高压弹流油膜界面滑移特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的目的是研究高压弹流润滑油膜界面滑移特性。
     固/液界面边界条件对液体流动的理论分析有重要影响。基于宏观实验证据,一般认为临近固体表面的流体相对于该表面是静止的,即流体流动满足无滑移边界条件。然而,随微流体力学研究的兴起、微观测量技术的发展及分子动力学模拟的进步,大量研究证实了流体与固体界面间存在相对滑动,即界面滑移边界条件的存在。
     弹性流体动压润滑(弹流润滑)是轴承与齿轮等机械零件中常见的润滑形式。弹流油膜工作过程中常承受高压力、高剪切及微间隙等苛刻工况,这使得界面滑移成为可能。事实上在大滑动条件下观察到的弹流油膜形状及摩擦特性的反常均可能与界面滑移有关,但已有的界面滑移测量技术无法探测到该类滑移,使弹流油膜界面滑移的研究陷入的困境。
     为解决上述问题,本文主要针对弹流油膜界面滑移的测量方法和特性进行了研究。巧妙地结合了光干涉技术和冲击封油技术,通过干涉条纹分析实现了润滑油膜流动的可视化。确立了对比封油核心的实际卷吸速度和名义卷吸速度来推断界面滑移的测量原理。为了进行完整、系统的研究,并比较滑移条件下和无滑移条件下润滑油的移动特性,本文从纯滚动、无滑移条件下的封油核心运动规律入手,逐层深入,首先证实了滑移的存在,然后进一步量化了滑移程度,最后进行了滑移机理分析,所得到的成果及重要结论如下:
     研究了纯滚条件下冲击封油核心的运动规律。封油核心的移动位移存在一个临界值,小于该临界值时核心以卷吸速度运动,核心油膜厚度及核心左侧油膜外形基本保持不变;超过该临界值后核心速度明显小于卷吸速度,核心油膜厚度迅速下降;卷吸速度与载荷的增加使临界位移增加,而初始封油深度和初始冲击间隙的增加导致临界位移减小;对上述实验观察结果进行了数值模拟,计算结果与实验结果吻合较好。
     针对高压弹流区缺乏界面滑移的直接证据及滑移研究中滑移发生位置的争论,实验观察了零卷吸(ZEV)和纯滑动条件下封油核心移动特性。实验结果直接显示:封油核心的运动速度与施加的名义卷吸速度之间存在明显差别,证实了滑移的存在。特别地,零卷吸条件下,封油在相同界面性质接触副内向接触区两侧拉伸,核心基本不动;而在不同界面性质的接触副内封油核心跟随单个界面向单一方向运动。表明了滑移的发生取决于界面的临界剪应力而非流体本身的极限剪应力,且滑移只能发生在一个界面上。
     实验考察了滑移行为与界面性质之间的依赖关系。结果显示滑移总是发生在表面能较低的运动表面上。即使施加在低表面能表面上的速度明显大于高表面能表面的速度,封油核心还是跟随低速高表面能表面移出接触区。在盘滑条件下,当滑移发生在玻璃试样上时,玻璃试样表面能越低封油核心运动速度越小;当滑移发生在球试样上时,玻璃试样表面能越高,封油核心运动速度越大。不同表面能界面组成的接触副对稳态膜产生了影响,所得油膜特性与冲击-卷吸实验推测相吻合。
     针对高压弹流油膜界面滑移长度无法量化且各参数对滑移影响尚不清晰的现状,定义了通用滑移长度公式,量化了滑移程度并分析了各种因素对滑移长度的影响。结果表明,多次冲击-卷吸可导致接触副的界面性质趋向同一性,从而削弱滑移长度;而压力、聚合物浓度和粘度的增加可以增大滑移长度。
     针对滑移长度与剪应变率关系的复杂性及争议性,实验得出了滑移长度随剪应变率的变化曲线。实验结果显示,滑移长度随剪应变率剪呈现出明显的非线性特性。滑移长度随剪应变率的这种变化趋势,与已有的分子动力学模拟结果类似。
     根据观察到的实验现象,讨论了滑移的产生机理,推导了一种新的滑移机理模型,并分析了模型中各参数对滑移的影响。同时根据参数取值的不同,该模型可以用来描述实验中遇见的多种滑移现象。
This project aims to study the boundary slippage of highly stressedelastohydrodynamic lubrication (EHL) films.
     The boundary condition (BC) at the solid-liquid interface is crucial in the analyses ofliquid flow. Based on lots of experiments in macroscale fluid mechanics, it is commonlyaccepted that there is no relative motion between the solid surface and the liquid layerimmediately adjacent to it, which is referred to as the no-slippage boundary conditions.However, with the rising interests in microfluidics and related devices, the developmentof measuring techniques at micro-scale and impressed progress of molecular dynamics(MD) simulations, there are more and more experimental and theoretical evidencesshowing that liquid can slip on a solid wall, which is the boundary slippage boundarycondition.
     Elastohydrodynamic lubrication (EHL) is a dominating mechanism in the lubricationof rolling bearings, gears and other components of non-confornmal contacts. EHL filmsare usually subjected to high pressures, high shear rates and confined in very small gaps,which may lead to boundary slippage. In fact some observed abnormal EHL films andfriction behaviours under large slidings could be tentatively related to boundary slippage,and unfortunately these proposed boundary slippages can not be detected at present andthe lack of testing methods obstructs the research progress in the field of boundaryslippage of EHL films.
     Therefore this study is purposely for the measuring mehod for the boundary slippageof EHL films and its characterization. By impact EHL, it has been known that somelubricant can be entrapped and a dimple shaped film is then formed. In an optial EHL testrig, such a dimple film can generate concentric circle fringes and the flow of lubricant isvisualized by these fringes and the movement of the lunbricant at the dimple core couldbe accurately traced. An approach for quantifying slippage was proposed whereby thedifference between the actual entrainment speed and the normal entrainment speed of thedimple film core was used to infer the relative sliding at the interface. To clearlyunderstand the measuring principle, studies on the dimple core transportation under pure rolling and no-slippage conditions have been carried out first. Through the dimpletransporation measurement the occurrence of boundary slippage was detected andquantified. A model has also been proposed to clarify the experimental fundings. Theresearch work completed and conclusions can be summarized as follows:
     1) Movement of the dimple core of entrapped lubricant under pure rolling conditionshas been studied. It was shown that there exits a critical displacement, below which thedimple core moves at the entrainment speed and its depth keeps unchanged. However,beyond this critical value, the movement of the dimple core slows down and its filmthickness drops sharply. Some parameters such as entrainment speed, load, initial dimpledepth and initial gap can affect the critical displacement. The increase in the entrainmentspeed and the load can give a large critical displacement and the increase in the initialdepth results in a small critical displacement. Some numerical simulations were carriedout and good agreements with experimental results were obtained.
     2) Considering the lack of direct evidence of boundary slippage in EHL films andarguments about where the slippage occurs, experiments were performed to clarify themovement of the core of the entrapped lubricant under zero entrainment velocity (ZEV)and pure sliding conditions. It is obvious that the dimple core speed is quite differentfrom the nominal entrainment speed, indicating the boundary slippage. Especially, inZEV cases, if the bounding surfaces are of the same materials, the dimple core ismotionless while both sides are elongated. However, when the two bounding surfaces aredifferent, the dimple core moves with one of the surfaces, which has more adsorption tothe lubricant. The results suggest that the occurrence of slippage is related to the criticalshear stress of the interface and it only takes place at a single surface.
     3) The dependence of boundary slippage on surface properties was experimentallyobserved. The results show that if there is slippage in EHL contacts, it always occurs atthe interface of lower surface energy. Moreover, evidence of the dimple core moving onsurfaces of high surface energy at lower speeds was obtained. Under pure glass discsliding conditions, if slippage occurs on the glass samples, the dimple core gains a lowerspeed if a glass surface of relatively lower surface energy was used. In contrast, whenslippage occurs on the steel ball surface, the glass samples with higher surface energy can enhance the movement of dimple core. The above observation can be used to explain thesteady EHL films generated by different interfaces.
     4) A general slip length formula was defined in terms of the measured dimple coremovement to quantify slippage. The results show that slippage is suppressed afterimpact-entrainment runs several times. It is demonstrated that high pressure, highpolymer concentration and high viscosity can lead to a large slip length.
     5) To clarify the debate on the dependence of slip length on the shear rate, themeasured slip lengths were compared to the corresponding shear rates. Their relationdisplays highly non-linear. Under low nominal shear rates, the slip length increases withshear rate, but approaches to a constant with further increase in shear rate. This non-linearcurve is quite similar to the observation from MD simulations.
     6) Based on the slippage phenomena observed, a new slippage model is established.The dependence of slippage on the parameters can be interpreted by this model.
引文
1. http://baike.baidu.com/view/1103798.htm
    2. Jim F. New lubrication commandments-conserve energy, protect the environment[J].Machinery Lubrication,2002.
    3. Wu C W, Ma G J, Sun H X. Viscoplastic lubrication analysis in a metal-rolling inletzone using parametric quadratic programming[J]. Trans. ASME J. Tribology,2005,127:605-610.
    4. Deen M M. Extrusion instabilities and wall slip[J]. Annu. Rev. Fluid Mech.,2001,33:265-287.
    5. Suciu C V, Iwatsubo T, Deki S. Investigation of a colloidal damper[J]. J. ColloidInterface Sci.,2003,359:62-80.
    6. Kalyon D M. Apparent slip and viscoplasticity of concentrated suspensions[J]. J.Rheol.,2005,49(3):621-640.
    7. Zhang Y L, Craster R V, Matar O K. Surfactant driven flows oberlying ahydrophobic epithelium: film rupture in the presence of slip[J]. J. Colloid InterfaceSci.,2003,264(1):62-80.
    8. Spikes H A. The half-wetted bearing. Part Ι: Extended Reynolds equation[J]. Proc.Instn Mech. Engrs, Part J: J. Engineering Tribology,2003,217:1-14.
    9. Spikes H A. The half-wetted bearing. Part Ⅱ: Potential application in low loadcontacts[J]. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology,2003,217:15-26.
    10. Wu C W, Ma G J, Zhou P. Low friction and high load support capacity of sliderbearing with a mixed slip surface[J]. Trans. ASME J. Tribology,2006,128:904-907.
    11. Gad-el-Hak M. Review: flow physics in MEMS[J]. Mecanique and Industries,2001,2:313-341.
    12. Bocquet L, Barrat J L. Flow boundary conditions from nano-to micro-scales[J]. SoftMatter,2007,3:685-693.
    13. Hatzikiriakos S G, Hong P, Ho W, Stewart C W. The efect of teflonTMcoatings inpolyethylene capillary extrusion[J]. J. Appl. Polym. Sci.,1995,55(4):595–603.
    14. Lawal A, Kalyon D M. Nonisothermal extrusion flow of viscoplastic fluids withwall slip[J]. Int. J. Heat Mass Transfer,1997,40(16):3883-3897.
    15. Chen L, Duan Y, Zhao C, Yang L. Rheological behavior and wall slip ofconcentrated coal water slurry in pipe flows[J]. Chem. Eng. Process: ProcessIntensification,2009,48(7):1241–1248.
    16. Larson R G. The Structure and Rheology of Complex Fluids[M]. Oxford UniversityPress,1999.
    17. Graham M D. Wall slip and the nonlinear dynamics of large amplitude oscillatoryshear flows[J]. J. Rheol,1995,39(4):697–712.
    18. Black W B, Graham M D. Wall-slip and polymer-melt flow instability[J]. Phy. Rev.Lett.,1996,77(5):956–959.
    19. Massey G, Durliat E, L′eger L, Hervet H. Wall slip in polymer melts[J]. J. Phys.:Condensed Matter,1997,9(37):7719–7740.
    20. Denn M M. Issues in viscoelastic fluid mechanics[J]. Annu. Rev. Fluid Mech.,1990,22:13–34.
    21. Bernoulli D. Specimen theoriae novae de mensura sortis[J]. CommentraiiAcademiae Scientiarum Imperialis Petropolitanae,1738,5:175-192.
    22. Du Buat P L G. Principes d’hycraulique[M]. Paris: L’imprimerie de Monsieur,
    1779.
    23. Coulomb C A. Mémoires de l’Institut national des sciences et des arts[J]. SciedcesMathématiques et Physiques,1980,3.
    24. Girard P S. Mémoires de la Classe des Sciences Mathématiques[J]. Physiques del’Institut de France,1815,14:329.
    25. Riche de Prony G C F M. Recherches Physico-Mathématiques sur la Théorie desEaux Courates[M]. Paris: Imp. Impériale,1804.
    26. Navier C L M H. Mémoire sur les lois du mouvement des fluids[J]. Mém l’AcadRoy Sci l’Inst France,1823,6:389-440.
    27. Heinbuch U, Fisher J. Liquid flow in pores: slip, no-slip, or multiplayer sticking[J].Phys. Rev. A,1989,40(2):1144-1146.
    28. Thompson P A, Robbins M O. Shear flow near solids: epitaxial order and flowboundary conditions[J]. Phys. Rev. A,1990,41(13):6830-6831.
    29.曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,2006,55(13):5305-5310.
    30. Villari E. Mmeorie dell’ Accademia delle Scienze dell’ Instituto di Bologna[J].1875,6:487-520.
    31. Whetham W C D. On the alleged slipping at the boundary of a liquid in motion[J].Proc. R. Soc. London,1890,48:225-230.
    32. Couette M. études sur le fronttement des liquids[J]. Annales de Chimie et dePhysique,1890,21:433-510.
    33. Ladenburg R. über der Einflu von W nden auf die Bewegung einer Kugel in einerreibenden Flüssigkeit[J]. Annalen der physik vierte Folge,1907,23:447-458.
    34. Poiseuille J L. Recherches expérimentales sur le mouvent des liquids dans les tubesde très-petits diamétres[J]. C R Acad Sci,1841,11:961-967.
    35. Darcy H. Recherches expérimentales relatives au mouvement de l’deau dans lestuyaux[J]. Paris: Mallet-Bachelier,1857.
    36. Helmholtz H, Piptrowski C. überReibung tropfbarer Flüssigkeiten[J].Sitzungsberichte der Kaiserlich Akademie der Wissenschaften (Wien),1860,40:607-657.
    37. Brodman C. Untersuchungen ueber Reibungskoeffizienten au Fluessigkeiten:[D].Goettingen.1891.
    38. Cheng J, Giordano N. Fluid flow through nanometer scale channels[J]. Phys.Rev. E:Stat. Phys., Plasmas, Fluids,2002,65(3):031206.
    39. Black D T. Slip between a liquid and a solid: D.M. Tolstoi's (1952) theoryreconsidered[J]. Colloids surf., A,1990,47:135-145.
    40. Brochard F, De Gennes P G. Shear-dependent slippage at a polymer/solidinterface[J]. Langmuir,1992,8(12):3033-3037.
    41. Migler K B, Hervet H, Leger L. Slip transition of a polymer melt under shearstress[J]. Phys. Rev. Lett.,1993,70(3):287-290.
    42. Vinogradova O. Drainage of a thin liquid film confined between hydrophobicsurfaces[J]. Langmuir,1995,11(6):2213-2220.
    43. Thompson P A, Troian S M. A general boundary condition for liquid flow at solidsurfaces[J]. Nature,1997,389:360-362.
    44. Watanabe K, Yanuar, Mizunuma H. Slip of Newtonian fluids at solid boundary[C].International Conference on Power Engineering-97,1998, vol.41(3):683-775, publ.Japan Society of Mechanical Engineers, Tokyo, Japan (1993-2006).
    45. Pit P, Hervet H, Léger L. Friction and slip of a simple liquid at a solid surface[J].Tribol Lett.,1999,7:147-152
    46. Jabbarzadeh A, Atkinson J D, Tanner R I. Wall slip in the molecular dynamicssimulation of thin films of hexadecane[J]. J. Chem. Phys.1999,110(5):2612-2620.
    47. Pit P, Hervet H, Léger L. Direct experimental evidence of slip in hexadecane: Solidinterfaces[J]. Phys. Rev. Lett.,2000,85(5):980-983.
    48. Zhu Y X, Granick S. Rate-dependent slip of Newtonian liquid at smooth surfaces[J].Phys. Rev. Lett.,2001,87(9):1-4.
    49. Craig V, Neto C, Williams D. Shear-dependent boundary slip in an aqueousNewtonian Liquid[J]. Phys. Rev. Lett.,2001,87(5):1-4.
    50. Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannelwalls[J]. Phys. fluids,2002,14(3): L9-L12.
    51. Zhu Y X, Granick S. Limits of the hydrodynamic no-slip boundary condition[J].Phys. Rev. Lett.,2002,88(10):106102.
    52. Léger L. Friction mechanisms and interfacial slip at fluid-solid interfaces[J]. J.Phys.: Condensed Matter,2003,15: S19-S29.
    53. Spikes H, Granick S. Equation for Slip of Simple Liquids at Smooth SolidSurfaces[J]. Langmuir,2003,19:5065–5071.
    54. Ou J, Perot B, Rothstein J P. Laminar drag reduction in microchannels usingultrahydrophobic surfaces[J]. Phys. fluids,2004,16(12):4635-4643.
    55. Priezjev N V, Troian S M. Molecular origin and dynamic behavior of slip in shearedpolymer films[J]. Phys. Rev. Lett.,2004,92(1):018302.
    56. Tretheway D C, Meinhart C D. A generating mechanism for apparent fluid slip inhydrophobic microchannel[J]. Phys. fluids,2004,16(5):1509-1515.
    57. Joseph P, Tabeling P. Direct measurement of the apparent slip length[J]. Phys. Rev.E,2005,71(3):035303.
    58. Voronov R S, Papavassiliou D V, Lee L L. Boundary slip and wetting properties ofinterfaces: Correlation of the contact angle with the slip length[J]. J. Chem. Phys.,2006,124:204701.
    59. Choo J H, Spikes H A, Ratoi M, Glovnea R, Forrest A. Friction reduction inlow-load hydrodynamic lubrication with a hydrophobic surface[J]. TribologyInternational,2007,40:154–159.
    60. Martini A, Hsu H Y, Patankar N A, Lichter S. Slip at high shear rates[J]. Phys. Rev.Lett.,2008,100:206001.
    61. Tsai P, Peters A M, Pirat C, Wessling M, Lammertink R, Detlef L. Quantifyingeffective slip length over micropatterned hydrophobic surfaces[J]. Phys. fluids,2009,21(11),112002:1-8.
    62. Asproulis N, Drikakis D. Boundary slip dependency on surface stiffness[J]. Phys.Rev. E,2010,81:061503.
    63. Brenner H. Beyond the no-slip boundary condition.[J]Phys. Rev. E,2010,84:046309.
    64. Neto C, Evans D, Bonaccurso E, Butt H, Craig VSJ. Boundary slip in Newtonianliquids: a review of experimental studies[J]. Rep. Prog. Phys.,2005,68(12):2859-2897.
    65. Cameron T, Alexander L Y, John F F. Springer handbook of experimental fluidmechanics[M].2007, XXVШ,1557. publ. Springer.
    66. Bonaccurso E, Butt H J, Craig V S J. Surface roughness and hydrodynamicboundary slip of a Newtonian fluid in a completely wetting system[J]. Phys. Rev. E,2003,90:144501.
    67. Choi C H, Kim C J. Large slip of aqueous liquid flow over a nanoengineeredsuperhydrophobic surface[J]. Phys. Rev. Lett.,2006,96:144501.
    68. Bonaccurso E, Kappl M, Butt H J. Hydrodynamic force measurements: boundaryslip of hydrophilic surfaces and electrokinetic effects[J]. Phys. Rev. Lett.,2002,88:076103.
    69. Cho J H J, Law B W, Rieutord F. Dipole-dependent slip of Newtonian liquids atsmooth solid hydrophobic surfaces[J]. Phys. Rev. Lett.,2004,92(16):166102.
    70. Sanchez-Reyes J, Archer L A. Interfacial slip violations in polymer solutions: Roleof microscale surface roughness[J]. Langmuir,2003,19(9):3304-3312.
    71. Priezjev N V. Rate-dependent slip boundary conditions for simple fluids[J]. Phys.Rev. E,2007,75:051605.
    72. Servantie J, Müller M. Temperature dependence of the slip length in polymer meltsat attractive surfaces[J]. Phys. Rev. Lett.,2008,101:026101.
    73. Tretheway D, Stone S, Meinhart C D. Effect of absolute pressure and dissolvedgases on apparent fluid slip in hydrophobic microchannels[J]. Bull. Am. Phys. Soc.,49:215.
    74. Evans D R, Craig V S J, Senden T J. The hydrophobic force: nanobubbles orpolymeric contaminant[J]. Physica A,2004,339:101–105.
    75. Zhang X H, Zhang X D, Lou S T, Zhang Z X, Sun J L, Hu J. Degassing andtemperature effects on the formation of nanobubbles at the mica/water interface[J].Langmuir,2004,20:3813-15.
    76. Lin Z Q, Granick S. Platinum nanoparticles at mica surfaces[J]. Langmuir,2003,19:7061–7070.
    77. Dowson D. Elastohydrodynamic and micro-elastohydrodynamic lubrication[J].Wear,1995,190:125-138.
    78. Dowson D, Ehret P. Past, present and future studies in elastohydrodynamics[J]. Proc.Instn Mech. Engrs, Part J: J. Engineering Tribology.1995,213:317-333.
    79. Dowson D, Higginson G R. Reflections on Early Studies of Elasto-HydrodynamicLubrication[C]. IUTAM Symposium on Elastohydodynamics and micro-Elastohydodynamics,2006,134, Part1:3-21.
    80. Spikes H A. Sixty years of EHL[J]. Lubr. Sci.,2006,18:265-291.
    81. Zhu D, Wang Q J. Elastohydrodynamic lubricantion: A gateway to interfacialmechanics review and prospect[J]. J. Tribol.,2011,133:041001.
    82. Crook A W. The Lubrication of Rollers—IV. Measurements of Friction andEffective Viscosity[J]. Philos. Trans. R. Soc. London, Ser. A,1963,255:281-312.
    83. Plint M A. Traction in Elastohydrodynamic Contacts[J]. Proc. Inst. Mech. Eng.,1967-1968,182:300–306.
    84. Petrusevich A I. Fundamental Conclusions from the Contact-Hydro dynamic Theoryof Lubrication[J]. Izv. Akad. Nauk SSR. Otd. Tekh. Nauk,1951,2:209–233.
    85. Smith F W. Lubricant behavior in concentrated contact systems–the Castoroil-steel system[J]. Wear,1959;2(4):260-263.
    86. Johnson K L, Cameron R. Shear behavior of elastohydro dynamic oil films at highrolling contact pressures[J]. Proc. Inst. Mech. Eng.,1967-1968,182:307–319.
    87. Johnson K L, Roberts A D. Observations of viscoelastic behaviour of anelastohydrodynamic lubrication film[J]. Proc. R. Soc. Lond. A.,1974,337:217-242.
    88. Johnson K L, Tewaarwerk J L. Shear behaviour of elastohydrodynamic oil films[J].Proc. R. Soc. Lond. A.,1977;356:215-236.
    89. Evans C R, Johnson K L. Regimes of traction in elastohydrodynamic lubrication[J].Proc.Instn Mech. Engrs, Part C: J. Mech. Engr Sci,1986,200(5):313-324.
    90. Jacobson B O. An Experimental determination of the solidification velocity formineral oils[J]. ASLE Trans.,1974,17(4):290-294.
    91. H glund E, Jacobson B O. Experimental investigation of the shear strength oflubricants subjected to high pressure and temperature[J]. Trans ASME J. Tribol.,1985,108(4):571-577.
    92. Alsaad M, Bair S, Sanborn D M, Winer W O. Glass transition in lubricants: itsrelation to elastohydrodynamic lubrication (EHD)[J]. ASME J. Lubr.,1978,100:404-417.
    93. Bair S, Winer W O. Shear strength measurements of lubricants at high pressure[J].Trans ASME J. Lubric. Technoi.,1979,10:251-257.
    94. Bair S, Winer W O. A rheological model for elastohydrodynamic contacts based onprimary laboratory data[J]. Trans ASME J. Lubric. Technoi.,1979,101:258-265.
    95. Bair S, Winer W O. Some observations in high pressure rheology of lubricants[J].Trans ASME J. Lubric. Technoi.,1982,104(3):357-364.
    96. Bair S, Winer W O. The high shear stress rheology of liquid lubricants at pressuresof2to200MPa[J]. Trans ASME J. Tribol.,1990,112(2):246-257.
    97. Bair S, Winer W O. The high pressure high shear stress rheology of liquidlubricants[J]. Trans ASME J. Tribol.,1992,114(1):1-9.
    98. Bair S, Qureshi F, Winer W O. Observations of shear localization in liquidlubricants under pressure[J]. Trans ASME J. Tribol.,1992,114(1):1-9.
    99. Bair S. Normal stress difference in liquid lubricants sheared under high pressure[J].Rheol. Acta,1996,35(1):13-23.
    100. Bair S, Khonsarit M, Winer W O. High-pressure rheology of lubricants andlimitations of the Reynolds equation.[J] Tribol. Int.,1998,31(10):573-586.
    101. Bair S, Jarzynski J, Winer W O. The temperature, pressure and time dependence oflubricant viscosity[J]. Tribol. Int.,2001,37(7):461-468.
    102. Bair S. The shear rheology of thin compressed liquid films[J]. Proc. Instn. MechEngrs. Part J: J Engg. Tribol.,2002,216(1):1-17.
    103. Ramesh K T, Clifton R J. A pressure-shear plate impact experiment for studying therheology of lubricants at high pressures and high shearing rates[J]. Trans ASME J.Tribol.,1987,109(2):215-223.
    104. Jacobson B O. Rheology and elastohydrodynamic lubrication[M]. Tribology series
    19. New York: Elsevier.
    105. Wong P L, Lingard S, Cameron A. High pressure viscosity and shear response of oilusing the rotating optical micro-viscometer[C].21th Leeds-Lyon Symp., Leeds.Lubricants and lubrication,1995:199-205. ed. D Dowson et al., publ. Elsevier,Amsterdam.
    106. Wu C W. Discussion for the paper The high shear stress rheology of liquidlubricants at pressures of2to200MPa[J]. Trans ASME Ser F. J Tribol.,1991,113(3):656-657.
    107. Wu C W, Zhoug W X, Qian L X, Hu L C, Sun S M. Parametric variational principleof viscoplastic lubrication model[J]. Trans ASME Ser F. J Tribol.,1992,114:731-735.
    108. Zhu Y X, Granick S. No-slip boundary conditions switches to partial slip when fluidcontains surfactant[J]. Langmuir,2002,18(26):10058-10063.
    109. Olgun U, Kalyon D M. Use of molecular dynamics to investigate polymer melt-meltwall interactions[J]. Polymer,2005,46:9423-9433.
    110. Bair S. Actual Eyring models for thixotropy and shear-thinning: experimentalvalidation and application to EHD[J]. Trans ASME J. Tribol.,2004,126:728–732.
    111. Carreau P J. Rheological equations from molecular network theories[J]. Trans Soc.Rheol.,1972,16(1):99–127.
    112. Gecim B, Winer W O. Lubricant limiting shear stress effect on EHD filmthickness[J]. Trans ASME J Lub Technol,1980,102:213–219.
    113. Iivonen H, Hamrock B J. A non-Newtonian fluid model for elastohydrody namiclubrication of rectangular contacts[J]. Wear,1991,143:297-305.
    114. Lee R T, Hamrock B J. A circular non-Newtonian fluid model: part I—used inelastohydrodynamic lubrication[J]. Trans ASME J. Tribol.,1990,112:486–496.
    115. Elsharkawy A A, Hamrock B J. Subsurface Stresses in Micro-EHL Line Contacts[J].Trans ASME J. Tribol.,1991,113(3):645-655.
    116. Jacobson B O, Hamrock B J. Non-Newtonian fluid model incorporated intoelastohydrodynamic lubrication of rectangular contacts[J]. Trans ASME J. Tribol.,1984,106:275–284.
    117. Zhang Y B, Wen S. An analysis of elastohydrodynamic lubrication with limitingshear stress: Part I–theory and solutions[J]. STLE Tribol. Trans.,2002,45(2):135-144.
    118. Zhang Y B, Wen S. An analysis of elastohydrodynamic lubrication with limitingshear stress: Part II–Load influence[J]. STLE Tribol. Trans.,2002,45(2):211-216.
    119. Wang S, Conry T F, Cusano C. Thermal non-Newtonian elastohydrodynamiclubrication of line contacts under simple sliding conditions.[J] Trans ASME J.Tribol.,1992,114:317–327.
    120. Hamrock B J, Schmid S R, Jacobson B O. Fundamentals of fluid film lubrication(2ndEdition)[M]. publ. Marcel Dekker, INC. New York,2004.
    121. St hl J, Jacobson B O. A lubricant model considering wall-slip in EHL linecontacts[J]. Trans ASME J. Tribol.,2003,125:523-532.
    122. St hl J, Jacobson B O. A non-Newtonian model based on limiting shear stress andslips planes—parametric studies[J]. Tribol. Int.,2003,36:801-806.
    123. Ehret P, Dowson D, Taylor C M. Transient EHL solutions with interfacial slip[J].Trans ASME J. Tribol.,1999,121(4):703-710.
    124. Ehret P, Dowson D, Taylor C M. On lubricant transport conditions inelastohydrodynamic conjunctions[J]. Proc. R. Soc. Lond. A,1998;454:763-787.
    125. Kaneta M, Kanzaki Y, Kameishi K, Nishikawa H. Non-newtonian response ofelastohydrodynamic oil films[J]. Proc. Japan Int. Tribology Conf. Nagoya,1990,112:1695-1700.
    126. Kaneta M, Nishikawa H, Kameishi K. Observation of wall slip inelastohydrodynamic lubrication[J]. Trans ASME J. Tribol.,112:447-452.
    127. Mazuyer D, Varenne E, Lubrecht A A, Georges J M, Constans B. Shearing ofabsorbed polymer layers in elastohydrodynamic contact in pure sliding[C]. Proc.25th Leeds-Lyon Symp on tribology. Leeds.1999. Lubrication at the Frontier,1999:493-504. ed. D Dowson et al., publ. Elsevier, Amsterdam.
    128. Washizu H, Ohmori T. Molecular dynamics simulations of elastohydrodynamiclubrication oil film[J]. Lubric. Sci.,2010,22:323-340.
    129. Guo F, Wong P L. An anomalous elastohydrodynamic lubrication film–inlet dimple.[J] Trans ASME J. Tribol.,2005;127(2):425-434.
    130.王学峰,郭峰,付忠学,杨沛然.一类反常油膜出现的实验研究[J].摩擦学学报,2007,27(3):269-273.
    131.耿美香,郭峰,栗心明。弹流接触区高压润滑油的移动与壁面滑移[J]。第八届全国摩擦学大会论文集,2007:252-255.
    132. Guo F, Wong P L. Variations of an EHL film under boundary slippage[C]. SolidMechanics and Its Application. IUTAM Symposium on EHL and Micro-EHL, Cardiff,UK,2006:285-296.
    133. Guo F, Fu Z. and Wong P.L., Experimental study on lubrication regime variation inpoint contacts[J]. Tribol. Int.,2008,41:451-460.
    134. Fu Z, Guo F, Wong P L. Non-classical elastohydrodynamic lubricating film shapeunder large slide-roll ratios[J]. Tribol. Lett.,2007;27:211-219.
    135. Yagi K, Vergne P. Abnormal film shapes in sliding elastohydrodynamic contactslubricated by fatty alcohols[J]. Proc. IMechE. J. Engg. Tribol.,2007;221:287-300.
    136.贾超,郭峰,付忠学.弹流接触副摩擦系数的实验研究[C].2009全国青年摩擦学学术会议论文集,2009:433-438.
    137.贾超,郭峰,付忠学.界面滑移条件下点接触Stribeck曲线的实验研究[J].润滑与密封,2010:33-36.
    138.贾超.界面滑移条件下弹性流体动力润滑摩擦系数的研究[D].青岛理工大学,
    2010.
    139. Fu Z, Guo F, Wong P L. Friction-speed characteristics of elastohaydrodynamiclubricated contacts with anomalous film shapes[J]. Proc. Inst. Mech. Engrs. Part J:J.Engg Tribol.,2012,226(2):81-86.
    140. Guo F, Wong P L, Geng M, Kaneta M. Occurrence of wall slip inelastohydrodynamic lubrication contacts [J]. Tribol. Lett.,2009;34(1):103-111.
    141. Guo F, Wong P L. A wide range measuring system for thin lubricating film: fromnano to micro thickness[J]. Tribol. Lett.,2004;17(3):521-531.
    142.王学峰,郭峰,杨沛然.微/纳米弹流油膜测量系统[J].摩擦学学报,2006,26(2):150-154.
    143. Christensen H. The oil film in a closing gap[J]. Proc. R. Soc. London, Ser, A,1962,226:312-328.
    144. Christensen H. Elastohydrodynamic theory of spherical bodies in normalapproach[J]. Trans ASME. J. Lubric. Technol.,1970:145-154.
    145. Lee K M, Cheng H S. The pressure and deformation profiles between two normallyapproaching lubricated cylinders[J]. Trans ASME. J. Lubric. Technol.,1973:308-320.
    146. Safa M M A, Gohar R. Pressure distribution under a ball impacting a thin lubricantlayer[J]. Trans ASME J. Tribol.,1986,108:372-376.
    147. Yang P R, Wen S Z. Pure squeeze action in an isothermao elastohydrodynamicallylubricated spherecal conjunction. Part1.theory and dynamic load results[J]. Wear,1991,142:1-16.
    148. Yang P R, Wen S Z. Pure squeeze action in an isothermao elastohydrodynamicallylubricated spherecal conjunction. Part2.constant speed and constant load results[J].Wear.1991,142:17-30.
    149. Larsson R, Lundberg J. Study of lubricated impact using optical interferometry[J].Wear,1995,190:184-189.
    150. Nishikawa H, Handa K, Teshima K, Matsuda K, Kaneta M. Behavior of EHL filmsin cyclic squeeze motion[J]. JSME Int. J.,1995,38(2):577-585.
    151. Sugimura J, Jones Jr W R, Spikes H A.EHD Film thickness in non-steady statecontacts[J]. Trans ASME J. Tribol.,1998,120:442-452.
    152. Sakamoto M, Nishikawa H, Kaneta M. Behavior of point contact EHL films underpulsating loads[C]. Proc.30th Leeds-Lyon Symposium on Triboligy, Lyon. ElseviersTribology Series42, Transient Processes in Tribology004,43:391-399. ed. DDowson et al., publ. Elsevier, Amsterdam.
    153. Guo F, Kaneta M, Wang J, Nishikawa H, Yang P R. Occurrence of a non-centraldimple in squeezing EHL contacts[J]. Trans ASME J. Tribol.,2006,128:632-640.
    154. Guo F, Nishikawa H, Yang P, Kaneta M. EHL under cyclic squeeze motion[J].Tribol. Int.,2007,40(1):1-9.
    155. Kaneta M, Ozaki S, Nishikawa H, Guo F. Effects of impact loads on point contactelastohydrodynamic lubrication films[J]. Proc. Instn. Mech. Engrs. J. Engg. Tribol.,2007,221(3):271-278.
    156. Guo F, Wong P L. A multi-beam intensity-based approach for lubricant filmmeasurements in non-conformal contacts[J]. Proc. Instn. Mech. Engrs. J. Engg.Tribol.,2002,216:281-291.
    157. Dowson D, Wang D. Impact elastohydrodynamic[C].21th Leeds-Lyon Symp., Leeds.Lubricants and lubrication,1995:565-582. ed. D Dowson et al., publ. Elsevier,Amsterdam.
    158. Myllerup C M, Elsharkawy A A, Hamrock B J. Couette dominance used fornon-newtonian elastohydrodynamic lubrication[J]. Trans ASME J. Tribol.,1994,116:47-55.
    159. Roelands C J A. Correlation aspects of the viscosity-temperature-pressurerelationship of lubrication oils[D]. Netherlands: Delft University of Technology,
    1966.
    160. Dowson D, Higginson G, Archard J. Elastohydrodynamic lubrication[M]. SI Edition,Pergamon press, Oxford,1977.
    161.杨沛然.等温点接触弹流润滑的多重网格解法[M].2005青岛摩擦学前沿研讨会EHLWorkshop讲义,2005.
    162.郭峰.椭圆接触微观热弹性流体动力润滑求解的多重网格算法研究[D].青岛建筑工程学院,青岛.1998.
    163.杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    164.温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    165. Hamrock, B J, Dowson D. Isothermal elastohydrodynamic lubrication of pointcontact: Part2–elliptical parameter results[J]. Trans ASME J. Lubr. Tech.,1976,98(3):375-383.
    166. Bair S, McCabe C. A study of mechanical shear bands in liquids at high pressure[J].Tribol. Int.,2004,37:783-789.
    167. Chang L. On the shear bands and shear localizations in Elastohydrodynamiclubrication films[J]. Trans ASME J. Tribol.,2005,127:245-247.
    168. Priezjev N V, Troian S M. Influence of periodic wall roughness on the slipbehaviour at liquid/solid interfaces: molecular-scale simulations versus continuumpredictions[J]. J. Fluid Mech.,2006,554:25-46.
    169. Priezjev N V. Effect of surface roughness on rate-dependent slip in simple fluids[J].Chem. Phys.,2007,127(14):144708.
    170. Martini A, Roxin A, Snurr R Q, Wang Q, Lichter S. Molecular mechanisms of liquidslip[J]. J. Fluid Mech.,2008,600:257-269.
    171. Amir A P, Jonathan B F. Effect of solid properties on slip at a fluid-solid interface[J].Phys. Rev. E,2011,83:021602.
    172. Léger L, Hervet H, Massey G, Durliat E. Wall slip in polymer melts[J]. J. Phys:Condens. Matter,1997,9:7719-7740.
    173. Foord C A, Wedeven L D, Westlake F J, Cameron A. Opticalelastohydrodynamics[J]. Proc Instn Mech Engrs,1969-70,184(28):487-505.
    174.王馨,张向军,孟永刚,温诗铸.黏度对流固界面滑移影响的试验研究[J].摩擦学学报,2009,29(3):200-204.
    175. Vinogradova O I. Slippage of water over hydrophobic surfaces[J]. Int. J. Miner.Process.,1999,56:31–60.
    176. Krim J. FMMLS-1: Friction at macroscopic and microscopic length scales[J]. Am. J.Phys.2002,70890–7.
    177. Lauga E, Brenner M P. Dynamic mechanism for apparent slip on hydrophobicsurfaces[J]. Phys. Rev. E,2004,70:26311.
    178. de Gennes P-G.. On fluid/wall slippage[J]. Langmuir,2002,18:3413–14.
    179. Bushnell D M, Moore K J. Drag reduction in nature Annu[J]. Rev. Fluid Mech.,23:65–79.
    180. Schmatko T, Hervet H,Leger L. Friction and slip at simple fluid-solid interfaces-theroles of the molecular shape and the solid–liquid interaction[J]. Phys. Rev. Lett.,2005,94:244501.
    181. Yarin A L, Graham M D. A model for slip at polymer/solid interfaces[J]. J. Rheol.,1998,42(6):1491–1504.
    182. Halley P J, Mackay M E. The efect of metals on the processing of LLDPE througha slit die[J]. J. Rheol.,1994,38(1):41–51.
    183. Ajdari A, Brochard-Wyart F, de Gennes P G., Leibler L, Viovy J L, Rubinstein M.Slippage of an entangled polymer melt on a grafted surface[J]. Physica A,1994,204:17–39.
    184. Mhetar V, Archer L A. Slip in entangled polymer solutions[J]. Macromol.,1998,31(19):6639–6649.
    185. Wang S Q, Drda P A, Inn Y W. Exploring molecular origins of sharkskin, partial slip,and slope change in flow curves of linear low density polyethylene[J]. J. Rheol.,1996,40(5):875–898.
    186. Daniel, Joself D. Steep wave fronts on extrudates of polymer melt and solutionlubricant layers and boundary lubrication[J]. J. Non-Newtonian Fluid Mech.,1997,70:187-203.
    187. Rozeanu L, Tipei N. Slippage phenomena at the interface between the adsorbedlayer and the bulk of the lubricant: theory and experiment[J]. Wear,1980,64:245-257.
    188.王克俭,周持兴.考虑壁面滑移的Z-W流变模型及其应用[J].高分子通报,2003,1:8-17.
    189. Joshi Y M, Lele A K, Mashelkar R A. Slipping fluids: a nuified transisent networkmodel[J]. J. Non-Newtoian Fluid Mech.2002,89:303-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700