凸曲面硬质合金插齿刀制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
插齿是齿轮加工的重要方法,新构形凸曲前刀面插齿刀的应用可有效提高刀具的使用寿命及齿轮的加工精度,本文对凸曲前刀面插齿刀的精密制造技术进行了研究,设计研制了专用的磨削机床,并进行了插齿刀凸曲面磨削加工实验及插齿实验。
     文中运用空间曲面族的包络理论对插齿刀前刀面的构形进行了分析,对插齿刀前刀面的数学模型进行了分析,建立了插齿刀凸曲前刀面加工坐标系。根据插齿刀的构形特点,设计了验证插齿刀凸曲前刀面加工方法实验方案,通过两种针对不同材料、不同工艺参数的切削实验,结果表明三轴伺服控制、其中两轴联动控制的机床能够满足加工需求。在验证实验结果的基础上,设计了插齿刀凸曲前刀面加工机床的总体方案,对各组成部分进行了详细设计,对砂轮轴在水平面内的转角设计了专门的机械结构加以调整。采用有限元方法对整机的模态进行了分析,并根据分析结果对机床结构中的薄弱环节进行了完善,装配后的机床进行了各轴定位精度、重复定位精度、各轴之间的位置精度及主轴回转跳动精度的检测,检测结果表明机床的精度能够满足加工需求。
     采用实验分析方法对凸曲面加工机床的主轴及砂轮轴进行了模态测试,实验运用瞬态分析方法,采用力锤激励,通过对砂轮轴及主轴进行激励测量,得出了力锤激励信号及加速度响应信号,并进行了传函分析,根据传函分析的结果,进行了模态分析和拟合,得到了主轴及砂轮轴的模态参数。
     针对插齿刀自身的结构特点及所设计机床的结构,设计了插齿刀磨削加工砂轮初始位置检测方法,采用激光传感器设计开发了对刀装置,通过对刀装置的使用,结合机床数控系统伺服主轴的角度控制,实现插齿刀磨削加工砂轮初始位置的精确定位,提高了插齿刀凸曲前刀面的制造精度。在DELPHI开发平台上,设计开发了用于插齿刀凸曲前刀面加工的NC程序自动生成系统。
     通过设置不同的磨削工艺参数,对插齿刀凸曲前刀面进行了加工实验,得到了磨削参数对表面粗糙度的影响规律,结果表明砂轮转速为4500r/min、磨削进给速度在10mm/min~15mm/min范围区间时,能得到较理想的表面质量。应用磨削后的插齿刀进行了齿轮插齿实验,实验结果表明插齿刀具有较高的构形精度及较好的抗崩刃和抗磨损能力。
Gear shaping is an important method for gear manufacturing, the use of pinion cutter with new profile of convex curved rake face can increase the tool life and manufacturing precision.In this paper, the precision manufacturing of pinion cutter with convex curved rake face was researched.The special machine tool was developed and the experiment was done.
     In this paper, the new profile of rake face of pinion cutter was analyzed using the envelope theory of the family of space surfaces, this paper demonstrated the mathematical model of the rake face and established the manufacturing coordinate system.According to the configuration of pinion cutter,designed the experimental scheme to verify manufacturing method of convex curved rake face of pinion cutter,through two kinds of experiment with different materials and process parameters, the result shows that the machine with three servo axis(two linked) can meet the machining demands, based on the experiment,the general scheme of the machine was designed, the parts of the machine was designed in detail,the wheel axis rotation could be controlled and adjusted by designed machinery structure, the machine mode analysis was done by using FEM.The reinforcement treatment of the weakness of the machine structure was done according to the analyzed results.The positioning accuracy, repetitive positioning accuracy and spindle run-out error was tested for the machine, the test results show that the machine could satisfy the machining demands.
     The mode test for the spindle and grinding wheel axis was done by using experiment analysis method.The method of force-hammer excitation was adopted to finish transient analysis, throuth the measurement of the excitation, the excitation signal of force-hammer and acceleration response was got, then the analysis of transfer function was done. According to the analysis results,the mode analysis and fitting was done, so obtained the mode parameters of spindle and grinding whell axis.
     According to the pinion cutter characteristic and machine structure,the method to test original position of grinding wheel was designed.The tool setting device was developed by using laser sensor, combination with servo control about the degree of spindle.the original position of the grinding wheel was precisely located,it could improve the manufacturing precision of pinion cutter.The NC code creation system was designed and developed under the DELPHI development platform.
     The manufacturing experiment was done with different grinding process parameters.the relation curve between surface roughness and gringding parameters was obtained,in order to get better surface quality,the ideal values of rotational speed and grinding federate should be4500r/min and10~15mm/min. Gear shaping experiment was done by using the manufactured pinion cutter.The experiment results show that the pinion cutter was manufactured with higher shaping precision and ability of breakage resistance and wear resistance.
引文
[1]乐美豪.我国齿轮制造业的发展、现状及展望(下)[J].制造技术与机床,2000(12):7-9.
    [2]齿轮手册编委会.齿轮手册(上、下)[M].北京:机械工业出版社,1990.
    [3]托玛索.波诺瓦朵.插齿应用与插齿刀的加工[J].工具技术,2006,40(10):88-89.
    [4]凌四营,宋润州,王庆男等.插齿刀齿形角修正算法与精度探讨[J].机械设计与制造,2011(01):164-166.
    [5]王嫦娟,曹明通.插齿刀理论误差分析与齿形角修正公式的推导[J].机械制造,2002,40(457):40-41.
    [6]曹明通,王嫦娟,魏军英.正前角插齿刀刃形误差分析及修正计算[J].机械工程师,2003(08):42-43.
    [7]任昭蓉.插齿刀前后角对齿形误差的影响分析[J].工具技术,2004,38(11):66-67.
    [8]李占海.插齿刀前角、后角对刀具寿命及齿形误差的影响[J].机械工人(冷加工),2007(09):39.
    [9]李良才.插齿刀前角对刀具耐用度及齿形误差的影响[J].工具技术,2002,36(08):49-50.
    [10]樊忠和.硬质合金插齿刀的结构设计[J].新技术新工艺,2002(03):11-13.
    [11]李铬.修正齿侧面提高插齿刀精度的研究[J].煤矿机电,2006(04):22-25.
    [12]朱小亮.插齿刀的齿高设计[J].工具技术,2006,40(08):85-87.
    [12]徐绍华.渐开线直齿内齿轮插齿刀主要参数的优化设计[J].工具技术,2003,37(02):30-32.
    [13]邵明,周玉山,汪志峰.插齿刀齿形数值模拟新算法及计算软件的开发[J].现代制造工程,2002(09):69-70.
    [15]刘菊东.外插齿刀设计可行性的快速判别与计算[J].工具技术,2002,36(03):29-31.
    [16]史国权,李占国,高连柱等.锥基波形前刀面硬齿面插齿刀构形方法与构形理论的研究[J].机械工程学报,2002,38(08):110-114.
    [17]张文涛,史国权.新构形硬质合金插齿刀切削刃几何角度分析[J].工具技术,2005,39(06):53-55.
    [18]张文涛.硬齿面刮削插齿刀构形方法与刀具的研究[D].长春:长春理工大学,2004.
    [19]石广丰.凸曲前刀面硬质合金插齿刀实体建模及其有限元分析[D].长春:长春理工大学,2007.
    [20]张文涛,史国权,李占国.新构形硬质合金插齿刀的设计模型[J].工具技术,2005,39(04):43-45.
    [21]石广丰,史国权,宋林森等.凸曲前刀面插齿刀AutoCAD二次开发[J].工具技术,2010,44(06):33-35.
    [22]陈超,史国权,石广丰等.凸曲前刀面插齿刀插齿工艺参数影响规律研究[J].工具技术,2011,45(05):37-40.
    [23]陆永贵,史国权.凸曲前刀面硬质合金插齿刀齿形精度分析[J].工具技术,2005,39(08):53-56.
    [24]李柏民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [25]李仁旺.变压力模态砂带磨削计算机模拟研究[J].磨床与磨削,1998(1):32-33.
    [26]邵水军,闫勇刚.磨削加工技术的现状与进展[J].科技信息,2011(12):138-140.
    [27]赵宁,刘常青.关于面齿轮磨削加工机床的研究[J].机械设计与制造,2007(10):151-152.
    [28]杨贵连.硬质合金球面圆弧磨削加工装置研究[J].硬质合金,2001,18(03):3-4.
    [29]陈琦,崔瑞明.磨削加工精度分析及提高方法[J].金属加工(冷加工),2011(10):50-52.
    [30]Trung Thanh Pham, Sung Lim Ko.A manufacturing model of an end mill using a five-axis CNC grinding machine[J]. The International Journal of Advanced Manufacturing Technology,2010(05):461-472.
    [31]Fang Chen, Hongzan Bin.A novel CNC grinding method for the rake face of a taper ball-end mill with a CBN spherical grinding wheel[J]. The International Journal of Advanced Manufacturing Technology,2008(09):846-857.
    [32]Ji Huan.Weimin Ma.Method for graphically evaluating the workpiece's contour error in non-circular grinding process[J]. The International Journal of Advanced Manufacturing Technology,2009(01):117-121.
    [33]Jone-Ming Hsieh,Ying-Chien Tsai.Geometric modeling and grinder design for toroid-cone shaped cutters[J]. The International Journal of Advanced Manufacturing Technology,2006(09):912-921.
    [34]Jone-Ming Hsieh. Manufacturing models for design and NC grinding of truncated-cone ball-end cutters[J]. The International Journal of Advanced Manufacturing Technology,2008(11):1124-1135.
    [35]Bing Du, Hongwei Zhang, Yongxiang Jiang. Fault diagnosis of cylindrical grinding machine[J]. Transactions of Tianjin University.2010.16(01):40-44.
    [36]李伯民,赵波.实用磨削技术[M].北京:机械工业出版杜,1996.
    [37]C. H. Liu,A. Chen,Y.-T. Wang,C.-C. A. Chen. Modelling and simulation of an automatic grinding system using a hand grinder[J]. The International Journal of Advanced Manufacturing Technology.2004(11):874-881.
    [38]H.K. Tonshoff.R.Telle and P.Roth. Chip Formmation and Material Removal in Grinding of Ceramics.4th Int.Grinding Conf[J].SME Technical Paper MR90-539,1990.
    [39]Zhao Bo.Jiao Feng,Liu Chuanshao.Research on complex ultrasonic honing acoustics system by statistical energy analysis[J].Key engineering material,2001(202-203):253-259.
    [40]Zhao Bo etc.Surface characteristics of ultrasonic ductile honing construction Ceramics with coarse grits[J]. Journal of materials processing technology,2001(246):48-55.
    [41]Komson Jirapattarasilp,Jittra Rukijkanpanich.The experiment of high-speed grinding of a gemstone:cubic zirconia[J]. The International Journal of Advanced Manufacturing Technology,2006(11):1136-1142.
    [42]M. J. Jackson,B.Mills,M. P. Hitchiner. Controlled wear of vitrified abrasive materials for precision grinding applications[J]. Sadhana,2003(05):897-914.
    [43]Dr X. Feng,B.Hongzon. CNC Rake Grinding for a Taper Ball-End Mill with a Torus-Shaped Grinding Wheel[J]. International Journal of Advanced Manufacturing Technology,2003(08):549-555.
    [44]Xincheng Tian, J. P. Huissoon, Qing Xu, Bo Peng. Dimensional error analysis and its intelligent pre-compensation in cnc grinding[J]. The International Journal of Advanced Manufacturing Technology,2007(01):28-33.
    [45]周志雄等.磨削技术的发展及关键技术[J].中国机械工程,2000,11(1-2):186-189.
    [46]陈勇平,唐进元.磨削加工过程建模的研究进展[J].制造技术与机床,2007(01):44-48.
    [47]蔡光起,赵恒华,高兴军.高速高效磨削加工及其关键技术[J].制造技术与机床,2004(11):42-45.
    [48]蔡美富,陈玮.高精数控磨床砂轮的选择[J].精密制造与自动化,2011(03):60.
    [49]吕长飞,李郝林.外圆纵向磨削力和磨削功率模型研究[J].现代制造工程,2011(12):72-75.
    [50]翁泽宇,丁红钢,郭明飞等.平面磨削颤振试验研究[J].机械强度,2006,28(01):25-28.
    [51]黄松伟,刘菊东.磨削用量对磨削淬硬加工中磨削力的影响[J].工具技术,2011,45(08):75-77.
    [52]仇健,巩亚东,刘月明等.超高速点磨削砂轮的结构优化设计与制备[J].中国机械工程,2009,20(24):2922-2927.
    [53]张建华,葛培琪,张磊.基于概率统计的磨削力研究[J].中国机械工程,2007,18(20):2399-2402.
    [54]李长河.高速和超高速磨削加工及其关键技术[J].现代零部件,2005(09):36-40.
    [55]冯薇.精密与超精密磨削的发展现状[J].精密制造与自动化,2009(02):53-56.
    [56]赵永强,侯红玲,李志峰等.恒速磨削的实现方法与机床设计[J].机床与液压,2010,38(06):7-9.
    [57]高兴军,赵恒华.超精密磨削机理及磨削砂轮选择的研究[J].机械制造,2004,42(484):43-45.
    [58]戴娟,胡冠昱,高全芹.外圆磨磨削工艺参数的优化设计[J].机械设计与制造,2008(08):131-132.
    [59]曲贵龙.磨削加工技术的发展趋势[J].磨床与磨削,2000(04):55-58.
    [60]Xiaofu ZHANG,Anxian LU, Yu WANG. New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts[J].Journal of Materials Science & Technology,2007,23(05):672-676.
    [61]Seongsoo Kim, Woo Sik Choi.Analysis of ball movement for research of grinding mechanism of a stirred ball mill with 3D discrete element method[J]. Korean Journal of Chemical Engineering,2008(03):585-592.
    [62]Jing Wei,Guanghui. Zhang. A precision grinding method for screw rotors using CBN grinding wheel[J]. The International Journal of Advanced Manufacturing Technology,2009(05):495-503.
    [63]张文涛.高精度、长寿命硬齿面插齿刀构形原理及精密插齿技术研究[D].长春:长春理工大学,2010.
    [64]冯德坤,马香峰.包络原理及其在机械方面的应用[M].北京:冶金工业出版社,1994.
    [65]张文涛,史国权,李占国.异形凸曲前刀面硬质合金插齿刀设计模型的研究[J].机械传动,2005,29(02):5-7.
    [66]张文涛,史国权.异形凸曲前刀面硬质合金插齿刀构形误差分析与仿真[J].机械传动,2005,29(05):69-71.
    [67]马霄,王伟.提高直齿插齿刀构形精度的刃磨工艺方案研究[J].工具技术,2008,42(12):47-49.
    [68]王庆男.高精度插齿刀磨齿机减振与插齿实验研究[D].大连:大连理工大学,2010.
    [69]蔡俊霞.插齿刀的齿形制造新工艺[J].机械与电子,2008(09):79-80.
    [70]李占国,王彤宇,史国权等.磨削硬齿面插齿刀波形前刀面用凸轮设计、制造方法[J].兵工学报,2005,26(01);118-120.
    [71]Xueguang LI,Guoquan SHI,Shuren ZHANG etal. Experimental Research on Machining Process for Convex Curved Rake Face of Pinion Cutter[J]. Applied Mechanics and Materials,2011(80-81):495-500.
    [72]Xueguang LI, Shuren ZHANG, Guoquan SHI etal. Development of Processing Machine for Convex Curved Rake Face of Pinion Cutter[J]. Applied Mechanics and Materials,2011 (121-126):1614-1619.
    [73]李学光,张树仁,史国权等.插齿刀凸曲前刀面磨削方法研究[J].中国机械工程,2011,22(21):2551-2554,2608.
    [74]赵中敏.可重构机床模块化设计技术研究[J].精密制造与自动化,2007(04):23-25.
    [75]姜晓微.数控机床的造型设计研究[D].长春:吉林大学,2007.
    [76]杨巍巍.基于绿色设计思想的现代数控机床设计[J].今日科苑,2008(24):82-83.
    [77]隋秀凛,高安邦.实用机床设计手册[M].北京:机械工业出版社,2010.
    [78]洪光辉.数控磨床砂轮修整机构的优化改造设计[J].机械工程师,2003(04):80-82.
    [79]战丽娜.一种数控磨床床身的建模与分析[J].科技资讯,2011(10):92-94.
    [80]高清冉,孙海燕,李海洪等.基于虚拟样机的机床设计与仿真研究[J].机械设计,2009,26(07):16-19.
    [81]龙宇.平面二次包络环面蜗杆数控磨床的开发及磨削研究[D].成都:西华大学,2007.
    [82]李祥,穆星宇.数控机床设计中滚珠丝杠副的选用与校核[J].机械工程师,2009(03):147-148.
    [83]赵永强,侯红玲,李志峰等.恒速磨削的实现方法与机床设计[J].机床与液压,2010,38(06):7-9.
    [84]刘兴亮.加工弧面凸轮专用数控磨床的结构研究[J].机床与液压,2009,37(05):62-65.
    [85]刘战术.高精度数控磨床进给系统与伺服控制系统设计[J].组合机床与自动化加工技术,2009(05):68-71.
    [86]赵庆荣.MD215A型内圆磨床设计方案[J].机械设计与制造,2008(08):10-11.
    [87]李朝强,王春生,李素娟.基于模糊控制技术的数控机床设计[J].装备制造技术,2009(09):47-48.
    [88]张金莲,汪雪英.模块化设计在磨床设计中的应用[J].精密制造与自动化,2007(02):27-29.
    [89]杨春强,黄云,黄智等.基于参数化的砂带磨床模块化设计方法研究[J].工具技术,2010,44(09):54-56.
    [90]郭春星,丁晓红,郭媛美等.磨床床身结构优化设计[J].机械设计与研究,2009,25(05):104-107.
    [91]张华,郭明飞.基于ANSYS的平面磨床床身结构优化设计[J].现代制造工程,2007(08):50-51.
    [92]沙杰,蔡干,曹志中.中小孔磨削高精度内圆磨床设计[J].制造技术与机床,2005(02):29-31.
    [93]KND-1000T车用数控系统用户手册,2008.
    [94]胡昌军,汪列隆.基于ANSYS机床主轴箱的优化设计[J].机械,2007,34(09):61-62.
    [95]杨明亚,杨涛,汤本金等ANSYS在数控机床模态分析中的应用[J].中国制造业信息化,2006,35(17):40-43.
    [96]Won-Hong Lee,Sung-Cheon Han. Free and forced vibration analysis of laminated composite plates and shells using a 9-node assumed strain shell element[J]. Computational Mechanics,2006(01):41-58.
    [97]Usik Lee,Joonkeun Lee. Vibration analysis of the plates subject to distributed dynamic loads by using spectral element method[J]. KSME International Journal,1998(04):565-571.
    [98]Farzad Ebrahimi,Abbas Rastgoo.FSDPT based study for vibration analysis of piezoelectric coupled annular FGM plate[J]. Journal of Mechanical Science and Technology,2010(08):2157-2168.
    [99]Ha Seong Lim, Hong Hee Yoo. Modal analysis of a multi-blade system undergoing rotational motion[J]. Journal of Mechanical Science and Technology,2010(08):2051-2058.
    [100]Jui Pin Hung.Load effect on the vibration characteristics of a stage with rolling guides[J]. Journal of Mechanical Science and Technology,2009(01):89-99.
    [101]陈立群,吴哲民.多自由度非线性振动分析的平均法[J].振动与冲击,2002,31(03):63-64.
    [102]贾莹.深孔拉镗镗杆振动分析与优化设计[D].兰州:兰州理工大学,2010.
    [103]薛如韦.机床切削时的振动分析[J].金属加工(冷加工),2009(08):44-45.
    [104]靳伍银,王安,剡昌锋.机床基础振动的动力学特性[J].兰州理工大学学报,2008,34(01):37-39.
    [105]韩兴瑞.机床切削振动的结构动力学模型的探讨[J].机床与液压,2003(04):161-163.
    [106]师汉民,谌刚,吴雅.机械振动系统-分析测试建模对策(上册)[M].武汉:华中科技大学出版社,2001.
    [107]唐远强,舒大文,赖兴华ANSYS在梁-板壳结构随机振动分析中的应用[J].新技术新工艺,2009(12):39-42.
    [108]刘士华,赵德胜,谭天水等ANSYS在钢架结构随机振动分析中的应用[J].机械工程,2004,31(04):54-56.
    [109]高志刚,刘泽明,李娜.复杂模型的ANSYS有限元网格划分研究[J].机械工程与自动化,2006(03):41-43.
    [110]龚肖新,卢强,席晨飞等.基于ANSYS Workbench的球面磨床磨头结构设计方案分析[J].组合机床与自动化加工技术,2012(02):98-101.
    [111]廖伯瑜,周新民,尹志宏等.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [112]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [113]李友.数控机床床身系统动态特性分析[D].长春:长春理工大学,2010.
    [114]方珠芳.MGK7350平面磨床的试验模态分析与磨头部件的结构改进[D].杭州:浙江工业大学,2010.
    [115]郑金兴,张铭钧,孟庆鑫.试验模态技术在机床结构动态特性研究中的应用[J].测控技术,2007,26(12):28-31.
    [116]雷宇晓.平面磨床有限元分析与优化[D].南宁:广西大学,2006.
    [117]钱学毅,周欣明,吴双.机床主轴系统的振动特性分析[J].机床与液压,2009,37(5):38-41.
    [118]常家东.加工中心对刀仪器研制[J].机床与液压,2005(08):32-33.
    [119]梁猛,张伟,彭彦平等.刀具几何参数激光测量仪的开发[J].工具技术,2006,40(05):63-66.
    [120]耿国强.非接触式找正仪的研制[J].河南纺织高等专科学校学报,2007,19(03):18-23.
    [121]张晓勇.数控机床与对刀装置[J].机床电器,2001,(02):14-15.
    [122]张秀萍.数控机床的对刀原理及常用的对刀方法[J].机械制造与自动化,2010(04):73-75.
    [123]周志平,陈勇.数控机床的对刀原理及在加工中的对刀技巧[J].机械制造,2009,47(538):36-39.
    [124]常家东,赵尊群.立式加工中心用对刀装置[J].煤矿机械,2004(09):78-79.
    [125]刘浏.立式加工中心用简易对刀方法[J].现代制造工程,2002(05):56.
    [126]董晓武.用于检测的灵敏激光传感器[J].橡胶参考资料,2007,37(01):44-46.
    [127]叶俊.数控车床光电式简易对刀装置[J].广西轻工业,2008(01):58-59.
    [128]闫军.传输时间激光测距传感器[J]传感器世界,2002(08):22-23.
    [129]陆卫东,沈勇,吴健.激光对中仪的原理及应用[J].机械制造与自动化,2006,35(03):137-142.
    [130]乔勇惠.光电传感器原理及应用[J].可编程控制器与工厂自动化,2008(05):103-107.
    [131]谢向花.光电传感器检测技术研究[J].中国科技信息,2005(07):7-15.
    [132]张亮.基于拍频解调技术的双波长光纤激光传感器[D].南京:南京大学,2011.
    [133]宋永刚,郝飞,王海鸣.激光传感器在工程机械中的应用[J].建筑机械,2007(17):62-68.
    [134]王俊元,刘刚.刀具几何参数光学测量系统设计与分析[J].测试技术学报,2007,21(06):510-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700