基于动态虚拟语义社区的知识通信
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络资源的极大丰富,为提升资源共享协同服务质量提供了可能;但是,网络资源数量和种类飞速增长的同时,资源管理和使用的复杂性也在增加。网络资源互联互通的通信机制是各种共享协同应用的基础核心架构,快速准确定位所需资源成为当前网络应用中一件非平凡的功能需求。新机遇总是和新需求结伴而生,技术的进步和丰富的网络资源数据及其可得性,为高效定位网络资源带来了可行途径。
     本论文以促进Web资源互联互通的共享为目标,首先对网络信息资源的不同表示形态进行了分析,从可计算角度,针对网络资源表示特点,根据知识的定义,给出一种知识通信架构及特征,其内涵是利用知识工程技术,基于社区发现和自组织构造,进行知识资源的传递和共享。接着围绕本论文所提出的知识通信基础设施中的三个核心问题:异构资源互通、资源虚拟组织管理、智能通信协议,以语义计算、社会计算为关键技术,以知晓内容和上下文为主线,进行深入研究和分析,提出一系列解决方法,归纳为以下几点,也是本文的主要创新点和贡献:
     1.着眼于资源语义模型和语义相关计算两方面进行异构资源语义共享研究。
     对异构资源共享中资源互理解机制进行深入分析,从资源表现形式、资源语义关联和资源协作关系等多个维度建立了网络资源的领域本体语义模型,并建立了包含认知过程类和知识协作过程类的知识协作过程本体,对用户的认知过程和资源协作过程规则进行描述,在资源描述层次支持协作式的智能服务推荐。
     针对W3C推荐的OWL本体描述语言,从描述逻辑的包含关系入手,对概念间存在的多种关系属性进行分析,建立包含关系的推理规则,基于此规则,缩小概念相似关系的计算空间,设计算法计算概念间相似关系;然后再返回到原图,设计相应规则,建立基于图结构的概念相关关系的计算方法。
     2.社区结构是社会网络中的一个重要结构特征,也是Web资源分布的一个重要特征。本文从宏观层次的网络资源社区拓扑发现和微观层次网络资源自组织社区构造两个不同角度进行网络资源组织的研究。
     当前重叠社区研究中普遍存在的问题有,缺少合适的社区质量度量体系,无法确定社区合适粒度,计算复杂性等问题。本论文以社区聚集系数和社区间的重叠度为因式建立了新的重叠社区结构质量评价函数,该评价方法可以同时评价重叠与非重叠社区结构,还能通过有效控制社区间的重叠程度达到优化重叠社区粒度的目的。
     与当前主流重叠社区发现算法从节点间直接连接关系分析入手不同,本论文以节点上下文间的关系为观察对象,提出一种基于节点间共享邻居关系的分层重叠社区发现算法NHOC。该算法不仅能发现重叠社区,也能发现非重叠社区,而且在社区融合过程中,算法会记录下社区分层结构。实验表明,与当前被看好的重叠社区发现算法CONGA相比,无论是在发现重叠社区,还是发现非重叠社区,NHOC得到的社区结构都比CONGA的结果更接近实际网络的社区结构。
     复杂社会网络中更多存在的是动态演化社区。论文不同于当前基于优化的动态社区发现算法,提出一种计算历史信息与瞬时信息的、多图转换的动态社区发现算法NDCD。该算法对瞬时观察网络为无权图(论文中表示为0-1图)和带权图分别进行了设计。其中,在计算0-1图中节点邻居影响时,把0-1图转化为带权图,考虑历史信息随时间失效的情况,计算瞬时综合信息,得到瞬时社区拓扑,然后对相邻时间社区拓扑的相似性进行计算,发现稳定社区。实验表明,无论观察网络是无权网络还是带权网络、观察数据是有噪音还是无噪音,NDCD都能较为准确的发现稳定社区结构。
     网络资源的动态开放性以及资源背后主体主动性在资源上的体现,使得资源之间呈现的是一种对等结构P2P。资源组织定位、质量管理是影响P2P架构广泛应用的瓶颈,当前这两方面的研究一般是分开进行。而实际上,通过建立虚拟语义社区把无结构P2P映射为有内容含义的结构化的网络架构,在社区组织方式的基础上,对搭便车、恶意行为、错误信息资源等进行识别和遏制,是一种比在P2P物理层上直接建立抑制机制更灵活的方案,可以同时实现资源组织和质量管理目的。基于此理念,本论文提出了一种P2P语义社区模型及其构造过程,设计了自主节点和自主语义社区模型,建立了基于节点本地视图的领域信任和被信任评价体系,使得节点可以通过收集通信历史记录,不断更新本地网络拓扑视图,建立多语义的网络拓扑知识图,并进行节点间协作,推选出质量最高的专家节点,然后以此专家节点为语义社区种子,建立专家服务并管理下的自组织语义社区。本文所建立的以专家为核心的自主语义社区模型,支持非社区节点、社区普通节点、社区专家不同角色的路由表动态更新,不仅能够有效增强快速定位资源的能力,而且在一定程度上抑制了P2P中低劣资源的传播以及搭便车行为泛滥。
     3.基于本体技术深入研究了感知内容和上下文的知识通信协议,以言语行为理论为支撑,建立包含了内容content、上下文context、动作act的协议本体,并基于事件演算,建立适应性协议编解码规则,在增强语义内容通信能力的同时优化通信负载,达到动态适应性的知识通信目的。
     最后构建了知识通信的原型系统——高等教育资源语义共享平台,对本文内容进行综合应用,系统运行结果表明,知识通信是促进web资源共享协同的一种可行且有效的基础设施。
More and more resource exists on Internet and this makes possible to improve the quality of resource sharing and task collaboration on Internet. But, the increase of resource amount and categories adds the complexity of managing and utilizing resource. How to find the required resource, how to transfer resource quickly and accurately, these are nontrivial functions in current web applications. Semantic technology and social computing provide some new ways to realize web resource shared on application layer.
     Base on semantic computing and social computing, this dissertation aims at providing some new methods to enhance Web resource sharing and interoperability. We firstly analyze web resource’s characteristics and put forward the concept of web knowledge resource. This concept explains what web knowledge resource is and why most web resource can be considered as knowledge resource. Then to realize the widerly, high quality web resource sharing, a knowledge communication framework is projected, which is to deliver web knowledge resource by knowledge engineering and communication technology. In knowledge communication framework, the mechanism for connecting different resource by semantic content, effectively organizing and managing resource, intelligent communication protocol, constitute the infrastructure of knowledge communication. Focusing on the three core problems, we introduce some new methods and Content awareness and context awareness are these methods’medium objectives and resource widely shared is their final goal. The main contributions and innovations of our work include the following:
     ①After deeply analyzing the mechanism for resource interoperability, we build multi-dimensions web resource ontology model RSM for resource semantic interaction. RSM includes metadata-based unification resource representation, semantic relationship and resource collaboration. In RSM, knowledge collaboration ontology is set up that is composed of cognize process class and knowledge collaboration class. They can respectively describe the user’s cognizing process and resource collaboration process. RSM could support high quality resource location and intelligent recommend on WWW.
     Another important notion about semantic interaction between heterogeneous resources is semantic relativity evaluation. We focus on OWL that is recommended by W3C and introduce an easy-to-use, flexible algorithm for computing semantic relativity between concepts in OWL, based on ontology structure and concepts’semantic relation, which does not need other lexical base such as WordNet, nor machine learning from quite large quantity of individuals. It just occurs in a domain ontology base. Because in DL, subsumption is an important relation, the detailed subsumption theories and computing lemma are given. According to these principles, we can deduce the subsumption subgraph and calculate their semantic similarity and then obtain their relativity degree by original ontology graph.
     ②Community is one important structure in social network and web resource network. And it is one key structure for organizing web resource. We research community detection algorithms in macro view and self-organizing community formation in micro view. The work in macro view could help designing suitable micro self-organizing topology and the actions in micro world would influence the macro network structure.
     In macro view, we study overlapping community and dynamic community detection algorithms. There are some common problems in overlapping community research, such as lacking of suitable evaluation function, incapable of deciding suitable granularity community, computing performance and so on. This dissertation build a new overlapping community evaluation method that computes both community clustering degree and the overlapping degree. This function could calculate the structure quality for both disjoint community and overlapping community.Moreover. It can optimize the community granularity by controlling the overlapping degree.
     One new algorithm NHOC is proposed to detect overlapping or disjoint community. The difference between NHOC and current published algorithms is that NHOC utilizes the relationship of nodes’sharing neighbors, not nodes’direct interaction. Comparing it with overlapping algorithm CONGA, experiments show it can find more accurate community structure than CONGA, whether the real network has disjoint or overlapping communities.
     Community structure will change with time because social network is dynamic evolving. To find stable community in large social datasets that maybe have noise data, is one key problem. Different from current optimized dynamic community model algorithms, we introduce a graph transfer-based algorithm NDCD that computes history information and snapshot information. NDCD could detect community structure when the observed snapshot network is 0-1 (unweighted graph) graph or weighted graph. Experiments shows NDCD could discover the stable community whenever observed graph is 0-1 graph or weighted graph.
     In micro view, for autonomous community, we consider peer to peer modal as background because its sociality and widely applications on Internet. An expert-driven multi-semantic self-organized P2P semantic community model is built to resolve the two principle problems of resource organizing and management, which are how to possess enormous number of high quality shared resource, how to find the resource quickly and accurately. We set up Autonomic Semantic Community (ASC) model, design local domain-related trust function and self-evaluation function that takes requirement and owned resource two aspects into account to value one autonomous peer (AP). We also put forward a procedure to collaboratively elect expert APe and a Self-organized community formation algorithm --SoFA. In SoFA, APs gather its communication information and evaluate itself and other APs locally, build and dynamically adjust local topology, elect the domain expert APe and then an expert-driven ASC is established. Furthermore, we describe the dynamic changing of peers’routing table before or after that ASCs are formed. Experiment shows SoFA could not only adaptively optimize network to improve the efficiency of service discovery and routing, but also base on the synthesized trust degree to discriminate the low quality service peers and to keep them within limits.
     ③Inspired by human's communication way, we proposed a kind of content and context awareness protocol (abbr. KC2A2P) base on knowledge to satisfy the intelligent knowledge communication. A common shared protocol ontology is built that includes content, context and act in order to not only guide the different protocol terms mapping but also provide an intelligent protocol encoding framework. To avoid unnecessary communication load, event calculus is used to build the axiom of communication cognition and three basic encoding rules are made that can adjust the message entity base on the application context. Furthermore, some experiments are given to show KC2A2P would improve the meaning delivery and even help to build trust relationship.
     Finally a knowledge communication test system“higher education resource sharing platform”is introduced and some tests results show that knowledge communication is one effective infrastructure for web resource sharing.
引文
[1] World Wide Web Consortium [EB/OL]. http://www.w3.org/2001/sw/,2010-03-29.
    [2] Cynthia Parr, Andriy Parafiynyk, Joel Sachs etc. "Using the Semantic Web to Integrate Ecoinformatics Resources", InProceedings, Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06), July 2006.
    [3] Tim Finin, Anupam Joshi, Li Ding. Position paper for the Workshop on Information Integration, 26-27 October 2006, Philadelphia PA.
    [4] Gruber C T R, A translation approach to portable ontologies, Knowledge Acquisition, 1993, vol.5 (2), 199-220.
    [5]王克宏.网络计算模式下的知识处理. [EB/OL]. http://web.tongji.edu.cn/~yangdy/knowledge/paper10.htm., 2010-03-29.
    [6] http://blog.donews.com/peiyf/archive/2005/06/29/447590.aspx.,2010-03-29,
    [7] W. Applehans, A. Globe , G. Laugero, Managing Knowledge. A Practical Web-based Approach, Addison Wesley, Boston (1999).
    [8] http://www.trainmor-knowmore.eu/FBC5DDB3.en.aspx.
    [9] Edward A. Feigenbaum.The Art of Artificial Intelligence: Themes and Case Studies of Knowledge Engineering. IJCAI 1977.1014-1029.
    [10]陆汝钤研究知识科学,发展知识工程,推进知识产业[J].信息技术快报2003年第6期.
    [11] Cynthia Sims Parr, Andriy Parafiynyk, Joel Sachs,etc. Using the Semantic Web to Integrate Ecoinformatics Resources , 2006.
    [12] Towards the Semantic Web: Ontology-driven Knowledge Management John Davies (Editor), Dieter Fensel (Editor), Frank van Harmelen (Editor) ISBN: 978-0-470-84867-8.January 2003.
    [13] Helmut Nagy. Knowledge Management and the Semantic Web .July 28, 2009.
    [14]陆汝钤.知识科学及其研究前沿. [EB/OL] http://www.iipl.fudan.edu.cn/research/ks.html,2010-03-29.
    [15] Kit-ying Hui,Alun Preece .An infrastructure for knowledge communication in Akt Version1.0.2001[EB/OL].http://www.csd.abdn.ac.uk/~apreece/akt/aktbus/aktbus-1.0/aktbus-1.0.pdf.
    [16] Martin J.Eppler Knowledge communication problems between experts and managers. wpca0401.
    [17] Schmeil,A.,Eppler,M.J.(2009). Knowledge Sharing and Collaborative Learning in Second Life. Journal of Universal Computer Science, 15(3), 665-677. http://www.knowledge-communication.org/.
    [18] Bresciani, S., Eppler, M.J. (forthcoming). The Benefits of Synchronous Collaborative Information Visualization: Evidence from an Experimental Evaluation. IEEE Transactions on Visualization and Computer Graphics. To be presented at InfoVis 2009, October 13-16, Atlantic City, New Jersey, USA.
    [19] Rainer Bromme, Friedrich Hesse and Hans Spada (ed.), Barriers and Biases in Computer-Mediated Knowledge Communication, 1-32. ? 2003 Kluwer Academic Publishers.Printed in the Netherlands. [EB/OL].http://centerforknowledgecommunication.com/
    [20] Rüdiger Reinhardt,Beate Stattkus。Fostering Knowledge Communication: Concept And Implementation.Journal of Universal Computer Science, vol. 8, no. 5 (2002), 536-545.
    [21] Tim Finin, Richard Fritzson Don McKay and Robin McEntire. KQML as an Agent Communication Language, The Proceedings of the Third International Conference on Information and Knowledge Management (CIKM'94). ACM Press. November 1994.
    [22] Wu zhaohui et al. Knowledge base grid: a generic grid architecture for semantic web[J].计算机科学技术学报(英文版)JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY 2003年第04期.
    [23] Wiederhold,G , editor.Intelligent Integration of Information Kluwer Academic Publishers,Boston MA.1996.
    [24] Gruber C T R, A translation approach to portable ontologies, Knowledge Acquisition, 1993, vol.5 (2), 199-220.
    [25] Peter F, Pantel-Schneider, Dieter Fensel. Layering the Semantic Web: Problems andDirections, In Proc. of First International Semantic Web Conference (ISWC2002), Sardinia, Italy, 2002.
    [26] E.F. Codd, A Relational Model of Data for Large Shared Data Banks.Communications of the ACM, 13 (6) (1970)377-387.
    [27] H. Zhuge,互联网资源空间模型(Internet Resource Space Model, Chinese version), Technical Report of Knowledge Grid Research Center, KGRC-2007-07, August, 2007. www.knowledgegrid.net/TR. (Formal Version).
    [28] H.Zhuge, Y.Xing and P.Shi, Resource Space Model, OWL and Database: Mapping and Integration, ACM Transactions on Internet Technology, 8/4, 2008.
    [29] TR Gruber. Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 1995 - uni-leipzig.de.
    [30] Rudi Studer, V. Richard Benjamins, Dieter Fensel: Knowledge Engineering: Principles and Methods. Data Knowl. Eng. 25(1-2): 161-197 (1998).
    [31] Jerry R. Hobbs,Feng Pan. An ontology of time for the semantic web. ACM Transactions on Asian Language Information Processing (TALIP) Volume 3 Issue 1 2004 .
    [32] Horrocks, I., et al. 2002. Reviewing The Design of DAML+OIL: Language for The Sem anticW eb,Pro ceedingsof AAAi'02,C anada,pp .792-79.
    [33] Schmidt-SchauB and Smolka, 1988 M. Schmidt-SchauB, G. Smolka. Attributive concept descriptions with complements. in Artificial Intelligence,48(1):1-26,1991 .
    [34] Kifer, M,et al. 1995. Logical foundations of object-oriented and frame-based system s. Jo urnalof th eA CM,V ol.42(4):74 1-843.
    [35]张承立,陈剑波,齐开悦.基于语义网的语义相似度算法改进.计算机工程与应用[J] 2006.17.165-170.
    [36] Maedche A,Staab S.M.Ensuring similarity between ontologies[C].In Proceeding of the European Conference on Know ledge Acquisition an Management EKAW-2002
    [37] Agirre E,Rigau G. A proposal for word sense disambiguation using conceptual distance.Proc of RANLP,1995,258~264.
    [38]徐德智,郑春卉.K.Passi.基于SUMO的概念语义相似度研究.计算机应用[J].2006.26(1):180—184.
    [39]陈杰,蒋祖华.领域本体的概念相似度计算.计算机工程与应用[J].2006.42(33)
    [40] Jayant M,Philip A,Bernstein P.Representing and Reasoning about Mappings between Domain Models.In:Eighteenth national conference on Artificial intelligence,Edmonton,Alberta,Canada,80—86,2002.
    [41] S.Melnik,H.Garcia—Molina and E.Rahm.Similarity Flooding:A Versatile Graph Matching Algorithm and its Application to Schema Matching.In:Proc.1 8th ICDE,San Jose CA,Feb 2002.
    [42] G. Hirst and D. St-Onge. Lexical chains as representations of contexts for the detection and correction of malaproprisms. The MIT Press. 1998
    [43] C. Leacock and M. Chodorow. Combining local context and WordNet sense similarity for word sense identification. In WordNet, An Electronic Lexical Database. The MIT Press. 1998
    [44] P. Resnik. Using information content to evaluate semantic similarity. In Proceedings of the 14th bInternational Joint Conference on Artificial Intelligence, Montreal, Canada. 1995.
    [45] J. Jiang and D. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of the International Conference on Research in Computational Linguistics, Taiwan. 1997.
    [46] D. Lin. An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning, Madison, WI. 1998.
    [47] Yuhua L, Bandar ZA, McLean D. An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. on Knowledge and Data Engineering, 2003,15(4):871?882.
    [48] N. Stojanovic et al. Seal: a framework for developing semantic portals. In K-CAP 2001: Proceedings of the international conference on Knowledge capture, pages 155–162, New York, NY, 2001. ACM Press.
    [49] RubénTous,Jaime Delgado. A Vector Space Model for Semantic Similarity Calculation and OWL Ontology Alignment. Database and Expert Systems Applications.Lecture Notes in Computer Science 2006 307-316.
    [50] Jér?me Euzénat, David Loup, Mohamed Touzani, Petko Valtchev, "Ontology Alignment with OLA", to appear in Proceedings of the 3rd EON Workshop, 3rd Intl. Semantic Web Conference, Hiroshima (JP), November 2004.
    [51]谢晓专.网络信息资源组织管理方法与模式研究——析网络信息资源组织管理方法与模式.http://publishblog.blogchina.com/blog/tb.b?diaryID=496442.
    [52] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000. Also appears as Cornell Computer Science Technical Report 99-1776 (October 1999)..
    [53] Watts D. J., Strogatz S. H. Collective dynamics of“small-world”networks. Nature, 1998, 393:440- 442.
    [54] Price D J . Networks of scientific papers. Science, 1965, 149(3683): 510-515.
    [55] Barabàsi A .-L., Albet R.. Emergence of scaling in random networks. Science.1999, 286:509-512.
    [56] M.E.J.Newman.Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems. Volume 38, Number 2 / March, 2004. 321-330.
    [57] C. Song, S. Havlin, and H. A. Makse. Origins of fractality in the growth of complex networks. Nature Physics 2, 275-281 (2006).
    [58] Aaron Clauset, Cristopher Moore, M. E. J. Newman。Hierarchical structure and the prediction of missing links in networks.nature. Vol 453. 1 May 2008. doi:10.1038/nature06830
    [59]杜海峰,李树茁, W.F.Marcus,悦中山,杨绪松.小世界网络与无标度网络的社区结构研究.物理学报.2007 56(12).
    [60] Santo Fortunato. Community detection in graphs.Physics.soc-ph 25 Jan 2010.
    [61] Flake GW, Lawrence S, Giles CL, Coetzee FM. Self-Organization and identification of Web communities. IEEE Computer,2002,35(3):66?71.
    [62] M. Girvan and M. E. J. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci.USA 99, 7821–7826 (2002).
    [63] Tyler JR, Wilkinson DM, Huberman BA. Email as spectroscopy: Automated discovery of community structure within organizations.In: Huysman M, Wenger E, Wulf V, eds.Proc. of the 1st Int’l Conf. on Communities and Technologies. Dordrecht: Kluwer Academic Publishers, 2003. 81?96.
    [64] Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101(9):2658?2663.
    [65] M. E. J. Newman1,2 and M. Girvan .Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004) http://prola.aps.org/abstract/PRE/v69/i2/e026113.
    [66] Newman MEJ. Fast algorithm for detecting community structure in networks. Physical Review E, 2004,69(6):066133.
    [67] Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895?900.
    [68] Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895?900.
    [69] Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999,46(5):604?632.
    [70] Wu F, Huberman BA. Finding communities in linear time. A physics approach. European Physical Journal B, 2004,38(2):331?338.
    [71] Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814?818.
    [72] Yang, B. and Liu, J. 2008. Discovering global network communities based on local centralities. ACM Trans. Web 2, 1, Article 9 (February 2008), 32 pages. DOI = 10.1145/1326561.1326570 http://doi.acm.org/10.1145/1326561.1326570.
    [73] Wang Z, Zhang J. In serach of the biological significance of modular structures in protein networks. PLOS Computational Biology,2007,3(6):e107.
    [74] Newman MEJ. Modularity and communities structure in networks. Proc. of the National Academy of Science, 2006,103(23):8577?8582.
    [75] Pujol JM, Béjar J, Delgado J. Clustering algorithm for determining communitystructure in large networks. Physical Review E,2006,74(1):016107.
    [76] Duch J, Arenas A. Community detection in complex networks using extreme optimization. Physical Review E, 2005,72(2):027104.
    [77]杨博,刘大有, LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].Journal of Software, Vol.20, No.1, January 2009, pp.54?66.
    [78] Guimera R, Sales M, Amaral LAN. Modularity from fluctuations in random graphs and complex networks. Physical Review E,2004,70(2):025101.
    [79] Fortunato S, Barthelemy M. Resolution limit in community detection. Proc. of the National Academy of Science, 2007,104(1):
    [80] Purnamrita Sarkar, Andrew W. Moore Dynamic Social Network Analysis using Latent Space Models ACM SIGKDD Explorations Newsletter, 2005 ACM SIGKDD Explorations Newsletter, 2005.
    [81] LB de Pinho, CL de Amorim. Assessing the efficiency of stream reuse techniques in P2P video-on-demand systems. Journal of Network and Computer Applications, 2006 p25–45.
    [82] J Pouwelse, P Garbacki, D Epema, H Sips. The bittorrent P2P file-sharing system: Measurements and analysis. Lecture notes in computer science, 2005 Springer. p205-216.
    [83] R Krishnan, MD Smith, Z Tang, R Telang. The impact of free-riding on peer-to-peer networks.- System Sciences, 2004. Proceedings of the 37th Hawaii International Conference on System Sciences– 2004.p1~10.
    [84] T. Ngan, P. Druschel, and D. S. Wallach. Enforcing fair sharing of peer-to-peer resources. In IPTPS '03, Berkeley, CA, Feb. 2003.
    [85] Tim Finin, Richard Fritzson Don McKay and Robin McEntire. KQML as an Agent Communication Language, The Proceedings of the Third International Conference on Information and Knowledge Management (CIKM'94), ACM Press, November 1994.
    [86] J.R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge University Press, New York ,1969.
    [87] Yannis Labrou and Tim Finin, Comments on the specification for FIPA '97 Agent Communication Language, University of Maryland, Baltimore County, BaltimoreMaryland USA, February 28, 1997.
    [88] Simple Object Access Protocol (SOAP).http://www.w3.org/TR/SOAP.
    [89] Tanja Sollazzo, Siegfried Handschuh, Steffen Staab, etc,. Semantic Web Service Architecture—EvolvingWeb Service Standards toward the Semantic Web,2002, http://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/sub-flairs2002.pdf.
    [90] Margaret Lyell, Exporting FServices , 2002-10-16 [EB/OL]. http://www.fipa.org/docs/input/f-in-00078/f-in-00078.pdf .
    [91] Michael N. Huhns, Agent as Web Services,IEEE, July/August 2002 (Vol. 6, No. 4) pp. 93-95.
    [92] Greenwood D,Calisti M, Engineering Web Service-Agent intergration, 2004 IEEE International Conference on Volume 2,10-13 Oct. 2004 Page(s):1918– 1925.
    [93]毛瑞霞,王莉,冯秀芳,余雪丽.基于SOAP/KQML的Web Services的知识通信研究[J].电脑开发与应用.2006.NO.4.
    [94] Daniel R. Kuokka Jim McGuire. SHADE: Knowledge-Based Technology for the Re-Engineering Problem. . http://wwwksl.stanford.edu/knowledge-sharing/papers/shadeoverview.html#ref 11.2009
    [95] Foundation For Intelligent Physical Agents, FIPA communicative act library specification,http://www.fipa.org/specs/fipa00037/SC00037J.htmli (January2007).
    [96] Michal Laclavík. Ontology and Agent based Approach for Knowledge Management. Doctor Thesis. Institute of Informatics, Slovak Academy of Sciences.June 2005.
    [97] AGENTOWL: SEMANTIC KNOWLEDGE MODEL AND AGENT ARCHITECTURE. Computing and Informatics, Vol. 25, 2006, 419–437.
    [98] S. Willmott, F. O. Fern′andez Pe?na, C. Merida Campos, I. Constantinescu, J. Dale, and D. Cabanillas. Adapting agent communication languages for semantic web service intercommunication.In The 2005 IEEE/WIC/ACM International Con-ference on Web Intelligence (WI’05), Compigne, France, pages 405–408. IEEE Computer Society.
    [99]白岩,刘大有.一种Agent通信中逻辑意外信息转换方法.计算机研究与发展[J].44(3): 427~433, 2007.
    [100]白岩,刘大有,刘杰.一种移动Agent通信中本体信息调整方法.吉林大学学报(工学版)[J] 2007 37(5) .
    [101] Juan Ignacio Vazquez and Diego López de Ipi?a. mRDP: An HTTP-based Lightweight Semantic Discovery Protocol. The International Journal of Computer and Telecommunications Networking. 2007.
    [102] Felix Fischer and Michael Rovatsos. Reasoning about communication: A practical approach based on empirical semantics. In Proceedings of the 8th International Workshop on Cooperative Information Agents (CIA-04), volume 3191 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2004.
    [103] Jesu′s Bermu′dez etc. interoperation among agent-based information systems through a communication acts otology. Information systems 32 (2007)1121-1144.
    [104] Darina Dicheva, Lora Aroyo. A Minimalist Approach to Support Ontology-driven Educational Information Systems Communication. International Workshop on Applications of Semantic Web Technologies for E-Learning (SW-EL). 2004.
    [105]林永峰.语义网路上代理人沟通机制研究[D].台湾:国立中央大学,2007.
    [106]王莉,刘丽青.内容感知的本体知识通信协议研究[J].计算机应用与软件. 2009
    [107]王秀玲,王莉,冯秀芳,余雪丽.基于本体的语义Web服务调用协议SOAP的研究.中国人工智能学会第2届全国学术年会, 2005:1, 482-487.
    [108] Michal Laclavik, Marian Babik, Zoltan Balogh, Emil Gatial, Ladislav Hluchy: Semantic Knowledge Model and Architecture for Agents in Discrete Environments; In: Frontiers in Artificial Intelligence and Applications, Vol 141, 2006. Proc. of ECAI 2006 Conference, G.Brewka et al.(Eds.), IOS Press, pp.727-728. ISBN 1-58603-642-4 ISSN 0922-6389 2006.
    [109] S. Willmott, J. Dale, P. Charlton, Agent communication semantics for open environments, foundation for intelligent physical agents. http://www.fipa.org/docs/input/f-in-00066/i (January 2007).
    [110] OWL Web Ontology Language Overview http://www.w3.org/TR/owl-features/ 2004.
    [111] Katia Sycara, Seth Widoff, Matthias Klusch and Jianguo Lu. Larks: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems. Issue: Volume 5, Number 2 . June 2002 .P:173-203.
    [112] http://www.sts.tu-harburg.de/~r.f.moeller/racer/
    [113] V Nicosia, G Mangioni, V Carchiolo and M Malgeri .Extending the definition of modularity to directed graphs with overlapping communities .Journal of Statistical Mechanics: Theory and ExperimentVolume 2009, March 2009 .
    [114] Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks. In:PKDD 2007. LNAI, vol. 4702, pp. 91--102. Springer, Heidelberg (2007).
    [115] G. Flake, S. Lawrence, and C. Giles. Efficient identification of web communities. In Proc. of the 6th ACM SIGKDD Conference, 2000.
    [116] W. W. Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33:452--473, 1977.
    [117] Fred, A.L.N., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 128--133. IEEE Press, New York (2003).
    [118] Huawei Shen, Xueqi Cheng, Kai Cai, Mao-Bin Huc Detect overlapping and hierarchical community structure in networks. Physica A 388 (2009) 1706-1712.
    [119] Clara Pizzuti overlapped community detection in complex network. Genetic And Evolutionary Computation Conference .Proceedings of the 11th Annual conference on Genetic and evolutionary computation . Canada Pages: 859-866.
    [120] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Proc. of the 12th ACM SIGKDD Conference, 2006.
    [121] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness. In Proc. of the 13th ACM SIGKDD Conference, 2007.
    [122] Lei Tang,Huan Liu,Jianping Zhang,Zohreh Nazeri.Community evolution in dynamic multi-mode networks。Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining Las Vegas, Nevada, USA Pages 677-685,2008 .
    [123] Yu-Ru Lin and Yun Chi and Shenghuo Zhu and Hari Sundaram and Belle L. Tseng. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: WWW '08: Proceeding of the 17th international conference on World Wide WebNew York, NY, USA: ACM (2008) , p. 685-694.
    [124] Chayant Tantipathananandh, Tanya Berger-Wolf, and David KempeA Framework For Community Identification in Dynamic Social Networks. KDD2007,august,California,USA,p717-726.
    [125] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins .On the bursty evolution of blogspace. In Proc. of the 12th WWW Conference, 2003.
    [126] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proc. of the 11th ACM SIGKDD Conference, 2005.
    [127] Qiankun Zhao, Sourav S. Bhowmick,Xin Zheng,Kai Y.Characterizing and predicting community members from evolutionary and heterogeneous networks. Proceeding of the 17th ACM conference on Information and knowledge management .Napa Valley, California, USA : Pages 309-318,2008 .
    [128] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying social group evolution. Nature, 446, 2007.
    [129] M. Toyoda and M. Kitsuregawa. Extracting evolution of web communities from a series of web archives. In HYPERTEXT’03: Proc. of the 14th ACM conference on hypertext and hypermedia, 2003.
    [130] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic: modeling and monitoring cluster transitions. In Proc. of the 12th ACM SIGKDD Conference, 2006.
    [131] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In Proc.of the 13th ACM SIGKDD Conference, 2007.
    [132] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. GraphScope: parameter-free mining of large time-evolving graphs. In Proc. of the 13th ACM SIGKDD Conference, 2007.
    [133] Q. Mei and C. Zhai. Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In Proc. of the 11th ACM SIGKDD Conference, 2005.
    [134] J. Leskovec, J. Kleinberg, and C. Faloutos. Graphs over time: Desification laws, shrinking diameters and possible explanations. In SIGKDD, 2005.
    [135] J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney.Statistical properties ofcommunity structure in large social and information networks. In ACM WWW, 2008.
    [136] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In SIGKDD, 2006.
    [137] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou. Mining and visualizing the evolution of subgroups in social networks. In IEEE/WIC/ACM WI, 2006.
    [138] P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models. SIGKDD Explor.Newsl., 7(2), 2005.
    [139] Jure Leskovec, Lars Backstrom, Ravi Kumar, Andrew Tomkins. Microscopic Evolution of Social Networks. KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
    [140] http://www.cdblp.cn/index.php
    [141] http://www.personal.ceu.hu/staff/Balazs_Vedres/netclass.htm.
    [142] Crespo A, Garcia-Molina H (2002) Routing indices for peer-to-peer systems. Proceedings of the 22nd international conference on distributed computing systems.(ICDCS’02), IEEE Computer Society, Washington, DC, USA, p 23.
    [143] E. Michlmayr, Ant algorithms for search in unstructured peer-to-peer networks, in: Proceedings of the Ph.D. Workshop, 22nd International Conference on Data Engineering (ICDE2006), April 2006.
    [144] B Krishnamurthy, J Wang, Y Xie. Early measurements of a cluster-based architecture for P2P systems. Proceedings of the 1st ACM SIGCOMM Workshop on Internet measurement 2001.
    [145] Tang C, Xu Z, Dwarkadas S .Peer-to-peer information retrieval using self-organizing semantic overlay networks. Technical report, HP Labs. citeseer. ist.psu.edu/tang03peertopeer.html(2002).
    [146] J. X. Parreira, S. Michel, and G. Weikum. P2PDating:Real life inspired semantic overlay networks for web search. Information processing and management (2006), doi:10.1016/j.ipm.2006.09.007.
    [147] Aberer K, Cudr′e-Mauroux P, Hauswirth M, Pelt TV (2004) Gridvine: building internets cale semantic overlay networks. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) Proceedings 3rd international semantic web conference (ISWC2004),vol. 3298 of lecture notes in computer science. Springer, Hiroshima, Japan, pp 107–121.
    [148] S. Castano and S. Montanelli. Semantic self-formation of communities of peers. In Proceedings of the ESWC Workshop on Ontologies in Peer-to-Peer Communities, Heraklion, Greece, May 2005.
    [149] M. Schwartz. A Scalable, Non-Hierarchical Resource Discovery Mechanism Based on Probabilistic Protocols. Technical Report .CU-CS-474-90, University of Colorado, 1990.
    [150] Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M, Brunkhorst I, L¨oser A (2003) Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In: Proceedings of the 12th international world wide web conference, Budapest, Hungary, citeseer.nj.nec.com/nejdl02superpeerbased.html.
    [151] Koskela T., Kassinen O., Korhonen J., Ou Z. & Ylianttila M. (2008) Peer-to-Peer Community Management using Structured Overlay Networks. In: Proc. International Conference on Mobile Technology, Applications and Systems, pp. 1–6.
    [152] eter Haase·Ronny Siebes·Frank van Harmelen. Expertise-based peer selection in Peer-to-Peer networks. Knowledge and Information Systems(2008) 15: 75–107.
    [153] L Wang, G Hu, L Liu .Research on P2P Semantic Community of Interest and Trust Evaluation.- Advanced Computer Theory and Engineering, 2008. ICACTE'08 .p308-312 .
    [154] Ami Eyal, Avigdor Gal.Self Organizing Semantic Topologies in P2P Data Integration Systems. http://ie.technion.ac.il/tech_reports/1182766909_amiThesis.pdf 2007.
    [155] Chunqiang Tang,Zhichen Xu,Sandhya Dwarkadas. Peer-to-Peer Information Retrieval Using Self-Organizing Semantic Overlay Networks. Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. Pages: 175-186.
    [156] C. Prehofer, C. Bettstetter, Self-Organization in Communication Networks: Principles and Paradigms, IEEE Communication Magazine, vol. 43 no 7, July 2005.
    [157] Alessandro Linari,Gerhard Weikum.Efficient Peer-to-Peer Semantic Overlay Networksbased on Statistical Language Models. P2PIR’06, November 11, 2006, Arlington, Virginia, USA. P9-17.
    [158] Tathagata Das, Subrata Nandi, Niloy Ganguly: Community based search on power law networks. COMSWARE 2008:p 279-282.
    [159] Vicent Cholvi,Pascal Felber,Ernst Biersack. Efficient Search in Unstructured Peer-to-Peer Networks. SPAA’04, June 27–30, 2004, Barcelona, Spain. ACM 1-58113-840-7/04/0006. P271-272 .
    [160] Wilma Penzo , Stefano Lodi , Federica Mandreoli , Riccardo Martoglia , Simona Sassatelli. Semantic peer, here are the neighbors you want! Proceedings of the 11th international conference on Extending database technology: Advances in database technology, March 25-29, 2008, Nantes, France.
    [161] Wang Y, Vassileva J. Trust-Based community formation in peer-to-peer file sharing networks, In: Proc. of the IEEE/ WIC/ACM Int’l Conf. on Web Intelligence (WI 2004). New York: IEEE Press, 2004. 341?348.
    [162] Recommendation Based Discovery of Dynamic Virtual Communities M Papagelis, D Plexousakis - CAiSE Short Paper Proceedings, 2003 - csd.uoc.gr
    [163] de Vel, O. and S. Nesbitt,“A Collaborative Filtering Agent System for Dynamic Virtual Communities on the Web,”Working notes of Learning from Text and the Web, Conference on Automated Learning and Discovery CONALD-98, Carnegie Mellon University, Pittsburgh, 1998.
    [164] M.Yang, Y. Dai and X. Li,“Bring Reputation System to Social Network in the Maze P2P File-Sharing System”, The IEEE 2006 International Symposium on Collaborative Technologies and Systems (CTS 2006), May 14-17, 2006, Las Vegas, USA.
    [165] Yung-Ming Li, Chien-Pang Kao. TREPPS: A Trust-based Recommender System for PeerProduction Services. Expert Systems with Applications 36 (2009) 3263–3277.
    [166] Kamvar S. D., Schlosser M. T. and Garcia-Molina H., The EigenTrust Algorithm for Reputation Management in P2P Networks,. WWW2003, May 20–24, 2003.
    [167] Zo¨e Abrams and Robert McGrew and Serge Plotkin Zo? Abrams , Robert McGrew , Serge Plotkin, A non-manipulable trust system based on EigenTrust, ACM SIGecom Exchanges, v.5 n.4, p.21-30, July, 2005.
    [168] Zhengqiang Liang , Weisong Shi .Enforcing Cooperative Resource Sharing in Untrusted P2P Computing Environments. Mobile Networks and Applications. Volume 10, Number 6 / 2005/12.p971-983.
    [169] C.Buragohain,D.Agrawal,S.Suri.A game theoretic framework for incentives in P2P sysytems,In:Pro.3rd Int’1 Conf.Peer-to-Peer Computing.Los Alamitos, CA:IEEE Computer Society Press,2003.
    [170] Qixiang Sun , Hector Garcia-Molina .SLIC: A Selfish Link-based Incentive Mechanism for Unstructured Peer-to-Peer Networks. Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04).
    [171] Jason J. Jung. Trustworthy knowledge diffusion model based on risk discovery on peer-to-peer networks. Expert Systems with Applications 36 (2009) 7123–7128.
    [172] C. Prehofer, C. Bettstetter,“Self-Organization in Communication Networks: Principles and Paradigms”, IEEE Communication Magazine, vol. 43 no 7, July 2005.
    [173] E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. Towards a theory of self-organization. In Proc. of OPODIS 2005, 2005. Also published in the technical report 1694, IRISA.
    [174] http://vlado.fmf.uni-lj.si/pub/networks/pajek/
    [175] J.R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge University Press, New York ,1969.
    [176] K. Bach, R.M. Harnish, Linguistic Communication and Speech Acts, MIT Press, Cambridge, MA, 1979.
    [177] http://jade.tilab.com,2010-03-29.
    [178] http://protege.stanford.edu/,2010-03-29.
    [179] http://jena.sourceforge.net/,2010-03-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700