地上下无缝集成多尺度建模与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字城市、数字矿山、数字区域与数字地球建设的全面推进,人类探知活动在地上、地表及地下三层空间不断拓展,以信息融合和数据集成为基础的地上下无缝集成建模成为3DGIS的重要发展方向。以往以某一单层空间或小范围区域为目的的认知活动已难以满足经济社会发展的需求,地上下3D复杂目标几何无缝集成建模及多分辨率表达等关键技术还未突破,还存在以下问题需要研究:(1)虽然部分研究涉及地上场景、地形、地下工程及矿体的联合可视化,但三者之间大多是独立建模,即很少考虑三层空间实体模型间的几何无缝集成问题;(2)传统的多尺度建模领域较多关注某一单层空间(如地形或地上建筑物的多尺度建模),涉及两层空间的多尺度建模研究较少,同时顾及地上、地表及地下三层空间的多尺度建模亟需解决。
     本文在回顾和总结前人研究成果的基础上,对地上、地表与地下空间目标建立多尺度模型及联动关系,对地上下集成3D空间数据模型进行扩展与修正,围绕地上下无缝集成多尺度建模若干关键问题进行了研究。
     地学空间数据集成包括原始数据的集成和建模结果数据的集成两部分。原始数据集成是指对不同类型、不同来源的数据进行合并,形成有效规则支持下的原始数据的统一表达;结果数据集成是指对原始数据进行建模、分析、应用等一系列操作后所产生的数据集的统一表述,从而解决地学实体的完整描述和地学空间无缝集成表达问题。空间数据集成的实质是通过提取不同空间模型的共性,找到其关联点,进行无缝集成。采用三角形集合并配以适当的数据结构来实现不同体模型的表达,并以带有拓扑关系的结构来解决不同模型间的关联和转换问题,探讨了基于含拓扑关系的三角形集合TTS进行空间数据集成的原理,给出了数据集成的框架结构及数据的组织模式。
     分析了地学空间建模的多层次性的需求,建立了一种以语义异构为驱动、以多尺度地学数据为基础、以多尺度地学模型为表现、以相互之间对应关系为支撑的逻辑结构。进而结合领域知识和实际应用,顾及语义差异,设计了地上、地表与地下三层空间的多尺度模型及其联动机制,给出了一种含6种语义尺度的多尺度模型,实现了地上、地表和地下三层空间多尺度建模与表达。
     地上下无缝集成建模中存在多个几何边界,主要包括:地上实体与地表的边界;地表与地层的边界;地上实体、地表与地下空间实体进行集成建模时的侧面边界。在上述的几何边界处,会产生以下两个问题,一是地层模型覆盖地表模型,另一个是集成模型的侧面边界缝隙问题。分析了两种缝隙产生的原因,并给出了相应的解决方法。
     地上下无缝集成建模中集成空间数据模型是关键,分析了地上下空间目标几何无缝集成的原理,在CSG+CD-TIN+GTP集成模型基础上,提出将TTS加以融合,形成地上下无缝集成空间数据模型(Aground-Underground Seamlessly Integrated Model,简称AU-SIM),其核心模型结构为CSG+CD-TIN+GTP—TTS。将地上下无缝集成建模原理与多尺度建模原理进行耦合,构建出一种典型的顾及语义的地上下无缝集成多尺度建模的体系结构,从而可形成一整套地上下无缝集成多尺度建模的理论体系。
     在上述研究的基础上,开发了“吉思三维地上下集成建模与应用系统”(Geos3D)的“地上下无缝集成的多尺度建模”子系统。实现了地上、地表及地下三层空间无缝集成多尺度建模等功能。以沈阳市某区域为例进行了实验,结果表明,本文提出的顾及语义的地上下无缝集成多尺度建模方法,能够较为充分地利用有关地学数据对地上、地表和地下对象进行集成建模,为地学领域多尺度集成建模提供了一种新的方法和技术方案。
As the construction of Digital City, Digital Mine, Digital Regional and Digital Earth being comprehensively promoted; human activities on aground, surface and underground have expanded continuously. Aground-underground seamlessly integrated modeling basing on information fusion and data integration becomes an important direction of 3DGIS. However, traditional cognitive activities with purpose of a single space or a small area were difficult to meet the needs of economic and social development, many key technologies such as aground-underground 3D complex object geometric seamlessly integrated modeling and multi-resolution need to be investigated, the following issues need to be resolved:(1) although some studies involving the ground scene, terrain, underground works and ore joint visualization, but those mostly emphasized on independent modeling, hardly considering the seamless integration issues; (2) The traditional multi-scale modeling in the field were more concerned about a single space (such as multi-scale modeling of terrain or buildings), and less in involving two layers'multi-scale modeling, therefore, taking into account of aground, surface and underground three-space integrated multi-scale modeling should be solved.
     This paper basing on reviewing and summarizing the results of previous studies established the multi-scale models of aground, terrain and underground space goals as well as the interactive relationship between the models, with extensions and amendments of aground-underground integrated 3D spatial data model, several key issues about aground-underground seamlessly integrated multi-lod modeling had been studied.
     Spatial data integration is composed of the integration of raw data and modeling results data. Original data integration emphasizes on merging different types and different sources data together in order to form effective rules to support uniform expression of raw data. The result data integration refers to unified presentation of the data set after a series of operations to original data such as modeling, analysis, and application, so as to address a complete description of geological entities and the seamlessly integrated expression of geosciences space. In essence, spatial data integration was accomplished by extracting the common of different space model and finding its associated point for the seamless integration. The triangle data collection with appropriate data structure achieved the expression of different physical models, by topological structure addressed the relationship between different models together with the conversion from each other. After analyzing the principle of spatial data integration based on the TTS, a framework for data integration and data organization structure were given.
     After analyzing the multi-level demand of geosciences space modeling, a logical structure with semantic heterogeneity as driving force, multi-scale geosciences data as basis, multi-scale geosciences model as exhibition, relationship between each other as support has been built up. Furthermore, combined with domain knowledge and practical applications, considering the semantic differences, a multi-lod model with linkage mechanism of aground, surface and underground, containing six semantic levels, had been designed, which contributed to the seamlessly integrated modeling of aground, surface and underground.
     In aground-underground seamlessly integrated modeling there are several geometric borders, mainly include:boundary between entities aground (buildings, roads, bridges, etc.) and the surface; border of surface and the geological body; side border of aground, surface and underground entities. At geometric boundaries above, the following problems may arise: the stratigraphic model covers the surface model; and the side border gap of integrated model may happen. After analyzing the causes of the two kinds of gaps, corresponding solution method had been investigated.
     The integrated spatial data model is the key of aground-underground seamlessly integrated modeling, with analyzing the principle of aground and underground objects geometric seamless integration, based on the CSG+CD-TIN+GTP integrated model, the TTS had been integrated so as to form a Aground-Underground Seamlessly Integrated Model(AU-SIM), and the key model structure is CSG+CD-TIN+GTP—TTS. Coupling the principles of seamlessly integrated modeling with the mechanism of multi-scale modeling, a typical architecture considering semantics of aground-underground seamlessly integrated multi-scale modeling was given, so as to realize a full set of theoretical system about aground-underground seamlessly integrated multi-lod modeling.
     Based on these studies, the software Geos3D-Mutil-LODM being developed to realize aground, terrain and underground three space seamlessly integrated multi-lod modeling, taking one district of Shenyang city as an example, experimental results showed that, the aground-underground seamlessly integrated multi-lod modeling method considering semantics proposed in this paper, can more fully utilize relative geosciences data for the seamlessly integrated modeling of aground, surface and underground objects, which provides a new approach and technology programs for multi-scale integrated modeling of geosciences.
引文
1.陈述彭.地理信息系统的应用基础研究[J],地球信息,1997,10(4):29-35.
    2.陈述彭.地理信息系统导论[M],北京:科学出版社,1999.
    3.马蔼乃.论地理科学的发展[J],北京大学学报(自然科学版),1996,32(1):120-129.
    4.马蔼乃.论地理科学[J],地理与地理信息科学,2003,19(1):1-4.
    5.吴立新,史文中.地理信息系统原理与算法[M],北京:科学出版社,2003.
    6. Laurini R, Thompson D. Fundamentals of spatial information systems. Academic Press. 1992.
    7.吴立新,史文中,Christopher G.3D GIS与3D GMS中的空间构模技术[J],地理与地理信息科学,2003,19(1):5-11.
    8.吴立新,车德福,郭甲腾.面向地上下无缝集成建模的新一代三维地理信息系统[J],测绘工程,2006,15(5):1-5.
    9.史文中,吴立新,李清泉等.三维空间信息系统模型与算法[M],北京:电子工业出版社,2007.
    10. Chu C H, Chan Y H, Wu P H.3D streaming based on multi-LOD models for networked collaborative design[J], Computers in Industry,2008,59(9):863-872.
    11. Chu C H, Wu P H, Hsua Y C. Multi-agent collaborative 3D design with geometric model at different levels of detail[J], Robotics and Computer-Integrated Manufacturing, 2009,25(2):334-347.
    12. Melero F J, Cano P, Torres J C. Bounding-planes Octree:A new volume-based LOD scheme[J], Computers & Graphics,2008,32(4):385-392.
    13. Schlender D, Peters O H. Managing levels of detail with fuzzy control[J], Computers & Graphics,2000,24(2):245-251.
    14. Yang B S, Li Q Q, Shi W Z. Constructing Multi-resolution Triangulated Irregular Network Model for Visualization[J], Computers & Geosciences,2005,31(1):77-86.
    15.余明,左小清,李清泉.一种基于TIN的视相关动态多分辨率地形模型[J],武汉大学学报·信息科学版,2004,29(12):1106-1110.
    16.王家耀,成毅.空间数据的多尺度特征与自动综合[J],海洋测绘,2004,24(4):1-3.
    17.陈军.多维动态地理空间框架数据的构建[J],地球信息科学,2002,4(1):7-13.
    18.吴立新,史文中.论三维地学空间构模[J],地理与地理信息科学,2005,21(1):1-4.
    19.吴立新.真3维地学构模的若干问题[J],地理信息世界,2004,2(3):13-18.
    20. Wu L X. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system[J], Computers & Geosciences,2004, (30):405-418.
    21.陈学习.基于扩展GTP的地质体与开挖体三维集成建模研究[D],中国矿业大学,2005.
    22.王彦兵.基于TIN耦合的城市地上下三维空间无缝集成建模研究[D],北京:中国矿业大学(北京),2005.
    23.车德福,陈学习,吴立新等.基于广义三棱柱体元的三维地层建模方法[J],辽宁工程技术大学学报,2006,25(1):36-38.
    24.李清泉,杨必胜,史文中等.三维空间数据的获取、建模与可视化[M],武汉:武汉大学出版社,2003,12.
    25.孙敏.三维城市模型的数据模型研究[D],长沙:中南工业大学博士学位论文,2000.
    26. Shi W Z. A Hybrid Model for Three-Dimensional GIS[J], Geoinfomatics,1996,1: 400-409.
    27.龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J],武汉测绘科技大学学报,1997,22(1):7-15.
    28.龚健雅.当代GIS的若干理论与技术[M],武汉:武汉测绘科技大学出版社,1999.
    29.侯恩科.三维地质模拟的若干关键问题研究[D],中国矿业大学(北京校区)博士学位论文,2002.
    30. Benhamu M, Doytsher Y. Toward a spatial 3D cadastre in Israel[J], Computers, Environment and Urban Systems,2003,27:359-374.
    31. Kolbe T H., Groger G. Towards unified 3D city models[C], Proceedings of the ISPRS Comm. IV Joint Workshop on Challenges in Geospatial Analysis, Integration and Visualization II in Stuttgart,2003.
    32.朱良峰,吴信才,刘修国.城市三维地质信息系统初探[J],地理与地理信息科学,2004,20(5):36-40.
    33.何建邦,闾国年,吴平生.地理信息共享的原理与办法[M],北京:科学出版社,2003.
    34.邬伦,刘瑜,张晶等.地理信息系统——原理、方法和应用[M],北京:科学出版社,2001.
    35. Fei C Y. A Java Implementation for Open GIS Simple Features Specification [D], Alberta, The University of Calgary,2001.
    36.王家耀,成毅.空间数据的多尺度特征与自动综合[J],海洋测绘,2004,24(4):1-3.
    37.李军,周成虎.地球空间数据集成多尺度问题基础研究[J],地球科学进展,2000,15(1):48-51.
    38.艾廷华,成建国.对空间数据多尺度表达有关问题的思考[J],武汉大学学报·信息科学版,2005,30(5):377-382.
    39.应申,李霖,闫浩文,翟亮等.地理信息科学中的尺度分析[J],测绘科学,2006,31(3):18-22.
    40.王艳慧,陈军,蒋捷.GIS中地理要素多尺度概念模型的初步研究[J],中国矿业大学学报,2003,32(4):376-382.
    41.吕秀琴,吴凡.多尺度空间对象拓扑相似关系的表达与计算[J],测绘信息工程,2006,31(2):29-31.
    42.王艳慧,李小娟,宫辉力.地理要素多尺度建模的本体分析方法[J],中国科学E辑技术科学,2006,36(增刊):116-123.
    43.胡最,闫浩文.空间数据的多尺度表达研究[J],兰州交通大学学报(自然科学版),2006,25(4):35-38.
    44.吴凡.地理空间数据的多尺度处理与表示研究[D],武汉:武汉大学,2002.
    45.王殷行,石杏喜,黄明丽.多尺度TIN管理及表达算法探讨[J],地理与地理信息科学,2006,22(2):16-20.
    46.任远红.基于LOD的地形算法的研究[D],武汉:武汉理工大学,2007.
    47.曾维,韩占校,朱学芳.LOD算法在3D地表模拟中的应用研究[J],系统仿真学报,2009,21(1):292-294.
    48.任安民,张雯,陈永强.一种基于视点的LOD生成方法[J],微计算机信,2007,23(8-3):238-239.
    49.孟放,查红彬.基于LOD控制与内外存调度的大型三维点云数据绘制[J],计算机辅助设计与图形学学报,2006,18(1):1-8.
    50.娄高鸣,李小奇,侯健等.一种基于四叉树的动态多分辨率LOD大规模三维地形绘制研究[J],装备制造技术,2009,(8):53-55.
    51.许妙忠,李德仁.基于点删除的地形TIN连续LOD模型的建立和实时动态显示[J],武汉大学学报·信息科学版,2003,28(3):321-325.
    52.武芳.空间数据的多尺表达与自动综合[M],北京:解放军出版社,2003.
    53.魏海平.GIS中多尺度地理数据库的研究与应用[J],测绘学院学报,2000,17(2):134-137.
    54.李霖,吴凡.空间数据多尺度表达模型及其可视化[M],北京:科学出版社,2005.
    55. Groger G, Kolbe T H., Czerwinski A, Nagel C. OpenGIS(?) City Geography Markup Language (CityGML) Encoding Standard,http://www.opengeospatial.org/legal/.
    56.周艳,朱庆,黄铎.三维城市模型中建筑物LOD模型研究[J],测绘科学,2006,31(5):74-77.
    57.朱庆,胡明远,黄丽慧.基于多层次事件的三维房产动态表示[J],武汉大学学报·信息科学版,20009,34(3):326-330.
    58.朱庆,胡明远.基于语义的多细节层次3维房产模型[J],测绘学报,2008,37(4):514-520.
    59.徐磊.基于本体的地下空间数据集成基本理论与方法研究[D],中国矿业大学,2006.
    60.李志林.地理空间数据处理的尺度理论[J],地理信息世界,2005,3(2):1-5.
    61. OpenGIS(?) Implementation Specification for Geographic information-Simple feature access-Part 1:Common architecture.
    62. OpenGIS(?) Implementation Specification for Geographic information-Simple feature access-Part 2:SQL option.
    63.吴立新,陈学习,车德福等.一种基于GTP的地下真3D集成表达的实体模型[J],武汉大学学报·信息科学版,2007,32(4):331-335.
    64. Xu L, Wu L X, Che D F, et al.. The Formal Representation of Semantic on Stratum Attribute Data Oriented 3D Geo-Modeling[C], International Geoscience and Remote Sensing Symposium (IGARSS),2006,899-902.
    65.陈军. Voronoi动态空间数据模型[M],北京:测绘出版社,2001.
    66. Vigo M. An improved incremental algorithm for constructing restricted Delaunay triangulations[J], Computer & Graphics,1997,21(2):215-223.
    67.刘学军,龚健雅.约束数据域的Delaunay三角剖分与修改算法[J],测绘学报,2001,30(1):82-88.
    68.薄浩,宋占峰,詹振炎.基于Delaunay三角网数字地面模型的路线三维建模方法[J],铁道学报,2001,23(4):81-87.
    69.吴立新,殷作如,邓智毅等.论21世纪的矿山——数字矿山[J],煤炭学报,2000,25(4):337-342.
    70.吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术[J],煤炭学报, 2003,28(1):1-7.
    71.吴立新,龚健雅,徐磊等.关于空间数据与空间数据模型的思考[J],地理信息世界,2005,3(2):41-46.
    72.龚健雅.空间数据库管理系统的概念与发展趋势[J],测绘科学,2001,26(3):4-9.
    73.何建邦,闾国年,吴平生.地理信息共享的原理与办法[M],北京:科学出版社,2003.
    74.邬伦,刘瑜,张晶等.地理信息系统一原理、方法和应用[M],北京:科学出版社,2001.
    75. Simon H.3D Geoscience Modeling-Computer Techniques for Geological Characterization[M], London: Springer-Verlag,1994.
    76.陈学习,吴立新,史文中等.GTP模型中对角线引入的最小顶点标识(SVID)法[J],地理与地理信息科学,2004,20(3):17-21.
    77.车德福,陈学习,吴立新等.基于广义三棱柱体元的三维地层建模方法[J],辽宁工程技术大学学报,2006,25(1):36-38.
    78.程朋根,龚健雅.地勘工程三维空间数据模型及其数据结构设计[J],测绘学报,2001,30(1):74-8.
    79.李志林,朱庆.数字高程模型[M],武汉:武汉测绘科技大学出版社,2000.
    80.李德仁,李清泉.一种三维GIS混合数据结构研究[J],测绘学报,1997,26(2):128-133.
    81.侯恩科.三维地质模拟若干关键问题研究[D],北京:中国矿业大学北京校区,2002,11.
    82.侯恩科,吴立新.面向地质建模的三维体元拓扑数据模型研究[J],武汉大学学报,2002,27(5):467-472.
    83.侯恩科,吴立新,李建民等.三维地学模拟与数值模拟的耦合方法研究[J],煤炭学报,2002,27(4):388-392.
    84.侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势[J],煤田地质与勘探,2000,28(6):5-7.
    85.李清泉.基于混合结构的三维GIS数据模型与空间分析研究[D],武汉测绘科技大学,1998.
    86.李清泉,李德仁.三维空间数据模型集成的概念框架研究[J],测绘学报,1998,27(4):325-330.
    87.吴健生.地质体三维可视化及空间数据探索[D],中国科学研究院地理研究所,2001.
    88.姜晓轶.基于Open GIS简单要素规范的面向对象时空数据模型研究[D],华东师范大学,2006.
    89.庄玲.数字矿山可视化技术的研究与实现[D],山东科技大学,2003.
    90.吴立新,张瑞新等.三维地学模拟与虚拟矿山系统[J],测绘学报,2002,31(1):28-33.
    91.陈学习,吴立新.三维地学模拟研究现状与发展趋势[J]'华北科技学院学报,2003,5(2):28-32.
    92.吴立新,史文中.地理信息系统原理与算法[M],北京:科学出版社,2003.
    93.王家耀,陈毓芬.理论地图学[M],北京:解放军出版社,2000.
    94.王彦兵,吴立新等.约束Delaunay三角网点删除的一体化凸耳消元法(IEE)[J],地理与地理信息科学,2004,20(6):31-34.
    95.闾国年,张书亮,龚敏霞等.地理信息系统集成原理与方法[M],北京:科学出版社,2003.
    96.吴立新.真3维地学构模的若干问题[J],地理信息世界,2004,2(3):13-18.
    97.刘南,刘仁义,谢炯等.基于实体对象层次模型的海量空间数据管理[J],浙江大学学报(工学版),2004,38(11):1391-1397.
    98.戴刚毅,鲍征宇,张锦章.基于GIS的矿山空间数据库的建立[J],物探化探计算技术,2000,22(1):78-81.
    99. David M. Kroenke. Database Processing Fundamentals, Design, and Implementation[M], Prentice Hall,2002.
    100. Shekhar S, Chawla S, Ravada S, et al.. Spatial Databases-Accomplishments and Research Needs[C], Transactions on Knowledge and Data Engineering,1999,45-55.
    101. Malik D S. C++ Programming:From Problem Analysis To Program Design[M],北京:电子工业出版社,2003.
    102. Schneider P J, Eberly D H计算机图形学几何工具算法详解[M],北京:电子工业出版社,2005.
    103. Kruglinski D J. Programming Visual C++6.0技术内幕(第五版)[M],北京:北京希望电子出版社,2001.
    104. Shi W Z. A hybrid model for three-dimensional GIS[J], Geoinformatics,1996, (1): 400-409.
    105. Shi W Z. Development of a hybrid model for three-dimensional GIS[J], Geo-spatial Information Science,2000,3(2):6-12.
    106. Shi W Z, Yang B S and Li Q Q. An object-oriented data model for complex objects in three-dimensional geographical information systems[J], IJGIS,2003,7(5):411-430.
    107. Tsai V J D. Delaunay triangulations in TIN creation:an overview and linear-time algorithm[J], Int. J. of GIS,1993,7 (7):501-524.
    108. Usery E L. Category theory and the structure of features in geographic information systems[J], Cartography and Geographic Information Systems,1993,20(1):5-12.
    109. Wu Q, Xu H. An approach to computer modeling and visualization of geological faults in 3D[J], Computers & Geosciences,2003,29(4):507-513.
    110. Yamaguchi K, Kunii T L, Fujimura K. Octree-related data structure and algorithms [A], IEEE CG&A[C],1984, (1):53-59.
    111. Li Z L. Scale Issues in Geographical Information Science [A]. In:Y. C. Lee & Zhilin Li: Proceedings of the International workshop on Dynamic & Multi-Dimension GIS[C], HongKong PolyU.1997,143-158.
    112. Berlioux A. Depth migration of complex surfaces with GOCAD:study of the curvature of a triangulated surface[A], Stanford Exploration Project[C], Report 82,2001.
    113. Bielser D, Maiwald V A, Gross M H. Interactive cuts through 3-dimensional soft tissue[J], Computer Graphics Forum (Eurographics'99 Proc),1999,(3):31-38.
    114. Bonham-Carter G F. Geographic Information Systems for Geoscientists:Modeling with GIS[J], Pergamon,1994,25-50.
    115. Breuning M. An approach to the integration of spatial data and systems for 3D geo-information system[J], Computers and Geosciences,1999(25):39-48.
    116. Christophe W, Fabien B, Xavier C. Design and implementation of an immersive geoscience toolkit[A], In Proceedings of IEEE visualization'99, California,1999, 189-195.
    117. Chien C H, Aggarwal J K. Volume/surface octree for the representation of three-dimensional objects[J], Computer Vision Graphics and Image Processing,1986, 36:100-113.
    118. Egenhofer M, Herring J. Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases[R], University of Maine,1990.
    119. Egenhofer M. Reasoning about Binary Topological Relations. Second Symposium on Large Spatial Databases, Zurich, Switzerland. O. Gunther and H.-J. Schek (eds.), Lecture Notes in Computer Science, Springer-Verlag,1991,525:143-160.
    120. Losa A D L, Cervelle B.3D Topological modeling and visualization for 3D GIS[J], Computers & Graphics,1999,23:469-478.
    121. Zlatanova S, Rahman A A, Shi W Z. Topological models and frameworks for 3D spatial objects[J], Computers & Geosciences,2004,30:419-428.
    122. Che D F, Wu L X, Yin Z R. MULTI-SCALE SPATIAL MODELING FOR GEOLOGICAL BODY BASED ON GTP MODEL[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2,2008,899-904.
    123. Guo J T, Wu L X, Ma H B, et al.. K-ORDER-BASED TOPOLOGICAL RELATIONS OF GEO-ENTITIES IN 3D RASTER SPACE[J], The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2,2008,265-268.
    124. Wu L X, Che D F. Developments of spatial information-based Digital Mine in China. Journal of Coal Science & Engineering(China),2008,14(3):415-419.
    125. Wu L X, Wang Y B, Shi W Z. Integral ear elimination and virtual point-based updating algorithms for constrained Delaunay TIN[J], Science in China Series E:Technological Sciences,2008,51(supp.1):135-144.
    126. Guo J T, Wu L X.3D DIGITAL TOPOLOGICAL RELATIONSHIP ANALYSIS FOR SPATIAL ENTITY WITH FUZZY BOUDARY[C], IGARSS2009,2009.
    127. Yu J Q, Wu L X. SPATIAL SUBDIVISION AND CODING OF A GLOBAL THREE-DIMENSIONAL GRID:SPHERE DEGENERATED-OCTREE GRID[C], IGARSS2009,2009.
    128. Che D F, Wu L X, Yin Z R.3D SPATIAL MODELING FOR URBAN SURFACE AND SUBSURFACE SEAMLESS INTEGRATION[C], IGARSS2009,2009.
    129. Wu L X, Yu J Q. A New Digital Earth Reference Model Spheroid-based 3D Grid for Earth System (3DGES)[C], ISDE6,2009.
    130.毋河海.地图信息自动综合基本问题研究[J],武汉测绘科技大学学报,2000,25(5):377-384.
    131.郭建忠,安敏.GIS中多比例尺地理数据的管理和应用[J],解放军测绘学院学报,1999,16(1):47-49.
    132.齐清文,张安定.关于多比例尺GIS中数据库多重表达的几个问题的研究[J],地理研究,1999,18(2):161-170.
    133. Bruegger, B P. Theory for The Integration of Scale and Representation Formats:Major Concepts and Practical Implications, COSIT'95,1995.
    134. Floriani De, Magillo L, Puppo P, et al.. A system for terrain modeling at variable resolution, GeoInformatica,2000,4(3):287-315.
    135. Yang B S. A multi-resolution model of vector map data for rapid transmission over the Internet[J], Computers & Geosciences,2005,31(5):569-578.
    136. Cheng C X, Lu F, Cai J. A quantitative scale-setting approach for building multi-scale spatial databases, Computers & Geosciences,2009,35(11):2204-2209.
    137. Forberg A. Generalization of 3D building data based on a scale-space approach[J], ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(2):104-111.
    138. Glander T, Dollner J. Abstract representations for interactive visualization of virtual 3D city models[J], Computers, Environment and Urban Systems,2009,33(5):375-387.
    139. Goleby B R, Blewett R S, Fomin T, et al.. An integrated multi-scale 3D seismic model of the Archaean Yilgarn Craton[J], Tectonophysics,2006,420(1-2):75-90.
    140. Wang Y H, Meng H. A MULTI-SCALE ROAD VISUALIZATION METHOD IN NAVIGABLE DATABASE, The International Archives of the Photogrammetry [J], Remote Sensing and Spatial Information Sciences. Vol. ⅩⅩⅩⅦ. Part B4,2008: 961-965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700