多尺度三维灾情场景构建与动态标绘关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地震尚不能准确预报的今天,地震应急救援工作具有非常重要的意义。随着空间信息技术等高新技术的快速发展,利用这些高新技术辅助地震应急救援是抗震减灾工作的必然发展趋势。虚拟灾情场景能够为决策者提供一个直观逼真的可视化平台,由于地震应急的特殊性,对多尺度三维灾情场景的构建及有效利用提出了更高要求。为满足地震应急救援的应用需求,围绕多尺度三维灾情场景构建和地震灾情信息图形化展示两个主要内容,重点针对三维灾情场景大规模地形可视化、三维灾情场景局部区域动态更新、三维灾情场景地形实时交互改造、以及地震灾情动态标绘体系构建等关键技术展开研究。论文的主要工作和贡献体现在以下几个方面:
     ①提出了基于虚拟纹理的大规模地形动态调度与实时绘制算法
     大规模地形场景是三维灾情场景地理环境的重要组成部分,是其它地震灾情信息展示的载体。针对当前大规模地形绘制的大数据传输瓶颈,提出一种支持外存数据的动态调度与实时绘制算法。引入虚拟纹理(Virtual Texture)的大纹理管理机制,对DEM(数字高程模型)和DOM(数字正射影像图)采取统一的管理框架,利用GPU(图形处理器)的实时计算和CPU(中央处理器)的动态分析,绘制每一帧时只载入当前渲染所需的极少部分瓦片,在CPU中进行维护并拼接成一张缓存纹理传入GPU,在GPU着色器中根据瓦片信息计算地形网格点的采样目标瓦片和纹理采样坐标,并完成最终的地形绘制。算法简化了数据的交换并改进了内存的管理,对于大数据的传输具有很好的执行效率,其宽带开销、渲染帧率和实现复杂度均优于现有常用的CPU算法和Geoclipmap算法。
     ②提出了基于GPU实时网格细分的局部地形镶嵌算法
     三维灾情场景需要通过及时更新来展现灾区现场的最新状况,因此必须具备动态加载局部高精度地形数据的能力。针对局部区域地形数据的动态更新,提出了基于GPU实时网格细分的局部高精度地形镶嵌算法,通过在GPU中对更新区域的地形网格实时插值细分来增加三角面片数,提高地形模型的几何精度,在有效保证更新区域地形绘制精度的同时,也不增加内存与显存之间的数据传输压力,通过实验对比,其执行效率要明显优于现有常用的CPU算法和GPU算法,且处理数据量越大优势体现越明显。
     ③提出了基于实拍照片的局部纹理快速更新方法
     针对三维灾情场景纹理信息的动态更新,提出了一种基于实拍照片的三维灾情场景地表影像快速更新方法,利用现场拍摄的高清照片叠加于灾情场景地表来展示灾区的最新状况。为准确匹配实拍照片与其在地形场景中的实际覆盖范围,利用相机的内部参数和外部参数在灾情场景中构建虚拟相机视锥体,将其与地面求交以获取照片的实际覆盖范围,最后使用多重纹理混合实现将实拍照片叠加于灾情场景表面。该方法克服了遥感影像获取困难、处理周期长、传输不方便等缺陷,简化了整个纹理更新的工作流程,提高了纹理更新的时效性,且高清照片能够提供更加精细的地貌细节,能够很好的满足实际应用的需求。
     ④提出了一种细节可控的地形交互改造算法
     地震灾害往往引起大量的地表变形,如地裂缝、塌陷、滑坡、崩塌、泥石流等地质灾害对人民生命财产造成巨大威胁,对这些地震引起的地表变形现象进行有效表达对于地震应急分析具有现实意义。然而由于震后灾区高精度地形数据的获取难度大、成本高,基于真实数据来表达显得异常困难,因此提出在充分利用高清遥感影像/实拍照片提供的地貌信息为参考,以交互改造地形的方式近似模拟震后特定灾害点的地表形态。而现有的地形绘制算法多为静态地形,对实时表达地表变形无能为力。鉴于此,对地形实时交互改造技术展开研究,提出了一种细节可控的地形交互改造算法,利用GPU着色器完成地形改造任务,并采用“乒乓”算法和批处理实现等方法优化了地形刷的执行效率和改造效果,此外,引入多重分形算法对改造地形的高度值产生可控随机扰动,以满足复杂地表形态表达的需求,为三维灾情场景中细节形态的表达提供了新的方法和技术手段。
     ⑤研究了地震灾情动态标绘体系的构建
     提出以三维动态标绘的方式实现地震灾情信息的图形化、符号化展示,研究地震灾情动态标绘体系的构建,提出了地震灾情动态标绘体系的层次框架,将整个体系分为几何层、单元层和语义表现层,针对几何层中标绘符号几何模型的构建和标绘符号与地形的匹配等关键问题进行了讨论和解决,面向地震灾情信息的空间/时态语义对标绘技术进行了应用扩展,结合GIS(地理信息系统)空间分析、三维度量、多维联动以及动态模拟等技术手段,完成了各类灾情信息的有效表达。
Earthquake emergency and rescue has great significance since the earthquake still cannot be accurately forecast. With the rapid development of hi-tech such as the spatial information technology, it has been an inevitable trend to use these technologies to assit earthquake emergency and rescue. Virtual earthquake scene can provide an intuitive visualization platform for deccision makers, due to the particularity of earthquake emergency and rescue, higher requirements are put forward for the construction of the multi-scale virtual disaster scene, as well as the effective use of the virtual disaster scene. To meet the application requirement of earthquake emergency and rescue, this paper researches the visualization of large-scale terrain, dynamic update of local earthquake scene, real-time terrain modification, dynamic plotting technology for earthquake disaster information expression, etc. The main work and contribution of this paper are shown as following:
     ①A Virture Texture based large-sacale terrain dynamic scheduling and real-time rendering method is proposed
     Terrain is an important part for building the geographical environment of earthquake scene, it is the carrier for displaying other disaster information, thus the visualization of large-scale terrain is the basic for earthquake rescue. To solve the current large data transfer problem, this paper provides a dynamic scheduling and real-time rendering algorithm. This algorithm introduces the Virtual Texture technology, adopts the unified management framework for DEM(Digital Elevation Model) and DOM(Digital Orthophoto Map). With the real-time computing of GPU(Graphic Processing Unit) and dynamic analysis of CPU(Central Processing Unit), only the terrain tiles needed by the current rendering are loaded. These tiles are maintained and joined together into a cache texture in the CPU and then transfered to the GPU. The target tile and texture coordinates of the terrain grid points are calculated according to the tiles' information in the GPU shader. This algorithm simplifies the data exchange and improves the memory management, it can effectively reduce the broadband expense, and has good performance for large data transmission. This algorithm are obviously beterr than the common method in the costs of broad-band, the frame rate and the implementation complexity.
     ②A GPU tessellation based local terrain "Mosaic" algorithm is proposed
     The earthquake scene needs to be updated timely to show the latest situation of the disaster situation, therefore it should be able to dynamically load local high-precision terrain data. To ensure the accuracy of the updated area, this paper puts forward a GPU tessellation based "Mosaic" algorithm of local high precision terrain. Through the interpolation and subdivision on the terrain grid within the updated area in GPU to increase the number of triangles, the geometrical accuracy of the local terrain model is improved without increasing the bandwidth of the memory and video memory. This algorithm is obviously beterr than the common method in execution efficiency.
     ③A photographic images based rapid updating method of local texture is proposed
     To meet the dynamic texture updating of the earthquake scene, this paper puts forward a rapid updating method based on photographic images. To automatically register the photographic image with the coverage on the scene, this paper constructs the virtual camera frustum in the3D scene based on the internal and external parameters of camera, then get the coverage of the photographic images by calculating the intersection of virtual frustum and the ground, and finally update the local texture by multiple texture blending. This method overcomes the defects of remote sensing images such as data acquisition, processing and transmission, and simplifies the entire texture updating workflow and improves the timeliness of the texture updating. What's more, high definition photographic images can provide more detailed geomorphic information, meeting the requirements of practical application.
     ④A detail controllable terrain modification method is proposed
     Earthquake often causes a lot of terrain deformation, such as ground fissures, collapse, landslide, collapse, debris flow. These geological disasters pose a great threat to people's life and property, effectively representation of these deformation in the3D scene has great significance in earthquake emergency and rescue. However, because of the acquisition of these deformation data is difficult and high cost, modeling the terrain deformation based on real data is unrealistic, so simulating the deformation through interavtive modification of terrain has realistic significance. However, most of the existing simulation platform is based on static terrain, and cannot express real-time terrain deformation. In view of this, this paper researches the real-time interactive modification of3D terrain, puts forward a workflow for interactive terrain modification and representation, Terrain modification is completed by GPU shaders, and the implementation efficiency and effect of modification are optimized by using "Ping-Pang" algorithm and batch processing; In addition, this paper introduces the multifractal algorithm to create a controllable random disturbance on the deformation, making the terrain modification results closer to reality, thus provides a new method and technology for the detailed representation of earthquake scene.
     ⑤Reseached the dynamic plotting system construction for earthquake disaster information expression
     The effective expression and visualization of earthquake disaster information is a necessary function of the earthquake emergency commanding system. To represent each kind of disaster information by visualization, this paper focuses on the three-dimensional dynamic plotting technology, puts forward the real-time dynamic plot hierarchical framework of earthquake disaster information. The whole system is divided into geometry layer, unit layer and semantic representation layer, the key problems such as the construction of plotting symbols and the match of plotting symbol and the terrain are discussed and solved. The application of plotting technology is extended faced to the spatial and temporal semantics of earthquake disaster information, and effectively represents each kind of earthquake disaster information through the combination of GIS spatial analysis,3D measurement, muti-dimontional linkage, dynamic simulation, etc.
引文
[1]文里梁.基于三维GIS技术的地震灾情场景模拟系统.中国地震局工程力学研究所,2009.
    [2]新华网.民政部:四川汉川地震已造成69197人遇难=EB/OL. http://polities.people.eom.en/GB/1027/7490903.html,2008-07-09.
    [3]任俊杰,谢富仁,刘冬英,等.2010年玉树地震的构造环境、历史地震活动及其复发周期估计.震害防御技术,5(2):228-233.
    [4]谷国梁.基于三维GIS技术的地震灾情模拟系统研究.中国地震局地震预测研究所,2012.
    [5]Kumar A,Chingkhei R K,Dolendro T.Tsunami damage assessment:a case study in car nicobar I-sland,India.International Jourmal of Remote Sensing.2007,28(13):2937-2959.
    [6]Barnes C F,Fritz H,Yoo J.Hurricane disaster assessments with image-driven,data mining in high-resolution satellite imagery.IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1 631-1640.
    [7]DudaK A,Abrams MASTER and USGS EROS disaster response:emergency imaging after hurri-cane katrina. IEEE Transactions on Geoscience and Remote Sensing,2005,71(12):1346-1350.
    [8]Tralli D M,Blom R G,Zlotnicki V,et al.Satellite remote sensing of earthquake, volcano,flood,lan-dslide and coastal inundation Hazards.ISPRS Journal of Photogrammetry and Remote Sensing,2 005,59(4):185-198.
    [9]陈天恩.城市震灾模拟空间分析方法.中国海洋大学,2006.
    [10]帅向华,成小平,袁一凡.城市震害高危害小区的研究和GIS的实现技术.地震.2002,22(3):113~119.
    [11]高杰,冯启民,史承伟,等.基于ArcView9.0的城市震害预测及应急对策信息系统研究.世界地震工程.2006,22(3):32~39.
    [12]谢礼立,温瑞智.数字减灾系统.自然灾害学报.2000,9(2):1-9.
    [13]Tang A P,Tao X X,Ou J P.Digital dystem for natural disaster mitigation in china.Proceedings of International Conference of 30th Urban Data Management Symposium,Prague,Republic of Czech,2000.
    [14]贾群林,周柏贾.地震灾害场景仿真模拟的研究与应用.计算机研究与发展.2010(06):1038-1043.
    [15]丰彪,文里梁,王自发,等.基于三维GIS技术的地震灾情场景模拟系统.世界地震工程,2010,26(1):114-120.
    [16]胡长理.砌体结构三维模型及三维灾害场景实现技术的初步研究.中国地震局工程力学研究所,2009.
    [17]王东明.地震灾场模拟及救援虚拟仿真训练系统研究.中国地震局工程力学研究所,2008.
    [18]James C.Hierarchical geometric models for visible surface algorithms.Communications of the ACM.1976,19(10):547-554.
    [19]Floriani L D,Magillo P,Puppo E.VARIANT:A system for terrain modeling at variable resolutio n.Geoinformatica.2000,4(3):287-315.
    [20]Hoppe H.View-dependent refinement of progressive meshes.Proceedings of the 24th annual co-nference on Computer graphics and interactive techniques.New York,ACM Press/Addison-Wesl-ey Publishing Co,1997:189-198.
    [21]Hoppe H.Smooth View-dependent level-of-detail control and its application to terrain rendering. Proceedings of the conference on Visualization '98,North Carolina,1998.Los Alamitos,IEEE C-omputer Society Press:35-42.
    [22]Floriani L D.A Pyramidal data structure for triangle-based surface description.IEEE Computer Graphics and Applications.1989,9(2):67-78.
    [23]Floriani L D.Puppo E.Hierarchical triangulation for multiresolution surface description.ACM T-ransactions on Graphics.1995,14(4):363-411.
    [24]Toledo R,Gattass M,Velho L.A Data structure for interactive terrain visualization.Technical Re-port. VISGRAF Laboratory,2001.
    [25]Lindstrom P,Koller D,Ribarsky W,et al.Real-time continuous level of detail rendering of height fields.Proceedings of the 23rd annual conference on Computer graphics and interactive techni-ques.New York,ACM,1996:109-118.
    [26]Rottgers S,Heidrich W,Slusallek P.Real-time generation of continuous levels of detail for heig-ht fields.Proceedings of 1998 International Conference in Central Europe on Computer Graphi-cs and Visualization.1998:315-322.
    [27]Pajarola R.Large scale terrain visualization using the restricted quadtree triangulation.Proceedin-gs of the conference on Visualization 98,North Carolina,1998.Los Alamitos,IEEE Computer So-ciety Press:19-26.
    [28]Pajarola R,Antonijuan M,Lario R.QuadTIN:quadtree based triangulated irregular networks.Proce-edings of the conference on Visualization 02,Boston,2002.Washington,IEEE Computer Society:9 5-402.
    [29]Duchaineau M,Wolinsky M,Sigeti D E,et al.ROAMing terrain:real-time optimally adapting me-shes.Proceedings of the 8th conference on Visualization 97,Phoenix,1997.Los Alamitos,IEEE C- omputer Society Press,1997:81-88.
    [30]Blow J.Terrain Rendering at high levels of detai,Proceedings of the 2000 Game Developers Conference,2000.
    [31]Turner B.Real-time dynamic level of detail terrain rendering with ROAM.2000. http://www.gamasutra.com/features/20000403/turner_01.html
    [32]Evans W,Kirkpatrickn D,Townsend G.Right-triangulated irregular networks.Algorithmica.2001,30 (2):264-286.
    [33]Gerstner T.Multiresolution compression and visualization of global topographic data.Geoinform-atica.2003,7(1):7-32.
    [34]Garland M,Zhou Y.Quadric-based simplification in any dimension.ACM Transactions on Grap-hics,2005,24(2):209-239.
    [35]Amor M,Boo M.A new architecture for efficient hybrid representation of terrains.Journal of S-ystems Architecture,2007,4(5):1-16.
    [36]武玉国,杜莹,王晓明,等.大规模地形TIN模型的LOD算法设计与实现.系统仿真学报.2005,3(17):665-669.
    [37]De Boer W H.Fast terrain rendering using geometrical mipmapping.2000. http://www.flipcode.com/articles/article_geomipmaps.pdf
    [38]Ulrich T.Rendering massive terrains using chunked level of detail control.Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Antonio,2002:Course Notes 35.
    [39]Cignoni P.Ganovelli F,Gobbetti E,et al.BDAM-batched dynamic adaptive meshes for high perf-ormance terrain visualization.Computer Graphics Forum.2003,22(3):505-514.
    [40]Levenberg J.Fast View-dependent level-of-detail rendering using vached geometry.Proceedings of IEEE Visualization 02.2002,259-266.
    [41]Losasso F,Hoppe H.Geometry clipmaps:terrain rendering using nested regular grids. Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,2004.New York, . ACM:769-776.
    [42]Asirvatham A,Hoppe H.Terrain rendering using GPU-based geometry clipmaps.Proceedings of Addison-Wesley,2005,27-45.
    [43]Livny Y,Kogan Z,El-Sana J.Seamless patches for GPU-based terrain rendering.Visual Computer, 2009(25):197-208.
    [44]Cignoni P,Ganovelli F,Gobbetti E,et al.Interactive out-of-core visualization of very large lands- capes on commodity graphics platform.Proceedings of ICVS 2003,Berlin Heidelberg:Springer-Verlag Press,2003:21-29.
    [45]马照亭,潘懋,胡金星,等.一种基于数据分块的海量地形快速漫游方法.北京大学学报:自然科学版,2004,44(4):619-625.
    [46]Platings M,Day A M.Compression of large-scale terrain data for real-time visualization using a tiled quad tree.Computer Graphics Forum,2004,23(4):741-759.
    [47]戴晨光,张永生,邓雪清.一种用于实时可视化的海量地形数据组织与管理方法.系统仿真学报,2005,17(2):406-409.
    [48]Sumengen S,Balcisoy S.Real-time simulation of autonomous vehicles on planetsized continuous LOD terrains.Proceedings of WSCG'2005,Plzen Czech Republic,2005. http://wscg.zcu.cz/WSCG2005/Papers_2005/Poster/H03-full.pdf
    [49]施松新,叶修梓,张三元,等.基于分块的大规模地形实时渲染方法.浙江大学学报工学版,2007,41(12):2002-2006.
    [50]李胜,冀俊峰,刘学慧,等.超大规模地形场景的高性能漫游.软件学报,2006,17(3):535-545.
    [51]Li L,Li F,Huang T.Smooth schedule of large-Scale terrain visualization from external memory. Journal of Software.2007,18(sup):26-34.
    [52]Willem H.de Boer.Fast terrain rendering using geometrical mipmapping.2000. http://www.connectii.net/emersion,2000.
    [53]Christopher C,Chritopher J,Michael T.The Clipmap:A virtual miamap.Proceedings of the ACM SIGGRAPH'04,1998,151-158.
    [54]Wikimedia Foundation.(2006e).MegaTextures.Retrieved October 10,2006 from:http://en.wikipedia. org/wiki/megatextures.
    [55]Sean B.Sparse virtual textures,2008.Game Developer Conference,San Francisco,CA. http://silverspaceship.com/src/svt
    [56]Andreas N.Virtual texturing.CoRR,abs/1005.3163,2010.
    [57]van Waveren J M P.Id tech 5 challenges:from texture virtualization to massive parallelizetion. http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Cha-llenges.pdf,2009.
    [58]杜莹.全球多分辨率虚拟地形环境关键技术的研究.解放军信息工程大学,2005.
    [59]于卓,梁晓辉,马上,等.一种支持大规模多种精度地形的实时绘制算法.计算机研究与发展.2010,47:988-995.
    [60]李文庆VV-Ocean海洋环境仿真与海洋数据动态可视化系统的研究与实现.中国海洋大学,2011.
    [61]Story J,Cebenoyan C.Tessellation performance.(2010-03) [2011-10-11] http://developer.download.nvidia.com/presentations/2010/gdc/Tessellation_Performance.pdf
    [62]Ni T Y.DX11 tessellation.(2010-08) [2011-10-11] http://www.nvidia.asia/content/asia/event/siggraphasia-2010/presos/Ni_Tessellation.pdf.
    [63]Rollin P.Oster B.OpenGL and CUDA-based tessellation.(2011-08) [2011-10-11]. http://www.nvidia.com/content/siggraph/Rollin_Oster_OpenGL_CUDA.pdf.
    [64]San Jose C.OpenGL 4.0 Tessellation for professional applications.(2010-09) [2011-10-11]. http://www.nvidia.com/content/GTC-2010/pdfs/2227_GTC2010.pdf
    [65]Cantlay I. DirectX 11 terrain tessellation.(2011-01) [2011-08-16]. http://developer.nvidia.eom/sites/default/files/akamai/gamedev/files/sdk/11/TerrainTessellation_Whi-tePaper.pdf
    [66]Valdetaro A, Nunes G, Raposo A, et al.LOD terrain rendering by local parallel processing on GPU,Games and Digital Entertainment (SBGAMES),2010 Brazilian Symposium on,vol., no.,pp. 182,188,8-10Nov.2010.
    [67]Yusov E,Shevtsov M.High-performance terrain rendering using hardware tessellation. Journal of WSCG,2011,19(3):85-92.
    [68]Sumner R W.Animating sand,mud,and snow.Computer Graphics Forum (S0167-7055),1999,18 (1):3-15.
    [69]He Y,Cremer J.Real-Time extendible-resolution display of on-line dynamic terrain. In Proceedi-ngs of Graphics Interface 2002.
    [70]王林旭,李思昆,潘晓辉.动态地形的实时可视化.计算机学报.2003(11):1524-1531.
    [71]蔡兴泉,李凤霞,战守义.动态地形可视化算法研究.计算机工程与应用.2005(1):36-37.
    [72]蔡兴泉,李凤霞,战守义.复杂战场环境中基于规则格网的动态地形的研究.系统仿真学报.2005(3):650-652.
    [73]Chen G J,Zhang J,Xu X L,et al.Real-time visualization of tire tracks in dynamic terrain with LOD.Proceedings of the 2nd International Conference on Technologies for E-Learning and Di-gital Entertainment. Berlin,Heidelberg:Springer-Verlag,2007:655-666.
    [74]Aquilio A,Brooks J.Real-time GPU-based simulation of dynamic terrain.In Lecture Notes in C-omputer Science 4291,Bebis G (eds.),Springer-Verlag,2006,pp.891-900.
    [75]张琦,孙伟,孙丰,等.一种多分辨率动态地形算法.兵工学报.2007(9):1053-1057.
    [76]孙伟,张琦,孙丰,等.工程机械虚拟训练动态地形仿真.系统仿真学报.2009(6):1776-1780.
    [77]张荣华,李凤霞.复杂战场环境中动态地形的表示及可视化技术研究.计算机工程与应用.2003(34):70-72.
    [78]张荣华,郑顾平.高逼真动态地形实时绘制中碰撞检测的设计与实现.计算机应用.2006(11):2773-2774.
    [79]张荣华.基于GPU的动态地形实时绘制技术的研究与实现.计算机工程与设计.2010(20):4434-4437.
    [80]王冬,张豫南,李瀚飞,等.基于GPU的动态地形实时可视化.计算机工程与应用.2010(14):173-175.
    [81]张豫南,王冬,林成地,等.基于GPU的动态地形过程纹理映射方法.装甲兵工程学院学报.2010(3):50-52.
    [82]Justin C,Andirew F,Patrick M.A system for real-time deformable terrain.Proceedings of the S-outh African Institute of Computer Scientists and Information Technologists Conference on K-nowledge,Innovation and Leadership in a Diverse,Multidisciplinary Environment,2011:77-86.
    [83]周玉刚,张天军.基于ArcGIS Engine的林火标绘系统的设计与实现.科技咨询导报.2007.
    [84]孙志峰,王远.基于MapX的电子标绘系统设计与实现.空军雷达学院学报.2007.
    [85]刘丹,张剑波.基于MAPGIS的军事标图系统的设计.地球科学—中国地质大学学报.2002.
    [86]苟桂甲,陈永科.基于Multi-Agent战场态势标绘系统的设计.计算机仿真.2004.
    [87]徐敬海,徐徐,聂高众,等.基于GIS的地震应急态势标绘技术研究.武汉大学学报(信息科学版),2011,36(1):66-70.
    [88]王悦,陈维锋.地震灾情实时动态标绘系统功能设计研究.四川地震,2010(3):13-18.
    [89]陈建祥,魏迎梅.虚拟战场环境中的态势标绘与表现.计算机应用.2005.
    [90]Durbin J,Edward J,Colbert B,et al.Battlefield visualizationon the responsive workbench.Proceed-ings of IEEE Visualization,North Carolina,1998:463-466.
    [91]Hagens D,Montgomery J,Moore C.Developing custom 3D visualization applications for defense using ArcGIS.Proceedings of the 2005 Developer Summit,San Diego,2005:814-835.
    [92]杨强,陈敏,汤晓安,等.三维静态军标的实时生成与标绘.计算机工程与设计,2007,28(14):3419-3421.
    [93]Kersting O,Dollner J.Interactive 3D visualization of vector data in GIS.Proceedings of The 10t h ACM International Symposium on Advances in GIS,McLean,2002:107-112.
    [94]Schneider M,Guthe M,Klein R.Real-time rendering of complex vector data on 3D terrain mod-el.Proceedings of The 11th International Conference on Virtual Systems and Multimedia,Ghent, 2005:573-582.
    [95]Wimmer M,Scherzer D,Purgathofer W.Light space perspective shadow maps.Proceedings of T-he Eurographics Symposium on Rendering,Norrk6ping,2004:1-9.
    [96]Rui X P,Zhang Y M.Overlaying vector data on 3D terrain.Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Los Alamitos:IEEE Computer Society Press,2004:4 560-4563.
    [97]Wartell Z,Kang E,Wasilewski T,et al.Rendering vector data over global, multi-resolution 3D t-errain.Proceedings of the Symposium on Data Visualization.Aire-la-Ville:Eurographics Associati-on Press,2003:213-222.
    [98]孔维.三维非规则军队标号的研究与实现.解放军信息工程大学,2005.
    [99]张嵘,蔡洪斌,白忠建.三维态势图中标绘箭头的实时约束变形.成都信息工程学院学报,2008,23(4),380-383.
    [100]汤晓安,陈敏.一种基于网格控制的3维军标符号动态建模与优化方法.中国图象图形学报,2009,14(9):1919-1924.
    [101]黄超超,凌永顺,吕相银.ROAM动态地形渲染算法研究.计算机仿真,2005,22(1):216-219.
    [102]Cook R L.Shade trees.ACM SIGGRAPH Computer Graphics,1984,18(3):223-231.
    [103]Frank D.DirectX 9.0 3D游戏开发编程基础.北京:清华大学出版社.
    [104]李均.3D游戏引擎中的室外大场景渲染技术研究与实现.成都,四川师范大学,2008:50-51.
    [105]徐晓刚,马利庄.纹理混合与纹理传输.计算机辅助设计与图形学学报,2003(01):59-64.
    [106]刘小聪.基于光线投射的全GPU实现的地形渲染算法.上海:上海交通大学,200-41-44.
    [107]Zheng J J,Zhang J J.Texture mapping on irregular topology surface. Sixth International Conf-erence on Information Visualisation,2002:323-330.
    [108]Alexandre H,Duncan A K.Blend maps:enhanced terrain texturing.Proceedings of SAICSIT,200 6:61-70.
    [109]Tomas A M,Eric H实时计算机图形学(第2版).北京:北京大学出版社,2004.
    [110]Perlin K.An image synthesizer.ACM SIGGRAPH Computer Graphics,1985,19(3):287-296.
    [111]Perlin K.Improving noise.ACM Transactions on Graphics.2002,21(3):681-682.
    [112]De Carpentier G,Bidarra R.Interactive GPU-based procedural heightfield brushes.Proceedings of the fourth international conference on the foundations of digital games,Florida,USA,2009:55-62.
    [113]曹启华,邓雪情.基于金字塔模型的规则格网数据可视化交互式编辑.测绘科学技术学报,2007,24(6):427-431.
    [114]Vaaraniemi M,Treib M.High-quality cartographic roads on high-resolution DEMs.Journal of WSCG,2011,19(1-3):41-48.
    [115]孙英君,丁宁,王倩.基于二三维联动机制的数字校园系统研究.山东建筑大学学报,2009,24(4).
    [116]万幼,边馥苓.二三维联动的GIS体系结构构建技术.地理信息世界,2008(2):48-52.
    [117]张欣,钟耳顺.基于GIS的应急预案过程动态推演模拟技术研究.武汉大学学报信息科学版,2008,33(3):281-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700