水稻质膜质子泵基因对低磷胁迫的响应和丛枝菌根的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷(P)是植物生长发育最为重要的生命元素之一,广泛参与植物体内的生化合成、能量转移、信号转导等代谢过程。由于化学和微生物的强烈固定,大多数自然土壤中的有效磷很低,限制着植物的生长发育。植物为了适应低磷胁迫已经进化出了包括改变根系形态结构、与土壤中的菌根(Mycorrhiza)真菌形成共生体系、诱导高亲和磷转运蛋白(PT)的表达、改善根际土壤化学性质等形态结构和生理生化上的响应机制。然而,植物能够吸收磷素最重要的是实现根系细胞内磷的跨膜运输。植物根系吸收磷需要从质外体运输到共质体,这是一个从低磷到高磷的跨膜运输过程。运输过程中磷与2-4个质子通过共转运的模式进入到细胞质。细胞质内pH值的降低需要质膜H+-ATPase将过多的H+泵到细胞外以保持细胞间的pH平衡。由此形成的电势差为P素的吸收提供了驱动力。水稻作为一种模式作物,是我国最重要的粮食作物,因此开展水稻根系H+-ATPase基因功能研究及其与磷营养的响应机制研究,对揭示植物高效调控吸收和转运磷营养的机理以及培育磷素高效吸收利用水稻品种具有重要意义。
     本研究以模式品种日本晴(Oryza sativa cv.Nipponbare L.),水稻质膜质子泵基因OsA8完全敲除的纯合突变体osa8(Tos17插入突变)及其野生型植株(Oryze Sativa ssp. Japonica cv.Hitomebore)为材料,通过RT-PCR、转基因等方法研究了水稻根系质膜H+-ATPase对磷胁迫及菌根调控的响应机制和部分H+-ATPase基因的功能。获得的主要结果如下:
     1.通过测定不同供磷水平下水稻根系质膜质子泵的活性结果显示,磷胁迫水稻根系质子泵的泵活性高于本身的水解活性,Vmax增加,Km降低。说明是由于质膜H+-ATPase编码的基因在转录水平表达的增强,酶蛋白(翻译水平)增强的综合影响,亦或是翻译后水平的调控。磷胁迫时水稻根系的质膜H+-ATPase活性升高,可能对其根系分泌有机阴离子有一定的作用,以此来活化土壤中的难溶性磷,提高植物对磷的吸收。
     2.通过生物信息学分析和转基因技术分析讨论了水稻质膜H+-ATPase家族中各个基因的特点:水稻H+-ATPase家族基因分布在五个亚家族中(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ),同家族基因同源性达到80%以上。通过构建启动子与GUS报告基因融合的表达载体,检测了OsA2、OsA3、OsA4、OsA7和OsA8基因的时空表达特征。GUS染色发现,在正常生长条件下OsA2、OsA3、OsA4和OsA7在根尖、侧根发生区、根茎结合部位以及叶片中均有表达,而OsA8基因在这些部位中均不表达或表达很弱。RT-PCR的结果显示,属于质膜H+-ATPase家族基因Ⅰ和Ⅱ两个亚家族的OsA2、OsA3和OsA7基因在植株根系和地上部有较强烈的表达,与GUS染色结果相一致。而没有表达或表达极低的OsA8基因可能在特定的部位,或特殊的条件或时间下表达。
     3.OsA8启动子融合GUS报告基因的转基因水稻侵染试验结果显示,OsA8基因在菌根水稻根系的丛枝部位不表达。
     4.osa8突变体及其野生型水稻低磷条件下接种菌根菌(G. intraradices)的砂培试验结果表明,菌根诱导水稻质子泵基因OsA8在根系中的增强表达高达105倍。而同家族的OsA1、OsA2、OsA3、OsA7和OsA9则在根系中出现了显著的下调趋势。与野生型水稻相比,OsA8基因的突变导致了水稻菌根真菌的侵染效率降低了约20%,并且水稻根系中磷浓度的升高、地上部磷浓度的降低。这可能是由于OsA8基因的缺失,降低了水稻中磷素从根系向地上部的转运,使得根系中磷素积累浓度相对较高。从而直接导致了水稻高亲和磷酸盐转运蛋白Pht1家族基因中除OsPT8外的很多成员在根系中表达量的降低。
     5.OsA8基因超表达水稻对磷营养的响应试验结果显示,OsA8基因超表达提高了水稻质膜H+-ATPase的活性。在低磷胁迫条件下,OsA8基因超表达显著提高了水稻对磷的吸收速率以及植株体内磷素从根系向地上部的转运速率。这与osa8突变体中降低了磷素从根系向地上部的转运结果相一致。这种改变伴随着水稻H+-ATPase基因和水稻高亲和磷酸盐转运蛋白家族基因在转录水平上表达的变化。超表达OsA8基因下调了OsA1、OsA3和OsA9基因在叶片中的表达量。对Pht1家族而言,除了与低磷诱导增强表达的关键基因OsPT2和OsPT6有着密切的关系以外,超表达OsA8基因同时也下调了同家族的OsPT1、OsPT3、OsPT4和OsPT9的表达。
     总之,通过对敲除质膜质子泵基因的突变体和超表达突变体的分析,我们发现低磷胁迫时,质膜质子泵OsA8基因通过影响根系质膜质子泵的活性,改变了水稻对菌根菌的侵染和磷素的吸收能力,又因下调部分水稻高亲和磷酸盐转运蛋白基因的表达而影响了水稻植株体内根系和地上部磷的分布情况,进而反馈调控了Pht1家族其他基因的表达特征。由此,OsA8基因在响应低磷胁迫和菌根菌侵染时表现出来的对磷素吸收和磷素从根系向地上部转运速率的重要作用,有望应用于通过转基因手段培育适应低磷条件生长和促进菌根形成的磷素高效利用的水稻新品种研究。
Phosphorus (P) is essential for plant growth and development due to its involvement in the processes of energy metabolism and synthesis of nucleic acids and membranes. However, the low availability of soil P is a major constraint for crop production in many agricultural systems worldwide. Higher plants thus alter their architecture and metabolism to acquire sparingly soluble P from soil. It was reported that plants are able to mobilize P by acidification of the rhizosphere by release of H+ from the roots to balance excess intake of cations over anions. Pi uptake into the root symplasm involves transport from the apoplast where Pi concentration is less than 2μM, across the plasma membrane (PM), and to the cytosol where Pi concentration ranges from 5-17 mM. The negative membrane potential and the large difference between external and internal Pi concentration necessitate that a steep electrochemical gradient must be overcomed for Pi transport into root cells, thus a high-affinity, energy-consuming transport mechanism driven by PM H+-ATPase is required. The mechanism underlying H+ release is a primary process caused by H+-ATPase activity in the plasmalemma of root cells. This enzyme acts as a primary transporter by pumping protons out of the cell, thereby creating pH and electric potential differences across the PM. Rice (Oryza sativa), an economically important crop and a monocot model plant for scientific research, possesses ten PM H+-ATPase genes. Consequently, research on functional characterization of rice PM H+-ATPase genes with regard to rice nutrients uptake and translocation is of extreme importance for understanding of the mechanism and germplasm enhancement.
     The studies on the adaptation of plant PM H+-ATPases to Pi deficiency were all carried out by dicotyledonous plants, while little is known about that of the monocotyledonous plants. In the present work, the adaptation of rice root PM H+-ATPase activity to Pi deficiency was studied. Rice plants (Oryza sativa cv. Nipponbare L.) were fed with or without phosphate in hydroponics culture experiment. At the seedling stage the PM of rice roots was isolated by two phase system. The PM H+-ATPase hydrolytic activity was analyzed for elucidating the response of the PM H+-ATPase of rice root to Pi deficiency. Moreover, tissue localization analysis for rice H+-ATPase genes was performed using transgenic plants carrying promoter::GUS (β-Glucuronidase) reporter fusions. Furthermore, with wild type (WT) rice (Oryze Sativa ssp. Japonica cv. Hitomebore) as control, we investigated the physiological function of OsA8, a member of rice PM H+-ATPase gene family, by comparison of the responses between the Tos17 insertional homozygous mutant of OsA8 gene and its WT in nutrient uptake and translocation under arbuscular mycorrhizal (AM) colonization. The main results are shown as follow:
     1. The adaptation of PM H+-ATPase of rice roots to Pi deficiency is supported by the following results obtained in vitro. Compared with roots from Pi-sufficient plants, the Pi-deficient rice roots had higher hydrolytic and pumping activity of PM H+-ATPase as well as Vmax. The higher activity of H+-ATPase of rice roots under Pi deficiency was mirrored either by a higher expression rate (transcriptional level) of genes encoding PM H+-ATPase or an enhanced synthesis rate of the enzyme proteins. Higher H+ pumping activity than hydrolytic activity, and a higher Vmax, with a lower Km of PM H+-ATPase data suggest that the enhancement of PM H+-ATPase activity by Pi deficiency in rice roots could also be regulated at post-translational level.
     2. Multiple sequence alignment and phylogenetic tree analysis showed that the ten rice H+-ATPase genes, which could be grouped into five subfamilies, are very closely related with sequence identities over 80%. This indicates that these genes might have evolved through gene duplication events during rice evolution.
     Transgenic rice plants carrying promoter::GUS fusions were used for the determination of spatial expression pattern and promoter strength of OsATPase genes (OsAs). The expression of OsA2, OsA3, OsA4 and OsA7 was detected in the root tips, lateral roots, root-shoot junction and leaves under normal conditions. While the expression of OsA8 was barely detectable under normal conditions. A possible explanation for this could be that its expression is restricted to particular cell types.
     3. In contrast to histochemical analysis of GUS activity driven by other promoter fragments of AM-induced genes of solanaceous species or rice. We did not observe any reporter gene activity in any tissues with the OsA8 promoter under AM colonization.
     4. OsA8 knockout mutants showed a lower colonization rate and higher Pi concentration in roots compared with WT plants. Interestingly, expression of genes of H+-ATPase family other than OsA8 and genes belonging to the Phtl family showed similar expression patterns, namely mycorrhizal symbiosis decreased of the OsAl, OsA2, OsA3, OsA7, OsA9 and Phtl family gene (except OsPT8) expression in osa8 mutant root.
     5. Two independent transgenic lines with enhanced OsA8 expression showed increased activity of PM H+-ATPase under normal condition. Pi uptake and particularly the translocation of P from roots to shoots were also enhanced. These results are consistent with the enhanced expression of genes belonging to PM H+-ATPase and Phtl family. OsA8 over-expression decreased OsAl, OsA3 and OsA9 of H+-ATPase family and OsPTl, OsPT3, OsPT4 and OsPT9 of Phtl family.
     The results indicated that OsA8 played very important roles in the inoculation of rice roots with AMF and uptake and translocation of Pi, as well as in regulation of root growth in the rice. Under Pi deficieny and AMF inoculation, Pi uptake and translocation was changed by OsA8 gene affected PM H+-ATPase activityExpression of many other Pi transporters was regulated by changed Pi concentration in the OsA8 gene knockout or over-expression rice roots and shoots. It was concluded that maintenance of OsA8 gene's expression is critical to keep normal AMF inoculation and Pi uptake and translocation in addition to normal root morphology of rice plants.
引文
Ahn SJ, Sivaguru M, Osawa H, et al. (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol,126: 1381-1390.
    Ahn W, Lee MG, Kim KH, Muallem S. (2003) Aluminum-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J. Exp. Bot,53:1959-1966.
    Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu GH. (2009) Two rice phosphate transporters, OsPhtl; 2 and OsPhtl; 6, have different functions and kinetic properties in uptake and translocation. Plant J,57:798-809.
    Alexander T, Toth R, Meier R, Weber HC. (1989) Dynamics of arbuscule development and degeneration in onion, bean and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Can J Bot,67:2505-2513.
    Arai M, Mitsuke H, Ikeda M, et al. (2004) ConPred Ⅱ:a consensus prediction method for obtaining transmembrabe topology models with high reliability. Nucleic Acids Research,32:390-393.
    Arango M, Gevaudant F.d.r, Oufattole M, and Boutry M. (2003) The plasma membrane proton pump ATPase:the significance of gene subfamilies. Planta,216:355-365.
    Arnon DI, Hoagl and DR. (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of in organic nutrients. Soil Sci,50:463-483.
    Balestrini R, Bonfante P. (2005) The interface compartment in arbuscular mycorrhizae:a special type of plant cell wall? Plant Bio systems,139:8-15.
    Ballesteros E, Kerkeb B, Dona ire J P, et al. (1998) Effects of salt stress on H+-ATPase activity of plasma membrane-enrichde vesicles isolated from sunflower roots. Plant Sci,134:181-190.
    Barber SA, Mackay AD. (1986) Root growth and phosphorus and potassioum uptake by two corn genotypes in the field. Fertilizer Rseearch,3:217-230.
    Barbier-Brygoo H, Gaymard F, Rolland N, and Joyard J. (2001) Strategies to identify transport systems in plants. Trends in Plant Science,6:577-585.
    Barker AV, Volk R, Jackson WA. (1966) Root environment acidity as a regulatory factor in ammonium assimilation by the bean plant. Plant Physiol,41:1193-1199.
    Bates TR, Lynch JP. (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorous availability. Plant Cell Environ,19:529-538.
    Becard G, Fortin JA. (1988) Early events of vesicular-arbuscular mycorrhiza formation on RiT-DNA transformed roots. New Phytol,108:211-218.
    Bekele T, Cino BJ, Ehlert PAI, Van der Mass AA, van Diest A. (1983) An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant Soil,75:365-378.
    Benedetto A, Magurno F. (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza,15:620-627.
    Bibikova TN, Jacob T, Dahse I, Gilroy S. (1998) Localized changes in a poplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development,125:2925-34.
    Bieleski RL. (1973) Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiol,24:225-252.
    Bonser TR, Lynch JP. (1996) Effect of phosphorus deficiency on growth angle of basal roots in phaseolus vulgari. New Phytol,132:281-28.
    Bradford M M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem,72:248-254.
    Briskin D P. (1990) The plasma membrane H+-ATPase of higher plant cells:biochemistry and transport function. Bioche Biophys Acta,1019:95-109.
    Brown MF, King EJ. (1991) Morphology and histology of vesicular arbuscular mycorrhizae. In NC Schenk, ed, Methods and Principles of Mycorrhizal Research. APS Press, St. Paul, pp:15-21.
    Bucher M, Rausch C, Daram P. (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. Journal of Plant Nutrition and Soil Science,164:209-217.
    Chang CR, Hu YB, Sun SB, Zhu YY, Ma GJ, Xu GH. (2009) Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. J. Exp. Bot,60:557-565.
    Chen A., Hu J., Sun S. and Xu G. (2007a) Conservation and divergence of both phosphate and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol,173:817-831.
    Chen AQ, Gu M, Sun SB, Zhu LL, Hong S and Xu GH (2011) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol,189:1157-1169.
    Chen C, Gao M, Liu J, Zhu H. (2007) Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol,145: 1619-1628.
    Cox G, Morgan KJ, Sanders F, Noekolds C, Tinker P. (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. Ⅲ. Polyphosphategranules and Phosphate translocation. New Phytol,84:649-659.
    Daram P, Brunner S, Persson BL, Amrhein N, Bucher M. (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta,206:225-233.
    David SR, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y. (2001) Identification of a novel genetically controlled step in mycorrhizal colonization:plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J,27:561-69.
    Desbrosses G, Stelling J, Renaudin JP. (1998) Dephosphorylation activates the purified plant plasma membrane H+-ATPase — possible function of phosphothreonine residues in a mechanism not involving the regulatory C-terminal domain of the enzyme. Eur J Biochem,251:496-503.
    DeWitt ND, Sussman MR. (1995) Immunocytological Localization of an Epitope-Tagged Plasma Membrane Proton Pump (H+-ATPase) in Phloem Companion Cells. Plant Cell,7:2053-2067.
    Dietrich P, Sanders D, Hedrich R. (2001) The role of ion channels in light-dependent stomatal opening. J.Exp Bot,52:1959-1967.
    Dinkelaker B, Romheld V. (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L). Plant Cell Environ,12:285-292.
    Dong B, Ryan PR, Rengel Z, Delhaize E. (1999) Phosphate uptake in Arabidopsis thaliana: dependence of uptake on the expression of transporter genes and internal phosphate concentrations. Plant Cell Environ,22:1455-1461.
    Eraso P, Gancedo C. (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett,224:187-192.
    Ewing NN, Bennett AB. (1994) Assessment of the Number and Expression of P-Type H+-ATPase Genes in Tomato. Plant Physiol,106:547-557.
    Fairhust T, Lefroy R, Mutert E, Batjes N. (1999) The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agroforestry Forum,9:2-8.
    Feijo JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK. (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J. Cell Biol.144: 483-96.
    Fohse D, Classen N, Jungk A. (1991) Phosphorus efficiency of pants:significance of root radius-root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil,132: 261-272.
    Frommer WB, Sonnewald U. (1995) Molecular analysis of carbon partitioning in solanaceous species. J.Exp.Bot,46:587-607.
    Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell,19: 1617-1634.
    Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology,15:2038-2043.
    Gahoonia TS, Asmar F, Giese H, Nielsen GG, Nielsen NE. (2000) Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. European Journal of Agronomy,12:281-289.
    Gardner WK, Barber DA, Parbery DG (1983) The aqtusition of phosphorus by lupinus albus. L. The probable mechanism by which phsphorus movement in the soil/root interface is enhanced. Plant Soil,70:107-124.
    Gardner WK, Parbery DG, Barber DA. (1982a) The acquisition of phosphorus by Lupines albus L:Ⅰ. Some characteristics of the soil/root interface. Plant Soil,68:19-32.
    Gardner WK, Parbery DG, Barber DA. (1982b) The acquisition of phosphorus by Lupines albus L. Ⅱ. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface. Plant Soil,68:33-41.
    Geoffney D, Mar Bounry (2009) The plant plasma memberane proton pump ATPase:a highly regulated P-type ATPase with multiple physiological roles. Eur JPhysiol,457:645-655.
    Gevaudant F, Petel G, Guilliot A. (2001) Deferential expression of four members of H+-ATPase gene family during dormancy of vegetative buds of peach tree. Planta,212:619-626.
    Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S. (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta,211:609-613.
    Giannini J L, Holt J S, Briskin D P. (1988) Isolation of sealed plasma membrane vesicles from Phytophthora megasperma f. sp. Glycinia. I Characterization of proton pumping and ATPase activity. Arch Bioch Biophy, 265:337-345.
    Glassop D, Godwin RM, Smith SE, Smith FW. (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Can. J. Bot,85: 644-651.
    Glassop D, Smith SE, Smith FW. (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta,222:688-698.
    Goldstein A.H. (1992) Phosphate starvation inducible enzymes and proteins in higher plants. Soc Exp Biol Semin Ser,49:25-44.
    Gong MQ, ChenYL, Zhong CL. (1997) Mycorrhizal Research and Application. Beijing:China Forestry Press,216. (in Chinese)
    Gordon WR, Tong Y, Davies TGE, Leggewie G. (2003) Restricted spatial expression of a high affinity phosphate transporter in potato roots. Journal of Cell Science,116:3135-3144.
    Graham JH. (1981) Membrane-mediated decrease in root excudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol,68:548-552.
    Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Muller J, Hause B, et al. (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta,229: 1023-1034.
    Guimil S, Chang HS, Zhu T, Sesma A, Osburn A, Roux C, et aL (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonisation. Proc. Natl Acad. Sci. USA, 102:8066-8070.
    Haran S, Logendra S, Seskar M, Bratanova M, Raskin I. (2000) Characterization of arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol,124:615-626.
    Harper JF, Manney L, Sussman MR. (1994) The plasma membrane H+-ATPase gene family in Arabidopsis:genomic sequence of AHA10 which is expressed primarily in developing seeds. Mol. Gen. Genet,244:572-587.
    Harrison MJ, Buuren ML. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature,378:626-629.
    Harrison MJ, Dewbre GR, Liu J. (2002) A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. Plant Cell,14: 2413-2429.
    Harrison MJ. (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology,50:361-389.
    Harrison MJ. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol,59: 19-42.
    Hellergen T, Widell S, Lundbrog T, et al. (1987) Plant Cold Hardiness. New York:Alan R Less Inc, 211-234.
    Hinsinger P, Gikes RJ. (1995) Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil. Australian Journal of Soil Research,33:477-486.
    Hinsinger P, Plassard C, Tang C, Jaillard B. (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constrainsts:A review. Plant Soil,248:43-59.
    Hinsinger P. (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review. Plant Soil,237:173-195.
    Hocking PJ. (2001) Organic acids exuded from roots in phosphorus uptake and aluminum tolereance of plants in acid soils. Advances in Agronomy,74:63-97.
    Hodges TK, Leonaal RT, Bracker CE, et al. (1972) Purification of an ion-stimulated ATPase from plant root associated with plasma-membrane. Proc Natl Acad Sci USA,69:3307-3311.
    Houlne G and M. B. (1994) Identification of an Arabidopsis thaliana gene encoding a plasma membrane H+-ATPase whose expression is restricted to anther tissue. Plant J,5:311-317.
    Jakobsen I. (1995) Transport of phosphorus and carbon in VA mycorrhizas. Mycorrhiza, Springer-Verlag, Berlin, PP:297-324.
    Jasinski M, Stukkens Y, Degand H, et al. (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell,13:1095-1107.
    Jelich-Ottmann C, Weiler EW, Oecking C. (2001) Binding of regulatory 14-3-3 proteins to the C terminus of the plant plasma membrane H+-ATPase involves part of ist autoinhibitory region. J. Biol. Che,276:39852-39857.
    Jia HF, Ren HY, Gu M, Zhao JN, Sun SB, Wu P, Xu GH. (2011) Phosphate transporter gene, OsPhtl; 8, is involved in phosphate homeostasis in rice. Plant Physiol, DOI:10.1104/pp.111.17524
    Johansson F, Sommarin M, Larsson C. (1993) Fusicoccin activates the plasma membrane H+-ATPase by a mechanism involving the C-terminal inhibitory domain. Plant Cell,5: 321-327.
    Johnson JF, Vance CP, Allan DL. (1996) Phosphorus deficiency in Lupinus albus:altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol,112: 3-41.
    Jongen M, Fay P, Jones MB. (1996) Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol,132:413-423.
    Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M. (2005) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences USA,101:6285-6290.
    Kasamo K. (2003) Regulation of plasma membrane H+-ATPase activity by the membrane enviroment. J Plant Res,116:517-523.
    Kim YS, Min JK, Kim D, Jung J. (2001) A soluble auxin binding protein, ABP57:purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in auxin effect on plant plasma membrane H+-ATPase. JBiol Chem,276:10730-10736.
    Kinoshita T, Shimazaki K. (1999) Blue light activates the plasma membrane H+-ATPase by ph-osphorylation of the C-terminus in stomatal guard cells. EMBO J,18:5548-5558.
    Kirk GJK, Saleque MA. (1995) Solubilization of phosphate by rice plants growing in reduced soil: prediction of the amount solubilized and the resultant increased in uptake. Eur J Soil Sci,46: 247-255.
    Kirk GJK, Santos EE, Findenegg GR. (1999a) Phosphate solubilization by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soil. Plant Soil,211:1-18.
    Kirk GJK, Santos EE, Satos MB. (1999b) Phosphate solubilization by organic anion excretion from rice roots in aerobic soil:rates of excretion and decomposition effects on rhizosphere pH, and effects on phosphate solubility and uptake. New Phytol,128:469-477.
    Krajinski F, Hause B, Gianinazzi-Pearson V, and Franken P. (2002) Mthal, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biology,4:754-761.
    Kutschera U. (2001) Stem Elongation and Cell Wall Proteins in Flowering Plants. Plant Biol,3
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Natur,227:80-685.
    Lambais MR, Mebdy MC. (1995) Differential expression of defense-related gene in arbuscular mycorrhizal. Canadian Journal of Botany,73:533-540.
    Larsson C. (1985) Plasma membrane. In Modern Methods of Plant Analysis (eds H.F. Linskens & J.F. Jackson), Springer-Verlag, Berlin, Germany, pp:85-104.
    Lee RB, Ratcliffe RG, Southon TE. (1990) 31P NMR measurement of the cytoplasmic and vacular Pi content of mature maize roots:relationships with phosphorus status and phosphorus fluxes. J Exp Bot,41:1063-1078.
    Lee S H, Singh A P, Chung G C. (2004) Rapid accumulation of hydrogen peroxinde in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J Exp Bot,55: 1733-1741.
    Lefebvre DD, Duff SMG., Fife C, et al. (1990) Response to Phosphate Deprivation in Brassica nigra Suspension Cells 1. Enhancement of Intracellular, Cell Surface, and Secreted Phosphatase Activities Compared to Increases in Pi-Absorption Rate. Plant Physiol,93:504-511.
    Leggewie G, Willmitzer L, Riesmeier JW. (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant:identification of phosphate transporters from higher plants. The Plant Cell,9:381-392.
    Li BZ, Wang SW, Feng HM, Xu GH. (2008) Effects of Nitrogen Forms on Root Morphology and Phosphate Uptake in Rice. Chinese JRice Sci,22:665-668.
    Li XL, Feng G. (2001). Physiology and Ecology of Arbuscular Mycorrhiza. Chinese Language Press. (in Chinese)
    Li XL, Zhou WL, Cao YP, Zhang JL. (1995) The Role of VA-mycorrhizal hyphae in phosphorus uptake of red clover from phosphorus sources of different solubilities. Acta Agriculturae Universitatis Pekinensis,21:305-311. (in Chinese)
    Li YF, Ran W, Zhang RP, Sun SB, Xu GH. (2009) Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil,315:285-296.
    Liao H, Rubio G, Yan X, Lynch JP. (1999) Genotypic response of bean root systems to phosphorus deficiency. In:Phosphorus in Plant Biology; Regulatory Roles in Molecular, Cellular, Organismic and ecosystem Processes. American Society of Plant Physiologists,329-331.
    Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV. (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol,141:674-684.
    Liu C, Muchhal VS, Mukatira U, Kononowicz AK, Raghothama KG. (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol,116: 91-99.
    Lynch JP, Beebe SE. (1995) Adaptation of beans to low Phosphorus availability. Hart Science,30: 1165-1171.
    Ma Z, Walk TC, Marcus A. (2001) Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana:A modeling approach. Plant Soil,236: 221-235.
    Maldonado-Mendoza IE, Dewbre GR, Harrison MJ. (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant-Microbe Interactions,14:1140-1148.
    Marschner H, Romheld M, Zhang F. (1990) Mobilization of mineral nutrients in the rhizosphere by root exudates. Transactions 14th International Congress of Soil Science,2:158-163.
    Marschner H, Romheld V. (1983) In vivo measurement of root-induced pH changes at the soil-root interface:effect of plant species and nitrogen source. Z. Pflanzenernaehr. Bodenkd,111:241-251.
    Marschner H. (1995) Mineral nutrition of higher plants,2nd edn. (ed. H. Marschener), Academic Press, London, UK, pp.231-254.
    Martin Parniske. (2008) Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nature,6: 768-775.
    McCully ME. (1999) Roots in soil:unearthing the complexities of roots and their rhizosphere. Annu Rev Plant Physiol Mol Biol,50:219-243.
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytolt,115:495-501.
    Meijer HJ, Terriet B, Vanhimbergen JA, et al. (2002) KCl activates phospholipase D at two different concentration ranges:distinguishing between hyperosmotic stress and membrane depolarization. Plant J,31:51-59.
    Mengel K, Schubert S. (1985) Active extrusion of protons into deionized water by roots of intact maize plants. Plant Physiol,79:344-348.
    Michelet B, Boutry M. (1995) The plasma membrane H+-ATPase:a highly regulated enzyme with multiple physiological functions. Plant Physiol,108:1-6.
    Michelet B, Lukaszewiez M, Dupriez V. (1994) A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of translational regulation. Plant Cell Environ,6:1375-1389.
    Miguel A, Frederic G, Mohammed O, Boutry M. (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta,216:355-365.
    Miller CR, Nielsen KL, Lynch JP, Beck D. (1998) Adventitious root response in field-grown common bean:A possible adaptive strategy to low-phosphorus conditions. In:Radical Biology:Advances and Perspectives on the function of plant roots. Maryland. Flores HE, Lynchy JP, Eissenstat D eds A American Society of Plant Physiologists,394-396.
    Miller SS, Liu J, Allan DL, Menzhuber CJ, FedorovaM, Vance CP. (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol,127:594-606.
    Mimura T. (1995) Homeostasis and transport of inorganic phosphate in plants. Plant and Cell Physiology,36:1-7.
    Mimura T. (1999) Regulation of phosphate transport and homeostasis in the plant cells. International Review of Cytology,191:149-200.
    MimuraT, Reid RJ, Smith FA. (1998). Control of phosphate transport across the plasma membrane of Chara corallina. J Exp Bot,49:13-19.
    MimuraT. (2001) Physiological control of phosphate uptake and phosphate homeostasis in plant cells. Australian Journal of Plant Physiology,28:653-658.
    Moorby H, White RE, Nye PH. (1988) The influence of phosphate nutrition on H ion efflux from roots of young rape plants. Plant Soil,105:247-256.
    Morsomme P, Boutry M. (2000) The plant plasma membrane H+-ATPase:structure, function and regulation. Biochim Biophy Acta,1465:1-16.
    Morsomme P, de Kerchove d'Exaerde A, De Meester S, Thine's D, Goffeau A, Boutry M. (1996) Single point mutations in various domains of a plant plasma membrane H+-ATPase expressed in Saccharomyces cerevisiae increase H+-pumping and permit yeast growth at low pH. EMBO J,15: 5513-5526.
    Murphy PJ, Langridge P, Smith SE. (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol,135:291-301.
    Nagy R, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, Xu GH, et al. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J,42:236-250.
    Nagy R, Vasconcelos M, Zhao S, McEIver J, Bruce W, Amrhein N, et al. (2006) Differential regulation of five Phtl phosphate transporters from maize (Zea mays L.). Plant Biol,8:186-197.
    Nakajima N, Saji H, Aono M, Kondo N. (1995) Isolation of cDNA for a plasma membrane HC-ATPase from guard cells of Vicia faba. Plant Cell Physiol,36:919-924.
    Neumann G, Romheld V. (1999) Root excretion of carboxylic and protons in phosphorus deficient plants. Plant Soil,211:121-130.
    Nicole RK, Jolana TPA, Sonja F, Norbert H, Wolfgang M, Edgar W, Volker S, Gunther N, Christiane FI. (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol,131:1302-1312.
    Niu X, Damsz B, Kononowicz AK, Bressan RA, Hasegawa PM. (1996) NaCl-Induced Alterations in Both Cell Structure and Tissue-Specific Plasma Membrane H+-ATPase Gene Expression. Plant Physiol,111:679-686.
    Ookura T, Wada M, Sakakibara Y, Jeong KH, Maruta I, Kawamura Y, Kasamo K. (1994) Identification and characterization of a family of genes of the plasma membrane H+-ATPase of Oryza sativa L. Plant Cell Physio,135:1251-1256.
    Oufattole M, Arango M, Boutry M. (2000) Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechanical stress. Planta,210:715-722.
    Palmgren MG, Christensen G. (1994) Functional comparison between plant plasma membrane H+-ATPase isoforms expressed in yeast. JBiol. Chem,269:3027-3033.
    Palmgren MG, Larsson C, Sommarin M. (1990) Proteolytic activation of the plant plasma membrane HC-ATPase by removal of a terminal segment. J.Biol.Chem,265:13423-13426.
    Palmgren MG, Sommarin M, Serrano R. (1991) Identification of an autoinhibitory domain in the C-terminal region of the plantplasma membrane H+-ATPase. J. Biol. Chem,266:20470-20475.
    Palmgren MG, Sommarin M. (1989) Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol,90:1009-1014.
    Palmgren MG (1998) Proton gradient and plant growth:role of the plasma membrane H+-ATPase. Adv Bot. Res,28:1-70.
    Palmgren MG. (2001) Plant Plasma Membrane H+-ATPases:Powerhouses for Nutrient Uptake. Annual Review of Plant Physiology and Plant Molecular Biology,52:817-845.
    Parets-Soler A, Pardo JM, Serrano R. (1990) Immunolocalization of plasma membrane H+-ATPase. Plant Physiol,93:1654-1658.
    Parniske M. (2008) Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nat Rev Microbiol, 6:763-775.
    Paszkowski U, Kroken S, Roux C, Briggs SP. (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. PNAS,99: 13324-13329.
    Pumplin N, Harrison MJ. (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol,151:809-819.
    Raghothama KG, Karthikeyan AS. (2005) Phosphate acquisition. Plant Soil,274:37-49.
    Raghothama KG. (1999) PHOSPHATE ACQUISITION. Annual Review of Plant Physiology and Plant Molecular Biology,50:665-693.
    Rausch C, Bucher M. (2002) Molecular mechanisms of phosphate transport in plants. Planta, 216:23-37.
    Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M. (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature,414:462-466.
    Riley D, Barber DA. (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Proceedings of the National Academy of Sciences of the United States of America,35:301-306.
    Robert AG, Michael GP, Karin S. (2007) Plant proton pumps. FEBS Letters,581:2204-2214.
    Romheld V, Miiller C, Marschner H. (1984) Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol,76:603-606.
    Ruairidh JH, Sawers CG, Uta Paszkowski. (2008) Cereal mycorrhiza:an ancient symbiosis in modern agriculture. Trend sin Plant Science,13:93-97.
    Sakano K. (1990) Proton phosphate stoichiometry in uptake of inorganic-phosphate by cultured-cells of Catharanthus-roseus (L) G-don. Plant Physiol,93:479-483.
    Sakano K, Yazakl Y. (1992) Cytoplasmic acidification induced by inorganic-phosphate uptake in suspension cultured Catharanthus-Roseus cells-measurement with fluorescent pH indicator and P-31 nuclear-magnetic-resonance. Plant Physiol,99:672-680.
    Sambrook J, Divid R. (2001) Molecular Cloning:Alaboratry Manual (Ⅲ), Cold Spring Harbor Lab (CSHL) Press.
    Samuels AL, Fernando M, Glass ADM. (1992) Immunoluorescent localization of plasma membrane H+-ATPase in barley roots and effects of Knutrition. Plant Physiol,99:1509-1514.
    Santi S, Locci G, Monte R, Pinton R, Varanini Z. (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase sioforms. JExp Bot,54:1851-1864.
    Sas L, Rengel Z, Tang C. (2001) Excess cation uptake, and extrusion of protons and organic acid anions by lupinus albus under phosphorus deficiency. Plant Sci,160:1191-1198.
    Schaller A, Oecking C. (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell,11:263-272.
    Schikora A, Schmidt W. (2002) Formation of transfer cells and H+-ATPase expression in tomato roots under P and Fe deficiency. Planta,215:304-311.
    Schubert S. (1995) Proton release by plant roots, in Plant Physiology and Biochemistry (eds B.B. Singh & K. Mengel), Panina Publishing Corporation, New Delhi, India, pp.97-119.
    Schunmann PHD, Richardson AE, Smith FW, Delhaize E. (2004) Characterization of promoter expression patterns derived from the Phtl phosphate transporter genes of barley (Hordeum vulgare L.) JExp Bot,55:855-865.
    Sekler I, Pick U. (1993) Purification and properties of a plasma membrane H+-ATPase from the extremely acidophilic alga Dunaliella acidophila. Plant Physiol,101:1055-1061.
    Serrano R, Kielland-Brandt MC, Fink GR. (1986) Yeast plasma membrane ATPase isessential for growth and has homology with Ca2+-ATPase. Nature,319:689-693.
    Serrano R. (1989) Structure and function of plasma membrane ATPase. Annu. Rev. Plant Physiol. Plant Mol. Biol,40:61-94.
    Shen H, Chen J, Wang Z, Yang C, Sasaki T, Yamamoto, Matsumoto H, Yan X. (2006) Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot, 57:1353-1362.
    Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, et al. (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol,138: 287-296.
    Sibole JV, Cabot C, Michalke W, Poschenrieder C, and Barcelo J. (2005) Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta,557-566.
    Smith FW, Rae AL, Hawkesford MJ. (2000) Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica et Biophysica Act,1465:236-245.
    Smith SE, Gianlnazzi PV, Koide R, Caimey JWG. (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for effieiency of the symbiosis. Plant soil,159:103-113.
    Smith SE, Read DJ. (1997) Mycorrhizal symbiosis. San Diego, CA:Academic Press.
    Smith, S.E., and Barker, S.J. (2002) Plant phosphate transporter genes help harness the nutritional benefits of arbuscular-mycorrhizal symbiosis. Trends in Plant Science,7:189-190.
    Smith, S.E., Smith, F.A., and Jakobsen, I. (2003) Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses. Plant Physiol,133:16-20.
    Sommarin M, Lundborg T, Kylin A. (1985) comparison of K, MgATPase in purified plasmalemma from wheat and oat.—Substrate specificities and effects of pH, temperature and inhibitors. Physiol Plant,65:27-32.
    Sondergaard TE, Schulz A, Palmgren MG. (2004) Energization of Transport Processes in Plants. Roles of the Plasma Membrane H+-ATPase. Plant Physiol,136:2475-2482.
    Song KM, Jiao XZ, Li L, Yan JQ. (2001) The Relationship Between Phosphate Uptake and Changes in Plasmalemma H+-ATPase Activities from the Roots of Tomato Seedlings During Phosphate Starvation. Acta Phytophysiologica Sinica,27:87-93.
    Sonia G, Hur-Song C, Tong Z, Ane S. (2005) Comparative transcriptomics of rice reveals an Ancient pattern of response to microbial colonization. PNAS,102:8066-8070.
    Staal M, Hommels C, Huiper D. (1987) Characterization of the plasmalemma ATPase activity from roots of Plantago major ssp. pleiosperma, purified by the two-phase partitioning method. Physiol Plant,70:461-466.
    Sunkar R, Zhu JK. (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,16:2001-2019.
    Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sze H, Li X, Palmgren MG. (1999) Energization of plant cell membranes by H+-pumping ATPases:regulation and biosynthesis. Plant Cell,11:677-689.
    Sze H, Li X, Palmgren MG. (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell Environ,11:677-689.
    Sze H. (1985) H+-translocating ATPase:Advances using membrane vesicle. Annu. Rev. Plant. Physiol, 36:175-208.
    Tadano T, Sakai H. (1991) Secretion of Acid Phosphatase by the Roots of several Crop Species under Phosphorus-Deficient Conditions. Sall Set Plant Nutr,37:129-140.
    Takeda N, Sato S, Asamizu E, Tabata S and Parniske M. (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J,58:766-777.
    Ticconi CA, Abel S. (2004) Short on phosphate:plant surveillance and countermeasures. Trends in Plant Science,9:548-55.
    Trouvelot A, Kough JL and Gianinazzi-pearson V. (1986) Physiological and genetical aspects of mycorrhizae. Paris, France,217-221.
    Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A. (1984) Ammonium uptake in Lemna gibba G1, related membrane potential changes, and inhibition of anion uptake. Plant Physiol, 61:369-376.
    Ullrich-Eberius CI, Novacky A, Fischer E, Luttge U. (1981) Relationship between Energy-dependent Phosphate Uptake and the Electrical Membrane Potential in Lemna gibba G1. Plant Physiol,67: 797-801.
    Ullrich-Eberius CI, Novacky A, JE van Bel. (1984) Phosphate uptake in Lemna gibba G l:energetics and kinetics. Planta,161:46-52.
    Van-Buuren ML, Maldonado-Mendoza IE, Trieu AT. (1992) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus vesiforme. Molecular Plant-Microbe Interactions,12:171-181.
    Vitart V, Baxter I, Doerner P, Harper JF. (2001) Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J,27:191-201.
    Wada M, Takano M, Kasamo K. (1992) Nucleotide sequence of a Complementary DNA encoding plasma membrane H+-ATPase from rice (Oryza sativa L.).Plant Physiol,99:794-795.
    Wang MY, Siddiai MY, Ruth TJ, et al. (2007) Ammonium uptake by rice roots.Π. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol,103:1259-1267.
    Wasaki J, Yamamura T, Shinano T, Osaki M. (2003a) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil,248:129-136.
    Watts M, Evans JR. (1999) Proteoid roots. Plant Physiol,121:317-323.
    Werner Kuhlbrandt. (2004) Biology, structure and mechanism of P-type ATPase. Nature Reviews.
    Wijngaard PW, Sinnige MP, Roobeek I, et al. (2005) Abscisicacid a 14-3-3 proteins control K channel activity in barley embryonic root. Plant J,41:43-55.
    Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. (2001) Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol,126:875-882.
    Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW. (2003) Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves. Plant Physiol,132: 1260-1271.
    Xing T, Higgins VJ, Blumwald E. (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell,8:555-564.
    Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, et aL (2007) Functional characterization of LePT4:a phosphate transporter in tomato with mycorrhiza enhanced expression. J. Exp. Bot,58:2491-2501.
    Yan F, Feuerle R, Schaffer S, Fortmeier H, Schubert S. (1998) Adaptation of Active Proton Pumping and Plasmalemma ATPase Activity of Corn Roots to Low Root Medium pH. Plant Physiol,117: 311-319.
    Yan F, Zhu Y, Mueller C, Zoerb C, Schubert S. (2002) Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol,129:50-63.
    Yan XL, Liao H, Ge ZY, Luo XW. (2000) Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany,17:511-519. (in Chinese)
    Yang CY, Liu L, Shen H, Yan XL. (2006) Advances in the Molecular Biology of Phtl Family Phosphate Transporters in Plants. Molecular Plant Breeding,2:153-159. (in Chinese)
    Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N. (2007) Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep,26:229-235.
    Yang YL, Zhang F, He WL, et al. (2003) Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots Cell Mol Life Sci,20:1249-1257.
    Yang YW, Lai KN, Tai PY, Li WH. (1999) Rates of nucleotide substitution in angiosperm mi-tochondrial DNA sequences and dates of divergence between Brassica and the other angios-perm lineages. J Mol Evol,48:597-604.
    Yoshida S, Forno DA, Cock JH, Gomex KA. (1976) Laboratory manual for physiological studies of rice,3rd edn. Manila:The International Rice Research Institute.
    Yoshihiro K, Shingo H. (2010) Dynamics of Periarbuscular Membranes Visualized with a fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice. Plant Cell Physiol,51:341-353.
    Zhang JS, Xie C, Li ZY, Chen SY. (1999) Expression of plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theor Appl Genet,99: 1006-1011.
    Zhang RP, Liu G, Wu N, Gu M, Zeng HQ, Zhu YY, Xu GH. (2011) Adaptation of plasma membrane H+-ATPase and H+ pump to P deficiency in rice roots. Plant Soil, DOI:10.1007/s11104-011-0774-2
    Zhao R, Dielen V, Kinet JM, Boutry M. (2000) Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell, 12:535-546.
    Zhu JK. (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,53:247-273.
    Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q. (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ,32: 1428-1440.
    Zhu Y, Yan F, Zorb C, Schubert S. (2005) A link between citrate and porton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus deficient conditions? Plant Cell Physiol, 46:892-901.
    Zhu YG, Cavagnaro TR, Smith SE, Dickson S. (2001) IngentaConnect Backseat driving Accessing phosphate beyond the rhizosphere-depletion zone. Trends in Plant Science,6:194-195.
    Zoysa AKN, Loganathan P, Hedley, MJ. (1998b) Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other species. European Journal of Soil Science,49:477-486.
    陈亚华,沈振国,刘友良.(2000)低温、高pH胁迫对水稻幼苗根系质膜、液泡膜ATP酶活性的影响.植物生理学报,26:407-412.
    李晓林,冯固,等著.(2001)丛枝菌根生态生理.华文出版社,北京.
    李振声(1992)论我国农业持续稳定与发展的若干原则.全国农村经济工作经验交流会交流材料.
    廖红,严小龙.(2000a)菜豆根构型对低磷胁迫和适应性变化及其基因型差异.植物学报,42:158-163.
    吕金印,高俊凤.(1996)水分胁迫对小麦根质膜H+-ATPase活性与H+分泌的影响.西北植物学报,16:101-106.
    倪晋山.(1985)质子ATP酶与高等植物的离子运转.植物生理学通讯,5:65-89.
    邱全胜.(1999)植物细胞质膜H+-ATPase的结构与功能.植物学通报,16:122-126.
    王庆仁,李继云,李振声.(1998)植物高效利用土壤难溶性磷研究动态及展望闭.植物营养与肥料学报,4:107-116.
    薛刚,高俊凤.(1994)渗透胁迫对棉花根和下胚轴PM脂肪酸组分和ATPase的影响.西北植物学报,14:39-461.
    严小龙,廖红,戈振扬等.(2000)植物根构型特性与磷吸收效率闭.植物学通报,17:511-519.
    颜季琼,张孝琪,余叔文.(1992)植物生理与分子生物学.北京:科学出版社,84.
    杨颖丽,张峰,张立新,郭进魁,毕玉蓉.(2003)盐胁迫对小麦根H+-ATPase活性的影响.西北植物学报,23:401-405.
    张焕朝,徐成凯,王改萍,徐锡增.(2001)杨树无性系的磷营养效率差异.南京林业大学学报,25:15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700