水平和品种条件下水稻叶片高光谱反射特征与叶片和群体氮素及色素之间的定量关系,进而确立基于叶片高光谱监测水稻单叶和群体氮素及色素之间的适宜光谱指数及相应监测模型,从而为水稻氮素营养的无损监测和精确诊断提供理论基础和关键技术。
     首先分析了不同施氮量和不同氮含量水平下水稻叶片光谱反射特征的变化模式。结果表明,随着土壤施氮量和叶片氮含量水平的提高,叶片反射光谱在可见光区的反射率下降,负相关显著;而近红外波段反射率则小幅上升,但相关性不高。叶片氮含量与一阶导数的相关关系表明在可见光至红边区众多波段均达到极显著相关水平,相关系数呈明显的峰谷特征。可见,不同试验条件下水稻叶片的氮素状况和反射光谱特征呈现了明显的动态变化模式,为进一步定量解析叶片反射光谱与氮素营养状况的关系提供了丰富的信息基础。
     基于叶片高光谱特征,系统分析了水稻叶片氮素组分与叶片反射光谱、一阶导数光谱、两波段组合的比值(SR)、归一化(ND)及差值(SD)等光谱指数的相关关系。叶片全氮和蛋白氮含量的敏感波段主要位于可见光绿光区520-590 nm及红边区域695-715 nm,其中红边区域表现最为显著。通过比较不同波段组合的不同形式光谱参数发现,以700-702 nm附近波段与近红外短波段的比值组合估算水稻上部叶片的全氮和蛋白氮含量的效果最好,其次为黄光区583-587 nm左右波段与近红外短波段的比值组合。其中,窄波段比值指数SR(R780, R702)和SR(R770, R700)分别为估算水稻叶片全氮和蛋白氮含量的最佳光谱变量,而基于有效组合区域内光谱指数敏感性的宽波段比值指数SR[AR(763-860), AR(697-707)]和SR[AR(746-815), AR(697-705)]分别用于全氮和蛋白氮含量估算,表现出与窄波段组合相似的敏感性和预测力,表明在此敏感组合区域内带宽选择对反演结果的准确度影响不大。最佳差值和归一化差值指数仅出现在740-755 nm小范围内,组合波段邻近,且与最佳一阶导数波段相近,但总体表现均不及比值组合优秀。
     系统分析了已有叶绿素敏感光谱指数及新型两波段组合的比值和归一化光谱指数与叶片叶绿素含量的关系,提出了水稻叶片不同组分叶绿素含量的敏感光谱指数及预测方程。发现红边波段构成的比值或归一化光谱指数均可较好地指示水稻上部4叶的叶绿素含量。估算叶绿素a(Chla)和叶绿素总量(Ch1a+b)的敏感区域一致,最佳比值指数均为SR(R730, R710),最佳归一化指数分别为ND(R780, R710)和ND(R780, R712);估算叶绿素b (Ch1b)的最佳比值和归一化光谱指数分别为SR(R780, R725)和ND(R780, R725)。此外,引入445 nm波段反射率对上述光谱指数进行修正,可以降低模型的预测误差,提高模型的稳定性。当宽波段比值指数SR[AR(720-740),AR(705-715)]用于叶片Ch1a和Cb1a+b含量估算,SR[AR(750-850), AR(715-735)]用于叶片Chlb含量估算,以及宽波段归一化指数ND[AR(750-850), AR(705-715)]、ND[AR(750-850), AR(706-718)]和ND[AR(750-850), AR(715-735)]分别用于Ch1a、Cb1a+b和Ch1b含量的估算时,均表现出敏感度和稳定性的统一,且波段选择较灵活,从而有助于指导便携式叶绿素监测仪的研制开发。
     进一步分析了不同叶位叶片光谱或单叶光谱组合与水稻群体叶片氮素组分的关系,明确了基于叶片尺度光谱监测群体叶片全氮和蛋白氮含量的适宜取样叶位、敏感波段及光谱指数,并建立了相应的监测模型。基于叶片光谱监测群体叶片全氮含量和蛋白氮含量时,顶2叶和顶3叶为适宜取样叶位,而顶2叶和顶3叶的光谱平均值(L23)为最理想的叶片光谱形式;敏感波段主要位于可见光绿光及红边区;可见光580 nm附近波段及红边702 nm附近波段与近红外短波段的比值组合和群体叶片全氮及蛋白氮含量关系最为密切。估算全氮含量以绿光窄波段指数SR(R780, R580)和宽波段指数SR[AR(750-850), AR(568-588)表现最好;而估算蛋白氮含量则以红边窄波段指数SR(R780, R701)和宽波段指数SR[AR(750-850), AR(697-706)]表现最好。利用叶片特征光谱指数可以对群体叶片全氮和蛋白氮含量进行准确可靠的监测。
     基于不同生态点、年份、品种和施氮水平下4个大田试验资料,通过比较不同叶位(组合)叶片光谱指数与群体叶片Ch1a和Ch1a+b含量的关系,确立了适宜于监测群体叶片Ch1a和Ch1a+b含量的关键叶位、敏感光谱指数及监测方程。不同叶位叶片光谱对群体叶片叶绿素含量的估算效果存在明显差异,基于顶2叶和顶3叶平均光谱构建的敏感光谱指数和监测方程表现较好。比值和归一化指数均可较好的估算群体叶片叶绿素含量,但最佳组合的中心波段有所差别,归一化组合以560±10 nm vs. NIR和710±6 nm vs. NIR表现较好,比值组合以554±10 nm vs. NIR和718±6 nm vs. NIR表现较好。由此,提出绿光归一化指数ND(R776, R560)、和ND[R(750-850), R(550-850)]、绿光比值指数SR(R554, R776)和SR[R(544-564), R(750-850)]、红边归一化指数ND(R780, R710)和ND[R(750-850), R(704-716)]、以及红边比值指数SR(R718, R780)和SR[R(712-724), R(750-850)]可用于水稻群体叶片Ch1a和Ch1a+b含量的估算,模型校正及检验结果均显示了各参数的可靠性和适用性,尤以红边组合指数的敏感性表现最好。
     通过分析水稻单叶类胡萝卜素(Car)含量和类胡萝卜素/叶绿素比值(Car/Ch1)与不同波段组合的多种类型光谱指数的相关性,构建了适于水稻单叶Car含量和Car/Ch1比值监测的敏感光谱指数及监测方程。结果显示,723 nm附近波段与近红外波段的比值组合及713 nn附近波段与近红外波段的归一化组合可以较好地监测水稻单叶Car含量,基于窄波段组合SR(R723, R770)和ND(R770, R713)及宽波段组合SR[AR(715-729), AR(750-820)]和ND[AR(740-840), AR(707-719)]的监测方程线性拟合效果较好,独立资料的检验亦表明各方程稳定性高,可以对不同条件下水稻单叶Car含量进行可靠的监测。由于水稻叶片Car/Ch1比值的变化与叶片衰老或胁迫程度的关系密切,因而提出SR(R698,R712)、ND(R716, R695)、SR(R615, R713)和ND(R737, R622)用于灌浆中后期衰老叶片Car/Ch1比值的监测,线性拟合关系良好。进一步分析水稻不同叶位叶片光谱指数与群体叶片Car含量间的关系,同样发现以顶2叶和顶3叶的平均光谱表现较好,不同波段组合的光谱指数中,以蓝光比值指数SR(R466, R496)和蓝光归一化指数ND(R466, R496)建立的监测方程表现最好,可用于不同生育期水稻群体叶片类胡萝卜素含量的定量监测。
The primary task of crop growth spectral monitoring is to determine sensitive wavebands and characteristic parameters for reflecting crop growth status, and establish quantitative relationship between agronomic variables and spectral indices. In the past few years, the newly emerged hyperspectral remote sensing, with the characteristics of high resolution, consecutive wavebands and rich data, can significantly enhance the ability of detecting specific crop variables related to physiology and biochemistry, and have opened up new possibilities for quantifying single biochemical index in plant. In this study, five field experiments were conducted with different nitrogen (N) rates and rice cultivars across three growing seasons at different eco-sites. Based on analysis of leaf spectral information and assay of physico-chemical index in rice plant, the characteristics of leaf hyperspectral reflectance under different conditions and their correlation to leaf and canopy nitrogen status and correlative biochemical components in rice were quantified in this paper, then some new spectral indices and quantitative regression models were developed for estimating single leaf and canopy N and chlorophyll (Ch1) concentration. The prospective results would provide technical basis for non-destructive monitoring and precise diagnosis of wheat growth.
     Comparison of variation pattern in leaf reflectance under different N supply rates and leaf N concentration (LNC) showed that with increasing soil N supply rates and LNC, reflectance at visible band were decreased, presenting significant negative correlation; but reflectance at near infrared flat region (NIR,750-1300nm) were increased slightly, with weakly positive correlation. The correlation of leaf first derivative spectra to LNC indicated that highly significant correlation were reached at many bands located in visible and red edge regions, correlation spectrum presented obvious peak-valley characteristics. These changed patterns of leaf spectra and N status at different experimental condition provided a basis for analyzing and constructing quantitative relationships of leaf N nutrition to hyperspectral characters of leaf reflectance in rice.
     Based on technique of leaf hyperspectra analysis, many characteristic bands and derived spectral indices were obtained. The quantitative relationships of LNC and leaf protein N concentration (LPNC) to leaf reflectance spectra, first derivatives, and all combinations of two wavebands between 350 and 2500 nm as simple ratio spectral indices (SRs), normalized difference spectral indices (NDs) and simple difference spectral indices (SDs) were developed. The results indicated that the sensitivity bands mostly occurred in 520-590 nm within green light region and 695-715 nm within red edge region, and a close correlation existed between red-edge region and LNC and LPNC. Comparison of prediction ability of different algorithmic spectral indices indicated that the SRs were the most effective approach for predicting LNC and LPNC in the top leaves of rice plant, especially with the ratio of reflectances in the NIR to reflectances centered at 700-702 nm, and next to reflectances centered at 583-587 nm within yellow region. Two narrow bands spectral indices as SR(R.78o, R702) and SR(R770, R700) were developed to estimate LNC and LPNC, respectively; and further, based on sensitivity analysis of SRs located in effective combined region, tow broad band spectral indices as SR[AR(763-860), AR(697-707)] and SR[AR(746-815), AR(697-705)] were also determined to estimate LNC and LPNC, respectively, giving similar sensitivity and prediction ability with narrow SRs, indicated that selective bandwidth in effective region had little effect on prediction accuracy. The optimal SDs and NDs for estimating LNC and LPNC only located in a small regions of 740-755 nm, the wavebands for constructing spectral indices were adjacent, and close to optimal first derivatives, but they were all inferior to SRs.
     The relationships of leaf Ch1 concentration to new SRs and NDs with two wavelengths combinations, and existing Ch1 sensitive spectral indices were systematically analyzed, some sensitive spectral indices and monitoring equations were put forward for leaf Ch1 concentration estimation. Analysis showed that the best indicators for estimating leaf Ch1 concentration in rice were SRs and NDs calculated in the red edge region. The sensitive region for estimating of chlorophyll a (Ch1a) and total chlorophyll (Ch1a+b) concentration were consistent, the best SRs were uniform as SR(R730, R710), and the best NDs were ND(R780, R710) and ND(R780, R712), respectively; the best SRs and NDs for estimating chlorophyll b (Ch1b) were SR(R780, R725) and ND(R780, R725), respectively. In addition, modifying the above spectral indices with the reflectance at 445 nm could reduce the predicting error of models, and increased the extrapolation potential for the model. Some broad bands spectral indices were further developed for Ch1a, Ch1b and Ch1a+6 concentration estimation, respectively, as SR[AR(720-740), AR(705-715)] for leaf Chla and Ch1a+b and SR[AR(750-850), AR(715-735)] for leaf Chlb concentration estimation, and ND[AR(750-850), AR(705-715)], ND[AR(750-850), AR(706-718)] and ND[AR(750-850), AR(715-735)] for leaf Chla, Chla+b and Chlb concentration estimation, respectively, each of them had similar sensitivity as narrow bands spectral indices. This would help to development of portable Ch1 monitoring instrument.
     Further analysis were conducted on the relationships of leaf reflectance derived from different positions or single leaf spectral combination to canopy LNC and LPNC, and proper leaf position, key hyperspectral indices and quantitative monitoring model for accurate prediction of canopy LNC and LPNC were determined. The performance of different leaf hyperspectral indices for estimating canopy leaf N status were different with changed leaf position, top 2nd and 3rd leaf were ideal sampling position for monitoring canopy LNC and LPNC, average reflectance of top 2nd and 3rd leaf (L23) could help to improve the sensitivity and stability of key hyperspectral parameters, as ideal combination of key leaf position. The SRs combined of 702±nm vs. NIR were the most effective approach for predicting canopy LNC and LPNC in rice, and next were 580±nm vs. NIR. Green ratio indices as SR(R780, R580) and SR[AR(750-850), AR(568-588)] were developed for estimating canopy LNC; and red edge ratio indices as SR(R780, R701) and SR[AR(750-850), AR(697-706)] were developed for estimating canopy LPNC. The effect of model simulation and test indicated that these spectral indices constructed with leaf hyperspectral data could be effectively used for accurate estimation of canopy LNC and LPNC in rice under different growing conditions.
     Quantificational relationship between canopy leaf Chi concentration and leaf spectral indices derived from top four leaves at different growth position or their certain combination were also analyzed, and some key hyperspectral indices were developed for accurate prediction of canopy leaf Ch1 concentration, thus quantitative monitoring model for canopy leaf Ch1 concentration were determined. The results indicated that the performance of estimating canopy leaf Ch1 concentration by leaf hyperspectral indices were different with changed leaf position, average reflectance of top 2nd and 3rd leaf (L23) was more effective than others, as ideal selection of leaf spectrum. Both SRs and NDs were effective approach for predicting canopy leaf Chla and Chla+b concentration in rice, but centre waveband of optimal combination were different. The NDs located in 560±10 nm vs. NIR and 710±6 nm vs. NIR, and the SRs located in 554±10 nm vs. NIR and 718±6 nm vs. NIR, which were more remarkable than other wavebands combination. Thus green NDs as ND(R776, R560) and ND [R(750-850), R(550-570)], green SRs as SR(R554, R776) and SR[R(544-564), R(750-850)], red edge NDs as ND(R780, R710) and ND[R(750-850), R(704-716)], and red edge SRs as SR(R718, R780) and SR[R(712-724), R(750-850)] were developed to estimate canopy leaf Ch1a and Chla+b concentration, especially red edge wavebands combination, with higher sensitivity were more advised.
     The change characteristics of single leaf carotenoid (Car) concentration and carotenoid/chlorophyll ratio (Car/Ch1) in rice with development stages and quantitative relationships to leaf reflectance spectra and derived spectral indices were investigated. The results indicated that the SRs using reflectance around 723 nm combined with NIR or the NDs using reflectance around 713 nm combined with NIR could be used to estimate leaf Car concentration, among which the SR(R723, R770) and ND(R770, R713) have the best performance. Broad bands combinations as SR[AR(715-729), AR(750-820)] and ND[AR(740-840), AR(707-719)] in red edge region also have a good correlation with leaf Car concentration. Tests with independent dataset showed that leaf Car concentration in rice could be predicted effectively by above hyperspectral indices. Because changes of leaf Car/Ch1 ratio were direct related to leaf senescence or stress, SR(R698, R712), ND(R716, R695), SR(R615, R713) and ND(R737, R622) were developed for estimating leaf Car/Ch1 ratio in the mature stage, especially in the process of leaf senescence, but much work also remains to be done to test and perfect it. Further, Relationships of leaf hyperspectral indices to canopy leaf Car concentration were also analyzed, results show that average spectral reflectance of top 2nd and 3rd leaf was more suitable for monitoring canopy leaf Car concentration, blue spectral indices as SR(R466, R496) and ND(R466, R496), with a good accuracy and precision, were presented for canopy leaf Car concentration estimation.
引文
1. 凌启鸿,过盖先,费槐林,黄丕生.水稻栽培理论与技术兼及作物栽培科学的发展述评(上).中国稻米,1999,1:3-8.
    2. Martens D A. Nitrogen cycling under different soil management systems. Advances in Agronomy, 2001,70:143-197.
    3. Cui R X, Lee B W. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science,2002,47,390-394.
    4. 沈其荣,谭金芳,钱晓晴.土壤肥料学通论.北京:高等教育出版社,2001.
    5. 蒋永忠,吴金桂,娄德仁,杨琼,孙丽,袁先进,梁明华,王治安.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学,1998,(6):48-50.
    6. 沈景文.化肥农药和污灌对地下水的污染.农业环境保护,1992,11(3):137-139.
    7. 司友斌,王慎强,陈怀满,农田氮、磷的流失与水体富营养化.土壤,2000,(4):188-193.
    8. 张夫道.化肥污染的趋势与对策.环境科学,1985,(6):54-59.
    9. 曹卫星,罗卫红.作物系统模拟及智能管理.北京:华文出版社,2000.11:149-204.
    10.曹卫星,农业信息学.北京:中国农业出版社,2005.
    11.刘爱民,封志明,徐丽明.现代精准农业及我国精准农业的发展方向.中国农业大学学报,2000, 5(2):20-25.
    12. FAO. Statistical databases, Food and Agriculture organization (FAO) of the United Nations.2001: http://www.fao.org.
    13. FAO (2004). FAO Statistical Databases. Food and Agriculture Organization (FAO) of the United Nations, (Rome/http://www.fao.org)
    14.李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社.1997.
    15.杨海君,汤楚宙.我国现代精准农业的发展方向.作物研究,2002,16(1):4-6.
    16.李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学,2000.
    17.崔玉亭.化肥与生态环境保护,北京:化学工业出版社,2000.
    18. Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change. Ambio.2002, 31:64-71.
    19.张维理.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    20.高旺盛,黄进勇.黄淮海平原典型集约农区地下水硝酸盐污染初探.生态农业研究,1999,7(4):41-43.
    21.林克惠.施肥对农产品品质的影响.云南农业大学学报,1994,11(6):114-120.
    22.曹志洪.科学施肥和我国粮食安全保障.土壤,1998,2:57-63.
    23.刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2003,36(12):1456-1461.
    24.江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华东.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496.
    25.崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,4:659-662.
    26.崔继林,陈永康.水稻高产经验研究第1集.上海:上海科技出版社,1964,30.
    27.刘芷宇.植物营养诊断的回顾与展望.土壤,1982,24(1):173-175.
    28.渡边和彦.作物营养元素缺乏与过剩症的诊断与对策.罗小勇,译.日本:日本种苗株式会社,1999:58.
    29.宋文冲,胡春胜,程一松,代辉.作物氮素营养诊断方法研究进展.土壤通报,2006,37(2):369-372.
    30.陈新平,李志宏,王兴仁,张福锁.土壤、植株快速测试推荐施肥技术体系的建立与应用.土壤肥料,1999(2):6-10.
    31. Engel R E, Zubriski J C. Nitrogen content ratio in spring wheat at several growth stages. Communication of Soil Science and Plant Analysis,1982,15(7):531-544.
    32.袁玲.四川东部地区水稻产量形成与氮素营养生理的研究.西南农业大学学报,1989,11(2):164-168.
    33.张卫建,黄丕生,陆士龙.单季中稻体内氮营养水平诊断研究.江苏农业学报,1996,12(3):15-19.
    34. Hasegawa G, Oba T. Studies on leaf analysis Ⅲ. Seasonal variation in the inorganic constituents of rice plants-N content of the leaf blade as an index of fertilizer requirements. Proc crop Sci Japan, 1956, (24):197-199.
    35.王洪春.单季晚稻高产中叶色黑黄变化的生理基础探讨,陈永康水稻高产经验研究(第1集).上海:上海科技出版社,1964,43-55.
    36.苏祖芳,沈巨云.水稻看苗诊断.南京,江苏科学技术出版社,1989.
    37.孙羲.水稻氮素营养及其诊断.浙江农业大学学报,1981,(2):41-50.
    38.陶勤南,方萍,吴良欢,周维帮.水稻氮素营养的叶色诊断研究.土壤,1990,22(4):190-193.
    39. Peng S B, Garcia F V, Laza R C, Sanico A L, Visoeras R M, Cassman K G. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal,1993,85:987-990.
    40.陈新平,贾良良,张福锁.无损伤测试技术在作物氮素营养诊断及施肥推荐中的应用.冯锋,张福锁,杨新泉.植物营养研究-进展与展望.北京:中国农业大学出版社,2000,197-206.
    41. Balasubramanian V, Morales A C, Cruz R T. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems,1999,53:59-69.
    42.张文安SPAD-501型叶绿素计在测定水稻叶绿素含量中的应用.贵州农业科学,1991,4:37-39.
    43. Evans J R, Seemann J R. Difference between wheat genotypes in specific activity of ribulose-1, 5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiology,1984,74: 759-765.
    44. Carter G A, Knapp A K. Leaf optical properties in higher plants:Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany,2001,88:677-684.
    45. Moran J A, Mitchell A K, Goodmanson G, Stockburger K A. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance:a comparison of methods. Tree Physiology,2000,20(16):1113-1120.
    46. Inada K. Studies on a method for determining the deepness of green color and chlorophyll content of intact crop leaves and its practical applications. Proc. Crop Sci. Soc. Japan,1965,33:301-306.
    47. Thomas J R, Gausman H W. Leaf Reflectance vs. Leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal,1977,69:799-802.
    48. Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science,1995,35:1400-1405.
    49. Chubachi N R, Asano I, Oikava T. The diagnosis of nitrogen of rice plants using chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition,1986,57(1):109-193.
    50. Turner F T, Jund M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Australian Journal of Experimental Agriculture,1994,34:1001-1005.
    51. Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research,1996,47:243-252.
    52. Wood C W, Tracypw, Reevesd W, Edmisten K L. Determination of cotton nitrogen status with a handheld chlorophyll meter. Journal of Plant Nutrition,1992,15:1435-1448.
    53. Turner F T, Jund M F. Chlorophyll meter to predict nitrogen topdress requirement for semidwart rice. Agronomy Journal,1991,83:926-928.
    54. Follett R H, Follett R F. Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat. Communications in soil science and plant analysis,1992,23(7/8):687-697.
    55. Chapman S C, Barreto H J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal,1997,89:557-562.
    56. Campbell R J, Mobley K N, Marini R P. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. Horticulture Science,1990,25:330-331.
    57. Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communication of Soil Science and Plant Analysis,1992,23(17): 2173-2187.
    58. Peng S B, Garcia F V, Laza R C, Gassman K G. Adjustment for Specific Leaf weight improves chlorophyll meter's estimation of rice leaf nitrogen concentration. Agronomy Journal,1993,85: 987-990.
    59. Peng S B, Laza R C, Garcia F V, Cassman K G. Chlorophyll meter estimates leaf area based nitrogen concentration of rice. Communication of Soil Science and Plant Analysis,1995,26: 927-935.
    60. Ladha J K, Tirol-Padre A, Punzalan G C, Castillo E, Singh U, Reddy C K K. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal,1998,90:33-40.
    61.林世青,许春辉,张其德,徐黎,毛大璋,匡廷云.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.1992,9(1):1-16.
    62. Mallick N, Mohn F H. Use of chlorophyll fluorescence in metal-stress research:a case study with the green microalga Scenedesmus. Ecotoxicology and Environmental Safety,2003,55:64-69.
    63. Ciompi S, Gentili E, Guidi L, Soldatini G F. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science,1996,118:177-184.
    64. Waldhoff D, Furch B, Junk W J. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia:Symmeria paniculata. Environment Experimental Botany,2002,48:225-235.
    65. Netto A T, Campostrini E, Oliveira J G, Bressan2Smith R E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae,2005, 104:199-209.
    66.董彩霞,赵世杰,田纪春,孟庆伟,邹琦.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报,2002,28(1):59-64.
    67.聂磊,李淑仪,廖新荣,刘鸿先.沙田柚叶绿素荧光特征及其与叶片矿质元素含量的关系.果树科学,1999,16(4):284-288.
    68.范燕萍,余让才,陈建勋,杨瑞陶.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报,2000,27(4):297-299.
    69.郭延平,陈屏昭,张良诚,张上隆.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,2002,8(2):186-191.
    70. Blackmer T, MSchepers J S, Varel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal,1994,86:934-938.
    71. Adamsen F J, Pinter P J, Barnes E M, La Morte R L, Wall G W, Leavitt S W, Kimball B A. Measuring wheat senescence with a digital camera. Crop Science,1999,39:719-724.
    72. Scharf P C, Lory J A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal,2002,94:397-404.
    73. Jia L L, Cheng X P. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition,2004,27(3):441-450.
    74. Skoog D A, Holler E J, Nieman T A. Principles of Instrumental Analysis,5th Ed., Saunders College Publishers, phildelphia,1998,849.
    75. Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation, third edition, John Wiley & Sons, Inc., New York,1994,1-750.
    76.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    77. Hunt G R. Electromagnetic radiation:the communication link in remote sensing. In:Remote Sensing in Grology. Siegal B, Gillespia A. Wiley New York,1980,702.
    78.陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    79.童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社,1990.
    80. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment.1989,30: 271-278.
    81.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2003,7(4):276-284.
    82. Walburg G Bauer M E, Drughtry C S T, Housley T L. Effects of nitrogen on the growth, yield, and Reflectance characteristics of corn canopies. Agronomy Journal,1982,74:677-683.
    83. Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal,1996,88:1-5.
    84. Tarpley L, Raja Reddy K, Gretchen F, Sassenrath-Cole F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen, Crop Science,2000,40:1814-1819
    85. Card D H, Peterson D L, Matson P A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment,1988,26:123-247.
    86. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76:349-359.
    87. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999,67:267-287.
    88. Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75:153-161.
    89. Wessman C A, Aber J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing,1989,10:1293-1316.
    90.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报.2000,4(2):125-129.
    91. University of Wisconsin-Madison (2007, October 16). Why Do Leaves Change Color In The Fall?. ScienceDaily. Retrieved 2009/6/22, from http://www. sciencedaily. Com/releases/2007/10/ 071012104737.htm
    92. Adams M L, Norvell W A, Philpot W D, Peverly J H. Spectral detection of micronutrient deficiency in 'Bragg' soybean. Agronomy Journal,2000,92:261-268.
    93. Yoder B J, Pettigrew-Crosby. Predicting nitrogen and chlorophyll content and concentrations form reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment,1995, 53:199-211.
    94. Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. International Journal of Applied Earth Observation and Geoinformation,2005,7(1):1-9.
    95. Fourty T H, Baret F. On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing,1998,19:1283-1397.
    96.张凤丽,余万庆.利用高光谱数据进行植被生化成分反演方法研究.地球信息科学,2001,4:71-75.
    97. Gong P, Pu R, Heald C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing,2002,23(9):1827-1850.
    98.赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展.地球科学进展,2003,18(1):94-99.
    99. A1_Abbas A H, Barr R, Hall S D. Spectra of normal and nutrient-deficient maize leaves. Agronomy Journal,1974,66:16-20.
    100. Hinzman L D, Bauer M E, Daughtry C S T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment,1986,19:47-61.
    101. Wang K, Shen ZQ, Wang RC. Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy. Journal of Zhejiang Agricultural University,1998,24: 93-97.
    102.周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993,19(增):40-46.
    103.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14.
    104. Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil,2003,257:205-217.
    105. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005a,97:89-98.
    106. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005b,22:391-403.
    107. Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal,1972,64:11-13.
    108. Buscaglia H J, Varco J J. Early detection of cotton leaf nitrogen status using leaf reflectance. Journal of Plant Nutrition,2002,25(9):2067-2080.
    109.李建龙.信息生态学.北京:化学工业出版社,2004.
    110. Fernandez S, Vidal D, Simon E, Sole S L. Radiometric characteristics of triticum aestivum cv. astral under water and nitrogen stress. International Journal of Remote Sensing,1994,15(9):1867-1884.
    111. Read J J, Tarpley L, Mckinion J M, Reddy K R. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. Journal of environmental quality,2002,31(5):14421452.
    112.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报,2005,31(7):844-854.
    113. Zhou Q F, Wang J H. Leaf and spike reflectance spectra of rice with contrasting nitrogen supplemental levels. International Journal of Remote Sensing,2003,24(7):1587—1593.
    114.李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮含量与冠层反射光谱指数的定量关系.作物学报,2006,32(3):358-362.
    115.周冬琴,田永超,姚霞,朱艳,曹卫星.水稻叶片全氮浓度与冠层反射光谱的定量关系.应用生态学报,2008 19(2):337-344.
    116.朱艳,李映雪,周冬琴,田永超,姚霞,曹卫星.稻麦叶片氮含量与冠层反射光谱的定量关系.生态学报,2006,26(10):3463-3469.
    117. Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119—129.
    118.谭昌伟,王纪华,黄文江,刘良云,黄义德,赵春江.夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究.西北植物学报,2004,24(6):1041-1046.
    119.易秋香,黄敬峰,王秀珍,钱翌.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9):138-143.
    120.李向阳,刘国顺,杨永锋,赵春华,喻奇伟,宋世旭.烤烟叶片高光谱参数与多种生理生化指标关系研究.中国农业科,2007,40(5):987-994.
    121.谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型.应用生态学报,2008,19(6):1261-1268.
    122. Feng W, Yao X, Zhu Y, Tian Y C, Cao W X, Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy,2008,28:394—404.
    123. Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science,1996,1(1):21-26.
    124. Merzlyak M N, Gitelson A A. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). Journal of Plant Physiology.1995,145:315-320.
    125. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science.1998,3(4):151-156.
    126. Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. Nondestructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum.1999,106:135-141.
    127. Horler, D N H, Barber J, Darch J P, Ferns D C, Barringer A R. Approaches to detect ion of geochemical stress in vegetation. Advanced Space Research,1983,3:175-179.
    128. Daughtry C S T, Walthall C L, Kim M S, Colstoun E B, Mcmurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    129. Benedict H M, Swidler R. Non-destructive method for estimating chlorophyll content of leaves. Science,1961,133:2015-2016.
    130. Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote Sensing of Environment.1998a,66:273-285.
    131. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentration:a test using senescent tree leaves. International Journal of Remote Sensing,1998b,19(4):657-675.
    132. Mariotti M, Ercoli L, Masoni A. Spectral properties of iron-deficient com and sunflower leaves. Remote Sensing of Environment,1996,58:282-288.
    133. Carter, G. A., W. G. Cibula, and R. L. Miller. Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. Journal of Plant Physiology,1996,148: 516-523.
    134. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing.1997,18:2691-2697.
    135. Rouse J W, Haas R H, Scheil J A, Deering D W. Monitoring vegetation systems in the great plains with ERTS. In third ERTS symposium, NASA SP-351, NASA, Washington, DC,1973,1:309-317.
    136. Lichtenthaler H K, Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol.1987,148:331-382.
    137. Chappelle E W, Kim M S, Memurtrey Ⅲ J E. Ratio analysis of reflectance spectra (RARS):an algorithm for the remote estimation of the concentration of chlorophyll A, chlorophyll B and the carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    138. Gitelson A A, Merzlyak M N, Grits Y. Novel algorithms for remote sensing of chlorophyll content in higher plants. IEEE Trans. Geoscience and Remote Sensing Symposium.1996b,4:2355-2357.
    139. Schepers J S, Blackmer T M, Wilhelm W W, Resende M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology,1996,148:523-529.
    140. Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment.1996a,58:289-298.
    141. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,81:337-354.
    142. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.
    143. Zarco-Tejada P J, Miller J R, Morales A, Berjon A. Agiiera J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 2004,90(4):463-476.
    144. Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, de Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment.2005,99: 271-287.
    145. Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    146. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoid/chlorophyll a ratio from leaf spectral. Ptotosynthetica,1995a,31:221-230.
    147. Penuelas J, Filella L, Gamon J A. Assessment of photosynthetic radiation-use effciency with spectral reflectance. New Phytol.,1995b,13:291-296.
    148. Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environment conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment,2002,80:213-224.
    149. Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist,1999,143:105-117.
    150. Gitelson A A, Zur Y, Chivkunova O B, Merzlyak M N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology,2002,75(3):272-281.
    151. Curran P J, Dungan. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1990,7:33-38.
    152. Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing,1994,15:1459-1470.
    153. Xue L H, Yang L Z. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64:97-106.
    154. Datt B. Remote sensing of chlorophylla, chlorophyllb, chlorophylla+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment.1998,66:111-121.
    155. Roberts D A, Ustin S L, Ogunjemiyo S, Greenberg J, Dobrowski S Z, Chen J Q, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems,2004,7:545-562.
    156. Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications,1994,4:280-298.
    157. Pinar A, Curran P J. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing,1996,17:351-357.
    158. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86:542-553.
    159. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy,2003,19:611-618.
    160. Tilley D R, Ahmed M, Son J H, Badrinarayanan H. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecological Engineering,2003,21:153-163.
    1. Analytical Spectral Devices. Inc. FieldSpec Pro User's guide.2002.
    2. Lichtenthaler H K. Chlorophylls and carotenoids:the pigments of photosynthetic biomembranes. Methods Enzymol.1987,148:331-382.
    3. 李合生.植物生理生化实验原理和技术.高等教育出版社,2000:186-192.
    4. 赵世杰,史国安,董新纯.植物生理学实验导.北京:中国农业科学技术出版社,2002:89-95.
    5. Baret F, Guyot G, Major D J. TSAVI:a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In:Proc. IGARRS'89.12th Canadian Symposium on Remote Sensing, (vol.3,1355-1358). Vancouver, Canada,1989,4 (10-14July).
    6. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67:267-287.
    7. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment.1990,33:55-64.
    8. 王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    9. 浦瑞良,宫鹏.高光谱遥感及应用.北京:高等教育出版社,2000.
    10. Broge N H, Lebance E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment,2001,76:156-172.
    11. Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sensing of Environment,1998, 66:41-51.
    12. Horler D N H, Dockray M, Barber J. The red edge of plant reflectance. International Journal of Remote Sensing,1983,4:273-288.
    13. Curran P J, Windham W R, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1995,15:203-206.
    14. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model. International Journal of Remote Sensing,1990,11(10):1755-1773.
    15. Fourty T, Baret F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data:A simulation study. Remote Sensing of Environment,1997,61(1):34-45.
    16. Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology, 1994,22:247-252.
    17. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing.1997,18:2691-2697.
    18. Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment,2002,80:76-87.
    19. Zhao D, Reddy K R, Kakani V G, Read J J, Carter GA. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil.2003,257:205-217.
    20. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal. 2005a,97:89-98.
    21. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy.2005b,22:391-403.
    22. Zhou Q F, Wang J H. Leaf and spike reflectance spectra of rice with contrasting nitrogen supplemental levels. International Journal of Remote Sensing.2003,24(7):1587-1593.
    23. Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119-129.
    24. Zarco-Tejada P J, Miller J R, Morales A, Berjon A, Aguera J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 2004,90(4):463-476.
    25. Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, de Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment.2005,99: 271-287.
    26. Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of Plant Physiology,1996,148:483-93.
    27. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and content from reflectance spectral (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53:199-211.
    28. Penuelasa J, Ustinb S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data decomposing biochemical from structural signals Lydia Serrano. Remote Sensing of Environment,2002,81(2-3):355-364.
    29. Muller K, Bottcher U, Meyer-Schatz F, Kage H. Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosystems Engineering,2008,101(2):172-182.
    30.李强,赵伟MATLAB数据处理与应用.北京:国防工业出版社.2001.
    1. Martens D A. Nitrogen cycling under different soil management systems. Advances in Agronomy, 2001,70:143-192.
    2. Cui R X, Lee B W. Spikelet number estimation model using nitrogen nutrition status and biomass at panicle initiation and heading stage of rice. Korean Journal of Crop Science,2002,47:390-394.
    3. Hucklesby D P, Brown C M, Howell S E, Hageman R H. Late spring applications of nitrogen for efficient utilization and enhanced production of grain and grain protein in wheat. Agronomy Journal. 1971,63:274-276.
    4. Scheromm P, Martin G, Bergoin A, Autran J C. Influence of nitrogen fertilizer on the potential bread-baking quality of two wheat cultivars differing in their responses to increasing nitrogen supplies. Cereal Chemistry.1992,69:664-670.
    5. Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. Journal of Plant Nutrition.1998,21:217-233.
    6. Alt C, Stutzel H, Kage H. Modeling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annals of Botany,2000,86:963-973.
    7. Fagerian K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in lowland rice. Communications in soil science and plant analysis,2003,34: 259-270.
    8. Roth G W, Fox R H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat. Agronomy Journal.1989,81:502-507.
    9. Turner F T, Jund M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Australian Journal of Experimental Agriculture.1994,34:1001-1005.
    10. Johnkutty I, Mathew G, Thiyagarajan T M, Balasubramanian V. Relationship among leaf nitrogen content, SPAD and LCC values in rice. Journal of Tropical Agriculture.2000,38:97-99.
    11. Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Research.2006, 96:224-234.
    12. Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research,1996,47:243-252.
    13. Muller K, Bottcher U, Meyer-Schatz F, Kage H. Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosystems Engineering,2008,101(2):172-182.
    14. Fourty T, Baret F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data:A simulation study. Remote Sensing of Environment,1997,61(1):34-45.
    15. Colombo R, Meroni M. Marchesi M, Busetto L, Rossini M, Giardino C, Panigada C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sensing of Environment,2008,112:1820-1834.
    16. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002:81,337-354.
    17. Adams M L, Norvell W A, Philpot W D, Peverly J H. Spectral detection of micronutrient deficiency in 'Bragg' soybean. Agronomy Journal,2000,92:261-268.
    18. Buscaglia H J, Varco J J. Early detection of cotton leaf nitrogen status using leaf reflectance. Journal of plant nutrition,2002,25(9):2067-2080.
    19. Daughtry C H T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey Ⅲ J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    20. Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil,2003,257:205-217.
    21. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005a,97:89-98.
    22. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005b,22:391-403.
    23.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2003,7(4):277-283.
    24.张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究,浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    25. Blackmer T M, Schepers J S, Varvel G E, Elizabeth A, Walter-Shea. Nitrogen Deficiency Detection Using Reflected Short Wave Radiation from Irrigated Corn Canopies. Agronomy Journal,1996,88 (1):1-5.
    26.赵春江,黄文江,王纪华,薛绪掌.不同品种和肥水条件下冬小麦光谱红边参数研究[J].中国农业科学,2002,35(8):980-987.
    27.李向阳,刘国顺,杨永锋,赵春华,喻奇伟,宋世旭.烤烟叶片高光谱参数与多种生理生化指标关系研究.中国农业科,2007,40(5):987-994.
    28.谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型.应用生态学报,2008,19(06):1261-1268.
    29. Feng W, Yao X, Zhu Y, Tian Y C, Cao W X, Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy,2008,28:394-404.
    30.李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮含量与冠层反射光谱指数的定量关系.作物学报,2006,32(3):358-362.
    31.周冬琴,田永超,姚霞,朱艳,曹卫星.水稻叶片全氮浓度与冠层反射光谱的定量关系.应用生态学报,200819(2):337-344.
    32.朱艳,李映雪,周冬琴,田永超,姚霞,曹卫星.稻麦叶片氮含量与冠层反射光谱的定量关系.生态学报,2006,26(10):3463-3469.
    33. Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119-129.
    34. Zhou Q F, Wang J H. Leaf and spike reflectance spectra of rice with contrasting nitrogen supplemental levels. International Journal of Remote Sensing,2003,24(7):1587-1593.
    35.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报,2005,31(7):844-854.
    36.易秋香,黄敬峰,王秀珍,钱翌.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9):138-143.
    37.施润和,牛铮,庄大方.叶片生化组分浓度对单光谱影响研究.遥感学报,2005,9(1):1-7.
    38.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    39.唐延林,王人潮,王秀珍,李云梅.水稻叶面积指数和叶片生化成分的光谱法研究.华南农业大学学报(自然科学版),2003,24(1):1-7.
    40. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86:542-553.
    41. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy,2003,19:611-618.
    42. Tilley D R, Ahmed M, Son J H, Badrinarayanan H. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecological Engineering,2003,21:153-163.
    43. Vane G. Terrestrial imaging spectrometry:Current status, future trends. Remote sensing of Environment,1993,44(2):109-127.
    44. Curran P J. Remote sensing of foliar chemistry. Remote Sense Environment,1989,30:271-278.
    45. Yoder B J, Pettigrew-Crosby R E. Predicting Nitrogen and Chlorophyll Concentrations from Reflectance Spectra (400-2500nm) at Leaf and Canopy Scales. Remote Sensing of Environment, 1995,53:199-211.
    46. Curran P J, Dungan J L, Macler B A, Plummer S E. Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 1992,39:153-166.
    47. Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal,1994,86:934-938.
    48. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    49. Zhu Y, Zhou D Q, Yao X, Tian Y C, Cao W X. Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Australian Journal of Agricultural Research,2007,58: 1077-1085.
    50. Lee T, Reddy K R, Sassenrath-Cole G F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science,2000,40:1814-1819.
    1. Collins W. Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing,1978,44:43-45.
    2. Zlatev Z, Berova M, Stoeva N, Vassilev A. Use of physiological parameters as stress indicators. Journal of Environmental Protection and Ecology,2003,4(4):841-849.
    3. Li R H, Guo P G, Michael B, Stefania G, Salvatore C. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 2006,10(5):751-757.
    4. Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1990,7:33-48.
    5. Filella I, Serrano I, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science.1995,35:1400-1405.
    6. Moran J A, Mitchell A K, Goodmanson G, Stockburger K A. Differentiation among effects of nitrogen fertilization treatments on conifer seedings by foliar reflectance:a comparing of methods. Tree Physiology,2000,20:1113-1120.
    7. Daughtry C H T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    8. Carter G A, Knapp A K. Leaf optical properties in higher plants:Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany,2001,88:677-684.
    9. Vane G, Goetz A F H. Terrestrial imaging spectrometry:current status, future trends. Remote Sensing of Environment,1993,44:117-126.
    10. Pu R, Gong P. Hyperspectral Remote Sensing and Its Applications. High Education Press, Beijing, China.2000, pp.3-21.
    11. Carter G A, Spiering B A. Optical properties of intact leaves for estimating chlorophyll concentration. Journal of Environmental Quality,2002,31(5):1424-1432.
    12. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,8:337-354.
    13. Zarco-Tejada P J, Whiting M, Ustin S L. Temporal and spatial relationships between within-field yield variability in cotton and highspatial hyperspectral remote sensing imagery. Agronomy Journal, 2005,97(3):641-653.
    14. Fuentes D A, Gamon J A, Qiu H, Sims D A, Roberts D A. Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from AVIRIS sensor. Journal of Geophysical Research,2001,106:33565-33577.
    15. Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist,1999,143:105-117.
    16. Penuelas J, Filella 1, Lloret P, Munoz, F, Vilajeliu M. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing,1995,16(14):2727-2733.
    17. Fourty T, Baret F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data:A simulation study. Remote Sensing of Environment,1997,61(1):34-45.
    18. Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves. American Journal of Botany,1991,78:916-924.
    19. Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Gregoire J M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment,2001,77:22-33.
    20. Danson F M, Steven M D, Malthus T J, Clarck J A. Highspectral resolution data for determining leaf water content. International Journal of Remote Sensing,1992,13:461-470.
    21. Gao B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment,1996,58:257-266.
    22. Penuelas J, Pinol J, Ogaya R, Filella I. Estimation of plant water concentration by the reflectance water index (R900/R970). International Journal of Remote Sensing,1997,18:2869-2875.
    23. Carter G A. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    24. Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance. International Journal of Remote Sensing,1983,4(2):273-288.
    25. Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing,1993,14:1563-1575.
    26. Buscaglia H J, Varco J J. Early detection of cotton leaf nitrogen status using leaf reflectance. Journal of Plant Nutrition,2002,25(9):2067-2080.
    27. Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn(Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil,2003,257:205-217.
    28. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005,22:391-403.
    29. Knipling E B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment,1970,1:155-159.
    30. Chappelle E W, Kim M S, McMurtrey Ⅲ J E. Ratio analysis of reflectance spectra (RARS):an algorithm for the remotely estimation of the concentration of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    31. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing,1997,18:2691-2697.
    32. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote Sensing of Environment,1998,66:273-285.
    33. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sensing of Environment.1998,66:111-121.
    34. Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of plant physiology,1996,148:483-493.
    35. Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra:Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology,1996,148:494-500.
    36. Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment.1996,58:289-298.
    37. Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist,2002,153:185-194.
    38. Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, de Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment,2005,99: 271-287.
    39.陈君颖,田庆久,施润和.水稻叶片叶绿素含量的光谱反演研究.遥感信息,2005,6:12-16.
    40.陈君颖,田庆久.水稻叶片不同光谱形式反演叶绿素含量的对比分析研究.国土资源遥感,2007,1:44-48.
    41.唐延林,王纪华,黄敬峰,王人潮,何秋霞.水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律的研究.农业工程学报,2003,19(6):167-173.
    42.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报,2005,31(7):844-850.
    43.陈维君,周启发,黄敬峰.用高光谱植被指数估算水稻乳熟后叶片和穗的色素含量.中国水稻科学,2006,20(4):434-439.
    44. Carter G A, Dell T R, Cibula W G. Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States. Canadian Journal of Forest Research,1996,26: 402-407.
    45. Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiolioliology,1994,22:247-252.
    46. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.
    47. Lichtenhaler H K, Lang M, Sowinska M, Heisel F, Mieh J A. Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology,1996,148: 599-612.
    48. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Advanced Space Research,2003,32(11):2217-2222.
    49. Penuelas J, Gamon J A, Fredeen A L, Merino J, Field C B. Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sensing of Environment,1994,48:135-146.
    50. Marshak A, Wiscombe W J, Knyazikhin Y, Davis A B. The Use of Reflection from Vegetation for Estimating Broken-Cloud Optical Depth. Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March,2000,13-17.
    51. Feng W, Yao X, Tian Y C, Cao W X, Zhu Y, Monitoring leaf pigment status with hyperspectral remote sensing in wheat, Australian Journal of Agricultural Research,2008,59:748-760.
    52. Roberts D A, Ustin S L, Ogunjemiyo S, Greenberg J, Dobrowski S Z, Chen J Q, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems,2004,7:545-562.
    53. Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications,1994,4:280-298.
    54. Pinar A, Curran P J. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing,1996,17:351-357.
    55. Gitelson A A, Gritz t Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology,2003,160(3):271-282.
    1. Fagerian K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in lowland rice. Communications in soil science and plant analysis,2003,34: 259-270.
    2. Roth G W, Fox R H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat. Agronomy Journal.1989,81:502-507.
    3. Yang Woon-ho, Peng S B,Huang J L, Sanico A L, Buresh R J, Witt C. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal,2003,95:212-217.
    4. Witt C, Pasuquinj M C A, Mutters R, Buresh R J. New leaf color chart for effective nitrogen management in rice. Better Crops,2005,89(1):36-39.
    5. Christian Witt, Julie Mae Cabrera-Pasuquin, Randall G M. Spectral reflectance of rice leaves and leaf color charts for N management [C]//New directions for a diverse planet:Proceedings for the 4th International Crop Science Congress, Brisbane, Australia,2004.
    6. 刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2004,13(4):262-268.
    7. Murshedul A M, Ladha J K, Rahman K S, Foyjunnessa, Harun-ur-Rashid, Khan A H, Buresh R J. Leaf color chart for managing nitrogen fertilizer in lowland rice in bangladesh. Agronomy Journal, 2005,97:949-959.
    8. Turner F T, Jund M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Australian Journal of Experimental Agriculture.1994,34:1001-1005.
    9. Johnkutty I, Mathew G, Thiyagarajan T M, Balasubramanian V. Relationship among leaf nitrogen content, SPAD and LCC values in rice. Journal of Tropical Agriculture.2000,38:97-99.
    10. Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Research.2006, 96:224-234.
    11. Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research,1996,47:243-252.
    12.董彩霞,赵世杰,田纪春,孟庆伟,邹琦.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报,2002,28(1):59-64.
    13.聂磊,李淑仪,廖新荣,刘鸿先.沙田柚叶绿素荧光特征及其与叶片矿质元素含量的关系.果树科学,1999,16(4):284-288.
    14.范燕萍,余让才,陈建勋,杨瑞陶.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报,2000,27(4):297-299.
    15.郭延平,陈屏昭,张良诚,张上隆.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,2002,8(2):186-191.
    16.李绍长,胡昌浩,龚江,董树亭,董志.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,2004,30(4):365-370.
    17.马吉锋,朱艳,姚霞,田永超,刘小军,曹卫星.小麦叶片氮含量与荧光动力学参数的关系.作物学报,2007,33(2):297-303.
    18.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择,浙江农业大学学报,1993,19(Suppl.):7-14.
    19.周启发,王人潮.水稻氮素营养水平与光谱特性的关系,浙江农业大学学报,1993,19(Suppl.):40-46.
    20.张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究,浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    21. Blackmer T M, Schepers J S, Varvel G E, et al. Nitrogen Deficiency Detection Using Reflected Short Wave Radiation from Irrigated Corn Canopies. Agronomy Journal,1996,88 (1):1-5.
    22. Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil,2003,257:205-217.
    23. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005a,97:89-98.
    24. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005b,22:391-403.
    25.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报,2005,31(7):844-854.
    26. Zhou Q F, Wang J H. Leaf and spike reflectance spectra of rice with contrasting nitrogen supplemental levels. International Journal of Remote Sensing,2003,24(7):1587-1593.
    27.易秋香,黄敬峰,王秀珍,钱翌.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9):138-143.
    28. Wessman C A, Aber J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing.1989,10:1293-1316.
    29. Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment.1994,47: 216-230.
    30. Lacapra V C, Melack J M, Gastil M, Valerino D. Remote sensing of inundated rice with imaging spectrometry. Remote Sensing of Environment.1996,55:50-58.
    31. Martin M E, Aber J D. Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing. Ecological Applications.1997,7:431-443.
    32. Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus). Weed Science,1987,35(2):295-302.
    33. Lee T, Reddy K R, Sassenrath-Cole G F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science,2000,40:1814-1819.
    34. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53:199-211.
    35. Yuh-Jyuan Lee, Chwen-Ming Yang, Kuo-Wei Chang, Yuan Shen. A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy. Agronomy Journal,2008,100: 205-212.
    36. Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119-129.
    37. Zhu Y, Li Y X, Feng W, Tian Y C, Yao X, Cao W X. Monitoring leaf nitrogen in wheat using canopy reflectance spectra. Canadian journal of plant science.2006,86(4):1037-1046.
    38.周冬琴,田永超,姚霞,朱艳,曹卫星.水稻叶片全氮浓度与冠层反射光谱的定量关系.应用生态学报,2008 19(2):337-344.
    39.朱艳,李映雪,周冬琴,田永超,姚霞,曹卫星.稻麦叶片氮含量与冠层反射光谱的定量关系.生态学报,2006,26(10):3463-3469.
    40. Feng W, Yao X, Zhu Y, Tian Y C, Cao W X, Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy,2008,28,394-404.
    41. Roberts D A, Ustin S L, Ogunjemiyo S, Greenberg J, Dobrowski S Z, Chen J Q, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems,2004,7:545-562.
    42. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,81:337-354.
    43. Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications,1994,4:280-298.
    44. Pinar A, Curran P J. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing,1996,17:351-357.
    45.冯伟,姚霞,朱艳,田永超,曹卫星.基于高光谱遥感的小麦叶片含氮量监测模型研究.麦类作物学报,2008,28(5):851-860.
    46.田永超.基于高光谱遥感的水稻氮素营养参数监测研究.南京农业大学博士学位论文,2008.12,pp:73.
    47. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Advanced Space Research.2003,32(11):2217-2222.
    48. Vogelmann J E, Rock B N, Moss D M. Red-edge spectral measurements from Sugar Maple leaves. International Journal of Remote Sensing.1993,14:1563-1575.
    49. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves:spectral features and relation to chlorophyll estimation. Journal of plant physiology.1994,143:286-292.
    50. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    1. Hvete A R. A Soil adjusted vegetation Index (SAVI). Remote Sensing of Environment,1988,25(3): 295-309.
    2. Goward S N. Hvemmrich K. F. Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index:An Assessment Using the SAIL Model. Remote Sensing of Environment.1990,32(1):47-54.
    3. 唐延林,王人潮,黄敬峰,孔维姝,程乾.不同供氮水平下水稻高光谱及其红边特征研究.遥感学报,2004,8(2):185-192.
    4. 王珂,沈掌泉,王人潮.植物营养胁迫与光谱特性.国土资源遥感,1999,39(1):9-141.
    5. Daughtry C S T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey Ⅲ J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment.2000, 74:229-239.
    6. Mutanga O, Skidmore A K, Wie Ren S. Discrimination tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. Journal of Photogrammetry and Remote Sensing,2003,57:263-272.
    7. Feng W, Yao X, Tian Y C, Cao W X, Zhu Y. Monitoring leaf pigment status with hyperspectral remote sensing in wheat. Australian Journal of Agricultural Research,2008,59:748-760.
    8. Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. Journal of plant physiology.1996,148:483-493.
    9. Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra:Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology,1996,148:494-500.
    10. Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment.1996,58:289-298.
    11. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote Sensing of Environment.1998a,66:273-285.
    12. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentration:a test using senescent tree leaves. International Journal of Remote Sensing,1998b,19(4):657-675.
    13. Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiolioliology (B).1994,22:247-252.
    14. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing.1997,18:2691-2697.
    15. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,81:337-354.
    16. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.
    17. Zarco-Tejada P J, Miller J R, Morales A, Berjon A, Aguera J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 2004,90(4):463-476.
    18. Zarco-Tejada P J, Whiting M, Ustin S L. Temporal and spatial relationships between within-field yield variability in cotton and highspatial hyperspectral remote sensing imagery. Agronomy Journal, 2005,97(3):641-653.
    19. Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, de Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment.2005,99: 271-287.
    20.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报.2005,31(7):844-850.
    21.陈维君,周启发,黄敬峰.用高光谱植被指数估算水稻乳熟后叶片和穗的色素含量.中国水稻科学.2006,20(4):434-439.
    22.唐延林,王纪华,黄敬峰,王人潮,何秋霞.水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律的研究.农业工程学报.2003,19(6):167-173.
    23.王绍华,曹卫星,王强盛,丁艳锋,黄丕生,凌启鸿.水稻叶色分布特点与氮素营养诊断.中国农业科学2002,35(12):1461-1466.
    24.江立庚,曹卫星,姜东,戴廷波,董登峰,甘秀芹,韦善清,徐建云.水稻叶氮量等生理参数的叶位分布特点及其与氮素营养诊断的关系.作物学报,2004,30(8):739-744.
    25. Blackmer T M, Schepers J S, Varvel G E, et al. Nitrogen Deficiency Detection Using Reflected Short Wave Radiation from Irrigated Corn Canopies. Agronomy Journal,1996,88(1):1-5.
    26. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005b,22:391-403.
    27. Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing,1993,14:1563-1575.
    28. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Advances in Space Research,2003,32(11):2217-2222.
    29. Marshak A, Wiscombe W J, Knyazikhin Y, Davis A B. The Use of Reflection from Vegetation for Estimating Broken-Cloud Optical Depth. Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March,2000,13-17.
    30. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    31. Ding Pinghai. Use of Nondestructive Spectroscopy to Assess Chlorophyll and Nitrogen in Fresh Leaves. Electronic Theses and Dissertations,2005-12-5, pp:103-107.
    1. Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science,1996,1(1):21-26.
    2. Biswall B. Carotenoid catabolism during leaf senescence and its control by light. Journal of photochemistry and photobiology,1995,30:3-13.
    3. Merzlyak L N, Gitelson A A. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). Journal of Plant Physiology,1995,145:315-320.
    4. Lichtenthaler H K. Vegetation stress:an introduction to the stress concept in plants. Journal of Plant Physiology,1996,148:3-14.
    5. Merzlyak M N, Gitelson A A. Chivkunova O B, Rakitin V Y. Nondestructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum,1999,106:135-141.
    6. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science,1998,3:151-156.
    7. Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiolioliology,1994,22:247-252.
    8. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing,1997,18:2691-2697.
    9. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,81:337-354.
    10. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.
    11. Gamon J A, Pe?uelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    12. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoid/chlorophyll a ratio from leaf spectral. Ptotosynthetica,1995,31:221-230.
    13.陈维君,周启发,黄敬峰.用高光谱植被指数估算水稻乳熟后叶片和穗的色素含量.中国水稻科学,2006,20(4):434-439.
    14. Chappelle E W, Kim M S, McMurtrey J E. Ratio analysis of reflectance spectra RARS:an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    15. Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophylla+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment,1998,66:111-121.
    16. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote Sensing of Environment,1998,66:273-285.
    17. Gitelson A A, Zur Y, Chivkunova O B, Merzlyak M N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology,2002,75(3):272-281.
    18.唐延林,王纪华,黄敬峰,王人潮,何秋霞.水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律的研究.农业工程学报,2003,19(6):167-173.
    1. Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advance in Space Research.2005,35:305-317.
    2. Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment.2000,71:158-182.
    3. Shibayama M and Akiyama TA. A spectroradiometer for field use. Ⅶ. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science,1986,55:439-445.
    4. Takebe M, Yoneyama T, Inada K, et al. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil.1990,122:295-297.
    5. Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage. Remote Sensing of Environment,1996,17(4):489-500.
    6. Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment,1994,47: 216-230.
    7. Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research,2009,111:119-129.
    8. Gitelson AA, Merzylak MN, and Lichtenthaler HK. Detection of red edge position and chlorophyll content by reflectance measurements near 700nm. Journal of Plant Physiology,1996.148:501-508.
    9. 王秀珍,王人潮,李云梅.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    10. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model. International Journal of Remote Sensing.1990,11(10):1755-1773.
    11. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data:The linear extrapolation method. Remote Sensing of Environment.2006:101(2):181-193.
    12. Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76:349-359.
    13. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment,1990,33:55-64.
    14.王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究.农业工程学报,2002,18(1):9-13.
    15.李民赞.光谱分析技术与应用.北京:科学出版社,2006.
    16. Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. Journal of Plant Physiology,1994,143:286-292.
    17. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    18. Sims D A, Gamon J A. Relationships between lean pigment content and spectral reflectance across a wide range of species. Leaf structures and developmental stages. Remote Sensing of Environment. 2002,81:337-354.
    19. Fourty T H, Baret F. On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing,1998,19:1283-1397.
    20. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment.1989,30: 271-278.
    21. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999,67:267-287.
    22. Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75:153-161.
    23.赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展.地球科学进展,2003,18(1):94-99.
    24.张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究,浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    25. Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn(Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil,2003,257:205-217.
    26. Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005a,97:89-98.
    27. Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005b,22:391-403.
    28.赵春江,黄文江,王纪华,薛绪掌.不同品种和肥水条件下冬小麦光谱红边参数研究.中国农业科学,2002,35(8):980-987.
    29.谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型.应用生态学报,2008,19(6):1261-1268.
    30. Feng W, Yao X, Zhu Y, Tian Y C, Cao W X, Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy,2008,28:394-404.
    31. Ding Pinghai. Use of Nondestructive Spectroscopy to Assess Chlorophyll and Nitrogen in Fresh Leaves. Electronic Theses and Dissertations,2005-12-5, pp:103-107.
    32.廖红,严小龙.高级植物营养学.北京:科学出版社,2003:114-120.
    33.施润和,牛铮,庄大方.叶片生化组分浓度对单光谱影响研究.遥感学报,2005,9(1):1-7.
    34.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    35.唐延林,王人潮,王秀珍,李云梅.水稻叶面积指数和叶片生化成分的光谱法研究.华南农业大学学报(自然科学版),2003,24(1):1-7.
    36. Li R H, Guo P G, Michael B, Stefania G, Salvatore C. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 2006,10(5):751-757.
    37. Madeira A C, Mendonca A, Ferreira M E, Taborda M De L. Relationship between spectroradiometric and chlorophyll measurements in green beans. Soil Science and Plant Analysis, 2000,31(5-6):631-643.
    38. Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal,1996,88:1-5.
    39. Daughtry C S T, Walthall C L, Kim M S, Colstoun E B, Mcmurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    40. Chappelle E W, Kim M S, Memurtrey Ⅲ J E. Ratio analysis of reflectance spectra (RARS):an algorithm for the remote estimation of the concentration of chlorophyll A, chlorophyll B and the carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    41. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoid/chlorophyll a ratio from leaf spectral. Ptotosynthetica,1995a,31:221-230.
    42. Gamon J A, Penelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    43. Merzlyak M N, Gitelson A A. Chivkunova O B, Rakitin V Y. Nondestructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum,1999,106:135-141.
    44.朱艳,李映雪,周冬琴,田永超,姚霞,曹卫星.稻麦叶片氮含量与冠层反射光谱的定量关系.生态学报,2006,26(10):3463-3469.
    45.冯伟,姚霞,朱艳,田永超,曹卫星.基于高光谱遥感的小麦叶片含氮量监测模型研究.麦类作物学报,2008,28(5):851-860.
    46. Roberts D A, Ustin S L, Ogunjemiyo S, Greenberg J, Dobrowski S Z, Chen J Q, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems,2004,7:545-562.
    47. Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. Ecological Applications,1994,4:280-298.
    48. Pinar A, Curran P J. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing,1996,17:351-357.
    49. Xue L H, Cao W X, Luo W H, Dai T B, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96(1):135-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700