虚拟战场中特殊效果生成和实体模型简化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟战场以其在军事训练演习上特有的科学性、经济性、对抗性、直观性、交互性、实时性等诸多优点,为各国军队提供了在新时期下实现战略、战役、战术想定演练的有效途径,能大大提高军事作战模拟训练质量。虚拟战场需要有一个实时动态变化的、逼真的虚拟作战自然环境。特殊效果生成技术和实体模型简化技术是构建实时动态变化且逼真的虚拟作战自然环境的关键技术。
     本文主要对虚拟战场中一些特殊效果的生成技术和实体模型的简化技术进行了深入的研究,所完成的主要研究工作和取得的主要研究成果如下:
     (1)动态地形的实时可视化技术
     在虚拟战场中,需要真实地实时表现出炮弹在地面上炸出的弹坑以及车辆驶过地面后留下的清晰压痕。由于炮弹在地面上炸出弹坑和车辆驶过地面后留下压痕,其本质上都是改变了地形表面某处的高程值和(或)颜色纹理等属性,所以,本文将这两种特殊效果的实时生成技术统一为动态地形的实时可视化技术。地形表面的连续层次细节动态绘制技术,是构建虚拟作战自然环境的关键技术,也是生成弹坑和车辆驶过地面后留下的压痕等地表特殊效果的技术基础。
     本文在定义了一种合理且有效的嵌套误差判据球的基础上,提出了一种快速的、视点相关的、连续层次细节地形表面绘制算法。本文定义的嵌套误差判据球可隐式地保证地表网格中裂缝的自动消除。该算法是实时生成各种动态地形效果的技术基础。实验结果证实了该算法的快速性和有效性。
     本文在上述算法的基础上,针对动态地形可视化的特殊需求,提出了地表网格分辨率的动态扩展技术,研究并证明了需扩展其分辨率的最大区域,进而提出了动态地形的实时可视化方法。该方法既消除了地表网格模型中的不连续问题,义能很好的表现地形的形变效果。实验表明,本文方法是可行且有效的。本文方法不但可以实时生成逼真的弹坑、车辆压痕等特殊效果,而且可以表现如战壕等其他改变了地表高程值或颜色纹理属性的动态地形效果。
    
     国防科学技术大学研究生院学位论文
     (2)水中爆炸产生的水柱运动建模与实时绘制技术
     在海战中,弹药在水中爆炸常会产生非常壮观的水柱。水柱是海战中常见的
    特殊效果现象。能否实时而逼真地模拟水柱的运动,将直接影响到虚拟海战环境
    的真实感。
     本文提出了一种模拟弹药在水中爆炸而产生的水柱运动的方法。从分析水中
    爆炸的物理现象入手,建立了构成水柱的各水粒子的初始速度计算模型,结合水
    粒子的受力情况,给出了水粒子的运动方程。为满足实时性要求,使用垂直于当
    前视线的平面上的一小块圆形区域,结合纹理映射技术,对水粒子团进行造型。
    实验结果表明,该方法可同时满足实时性和逼真性的要求。
     (3)爆炸冲击波对建筑物等几何实体的毁坏效果实时模拟技术
     弹药爆炸产生的冲击波会对建筑物等造成严重的毁坏。形象的表现这种毁坏
    过程和结果,能增强虚拟战场的真实感。
     本文提出了一种基于相互链接的五面体构造物体的三维实体模型的新方法。
    基于这样的三维实体模型,应用随机函数,可构造出各不相同的、具有不规则形
    状的三维立体碎块。为了满足实时性需求,本文使用最简单的冲击波—球形冲
    击波,并基一于球形冲击波的径向传播特性和随机函数求解各碎块的初始速度(包
    括速率和方向),进而提出了实时模拟爆炸冲击波对砖石结构建筑物等毁坏过程
    (不涉及爆炸云)的解决方案。实验结果表明,该解决方案能逼真地表现砖石结构
    建筑物等的逐渐倒塌(逐渐破碎)过程、毁坏后的残垣断壁以及碎块在地面上的堆
    积效果,并能满足实时性要求。
     (4)实体模型简化技术
     虚拟战场场景中包含有大量的自然实体和作战实体,这些实体的原始几何模
    型常常是采样密集的三角形网格。为了满足虚拟战场中限时图形绘制的要求,必
    须事先对实体复杂的原始网格模型进行简化。
     本文提出了一种新的基于三角形折叠的网格简化算法。该算法以三角形三个
    顶点到各自相关的平均平面的距离的最大值为权值,确定三角形的折叠顺序,并
    以几角形的加权一蓑心作为折叠点,而目_,给出了模型简化时颜色和纹理等表面属
    !I
    
    性的处理方法。该算法实现简单,速度快且能较好地保持原有网格的特征(包括
    几何特征和颜色、纹理等表面属性信息)。文中给出的一组实例说明了该算法的
    有效性。
Virtual battlefield has many particular advantages in the military maneuver, such as scientific, economical, antagonistic, intuitional, interactive, real-time, etc. And it provides an efficient approach to implement the scenario of stratagem, battle and tactic for all the armies in the world in the new age, and enhances the training effect for the participants. It is necessary to the virtual battlefield that a virtual battle natural environment should be realistic and be updated dynamically in real time. The generating technique of special effects and surface simplification technique of object models are the key to build such a virtual battle natural environment.
    In this dissertation, we study the generating technique of special effects and surface simplification technique of object models in the virtual battlefield. The main research and contributions of this dissertation are:
    (1) Real-time visualization of dynamic terrain
    In the virtual battlefield scene, it is necessary to display craters on the ground due to the explosion of cannonball and legible tire tracks behind a moving vehicle. Both craters and tire tracks change either the elevation of terrain or the surface properties such as color, texture. Therefore, we called the technique to generate the craters and the tire tracks in real time as the technique of real-time visualization of dynamic terrain. The rendering of continuous LOD terrain surface is the key technique to build the virtual battlefield scene, and it is also the technical basis of generating the special effects such as craters, tire tracks.
    In this dissertation, the definition of an appropriate and valid
    
    
    
    nested error metric sphere is presented, and a fast continuous LOD terrain rendering algorithm is proposed. And the nested error metric can eliminates the cracks in the meshes of the terrain surface automatically and implicitly. This algorithm is the technical basis of generating the special effects on the ground. Examples illustrate speediness and efficiency of the algorithm.
    To meet the special requirement in visualization of dynamic terrain, a technology which is called dynamically extending the resolution of terrain surface meshes is proposed based on the aforesaid fast continuous LOD terrain rendering algorithm. A theorem on the maximal region which needs to extend its resolution is given and proved. And the complete solution to visualize the dynamic terrain in real time is given. It both eliminates mesh discontinuities and represents the deformed region well in terrain model. Based on the complete solution, many kinds of special effects on the ground such as the realistic craters, tire tracks and trench can be generated in real time. Examples in this dissertation illustrate practicability and efficiency of the solution.
    (2) Modeling and real-time rendering of water columns which are generated by an underwater explosion
    In a naval battle, after the underwater detonating of high-condensed explosives, grand water columns usually will come into being on the sea surface. Simulating realistically water columns' behavior in real time contributes greatly to the sense of reality of virtual naval battle environment.
    A method is proposed to simulate water columns' behavior generated by an underwater explosion. The physical phenomena of underwater explosion are analyzed, and the initial velocity equations and dynamics equations of water particles, which compose the water columns, are set
    
    up. For real-time requirement, each water particles cluster is rendered as a small circular area in a plane that faces the viewer, and this small area is texture-mapped with a pre-captured image of water particles cluster, with an intensity-based alpha channel. Examples illustrate that the method can meet the requirements of real time and reality.
    (3) Real-time simulation of the building shattering caused by the blast wave
    The blast wave that generated by an explosion can destroy the objects badly such as the buildings. Realistic simulation of the shattering of the objects can enhance
引文
[1] 汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社,广西科学技术出版社,1996
    [2] 汪成为.灵境技术与人机和谐仿真环境.计算机研究与发展,1997,34(1):1~13
    [3] 赵沁平.DVENET分布式虚拟环境,北京:科学出版社,2002
    [4] 严涛,吴恩华.飞行模拟系统中导弹尾焰的实时生成.计算机辅助设计与图形学学报,1999,11(1):74-76
    [5] Vega LynX user's guide, Version 3.7 for Windows NT and Windows 2000. San Jose: MultiGen-Paradigm Company, March 2001
    [6] 10个图形最出色的游戏.http://www. shenghuo168.com/entertain/game/news/200107/231301338.html
    [7] Musgrave F K. Great balls of fire. In: Owen G S ed. SIGGRAPH 97 Animation Sketches, Los Angeles : ACM press, 1997, 259~268
    [8] Paramount Pictures. Star Trek Ⅱ: the wrath of khan, 1982.
    [9] Reeves W T. Particle systems-a technique for modeling a class of fuzzy objects. ACM Trans. on Graphics, 1983, 2(2) :91~108
    [10] Jos S. A general animation framework for gaseous phenomena. European research consortium for informatics and mathematics, Technical Report: R047, 1997
    [11] Fabrice U, Jacque B T. Rendering explosions. SCS, Military, Government, and Aerospace Simulation, 1997, 29(4):121~126
    [12] Encarnacao.J, Gobel M. European activities in virtual reality. IEEE Transactions on Computer Graphics & Application, 1994,14(1): 66~74
    [13] Schroeder W J, Zarge J A , Lorensen W E. Decimation of triangle meshes. Computer Graphics, 1992, 26(2):65~70
    [14] 潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法.软件学报,1996,7(9):526~531
    
    
    [15] Turk G. Re-tiling polygonal surface. Computer Graphics, 1992, 26(2): 55~64
    [16] 陶志良,潘志庚,石教英.基于能量评估的网格简化算法及其应用.软件学报,1997,8(12):881~888
    [17] Garland M, Heckbert P S. Surface simplification using quadric error metrics. Computer Graphics, 1997,31(3):209~216
    [18] 李捷,唐泽圣.三维复杂模型的实时连续多分辨率绘制.计算机学报,1998.21(6):481~491
    [19] 马小虎,潘志庚,石教英.基于三角形移去准则的多面体模型简化方法.计算机学报,1998,21(6):492~498
    [20] Hamann B. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, 1994,11(2):197~214
    [21] 周昆,潘志庚,石教英.基于三角形折叠的网格简化算法.计算机学报,1998,21(6):506~513
    [22] Islet V, Lau R W H, Green M. Real-time multi-resolution modeling for complex virtual environments. In: Green M ed. Proceedings of Virtual Reality Software and Technology' 96. Hong Kong: ACM press, 1996,11~19
    [23] Hoppe H. Progressive meshes. In: John F ed. Proceedings of SIGGRAPH' 96, New Orleans:ACM press, 1996,99~108
    [24] Garland M, Heckbert P S. Simplifying surfaces with color and texture using quadric error metrics. In: Robert M ed. IEEE Visualization' 98 Proceedings, New Caledonia:IEEE Computer Society, 1998,263~269
    [25] Hoppe H. New quadric metric for simplifying meshes with appearance attributes. In: Steve B ed. IEEE Visualization' 99, San Francisco: IEEE Computer Society, 1999,59~66
    [26] Cohen J, Olano M, Manocha D. Appearance-preserving simplification. In: Walt B ed. SIGGRAPH' 98 Proceedings, Orlando: ACM press, 1998, 115~122
    [27] Maruya M. Generating a texture map from object-surface texture data.
    
    Computer Graphics Forum, 1995, 14(3) :397-405
    [28] Soucy M, Godin G, Rioux M. A texture-mapping approach for the compression of colored 3D triangulations. The Visual Computer,1996, 12(10) :503-514
    [29] Cignoni P, Montani C, Rocchini C, Scopigno R. A general method for preserving attribute values on simplified meshes. In: Robert M ed. Proceedings of IEEE Visualization' 98, New Caledonia:IEEE Computer Society, 1998,59-66
    [30] Yefei H. Real-time visualization of dynamic terrain for ground vehicle simulation[Ph D dissertation]. Iowa: University of Iowa in America,2000
    [31] 王璐锦,唐泽圣,基于分形维数的地表模型多辨率动态绘制,软件学 报,2000, 11 (9) : 1181-1188
    [32] Duchaineau M, Wolinsky M, Sigeti D E. ROAMing terrain: real-time optimally adapting meshes. In: Robert M ed. Proceedings of IEEE Visualization' 97,Phoenix: IEEE Computer Society, 1997, 81-88
    [33] Pajarola R. Large scale terrain visualization using the restricted quadtree triangulation. In: Robert M ed. Proceedings of IEEE Visualization' 98, New Caledonia:IEEE Computer Society, 1998, 19-26
    [34] 齐敏,郝重阳,佟明安,三维地形生成及实时显示技术研究进展,中国图象图 形学报,2000, 5(4) : 269-275
    [35] Agarwal P K, Desikan P K. An efficient algorithm for terrain simplification. In: Michael Saks ed. Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, New Orleans: ACM Press, 1997, 139-147
    [36] Andrews D S. Simplifying terrain models and measuring terrain model accuracy. Dept. of Computer Science, University of British Columbia, Technical Report:TR-96-05,1996
    [37] Berg M D, Dobrindt K T G. On levels of detail in terrains. Dept. of Computer Science, Utrecht University, Technical Report: UU-CS-1995-
    
    12, April 1995
    [38] Brown P J C. Selective mesh refinement for interactive terrain rendering. Computer Laboratory, Cambridge University, Technical report: CB3-QSG, 1996
    [39] Cignoni P, Puppo E, Scopigno R. Representation and visualization of terrain surfaces at variable resolution. In: Scateni R ed. Proceedings of International Symposium on Scientific Visualization, Chia: AICA Society, 1995, 50-68
    [40] Cohen-Or D, Levanoni Y. Temporal continuity of levels of detail in delaunay triangulated terrain. In: Nancy J ed. IEEE Visualization' 96, San Francisco: IEEE Computer Society, 1996, 37-42
    [41] Evans W, Kirkpatrick D, Townsend G. Right triangular irregular networks. Department of Computer Science, University of Arizona, Technical Report :97-09, 1997
    [42] Garland M, Heckbert P S. Fast triangular approximation of terrains and height fields, http://ftp.cs.cmu.edu/afs/cs/project/anim/ph /paper/multi97/release/heckbert/terrain. pdf
    [43] Ghodsi M, Sack J R. A coarse grained solution to parallel terrain simplification. http://sina. sharif. ac. ir/-ghodsi/papers/partin. ps-gz
    [44] Klein R, Huttner T. Simple camera-dependent approximation of terrain surfaces for fast visualization and animation. In: Yagel R ed. IEEE Visualization' 96 Late Breaking Hot Topics, San Francisco: IEEE Computer Society, 1996,82-87
    [45] Silva C T, Mitchell J S B. Greedy cuts: an advancing front terrain triangulation algorithm. In: Robert L ed. ACM Symposium on Geographic Information Systems 1998, Washington: ACM Press, 1998, 137-144
    [46] Silva C T, Mitchell J S B.Kaufman A E. Automatic generation of triangular irregular networks using greedy cuts. In: Ribarsky B
    
    ed. IEEE Visualization' 95, Atlanta: IEEE Computer Society, 1995, 201-208
    [47] Suter M, Nuesch D. Automated generation of visual simulation databases using remote sensing and GIS. in: Ribarsky B ed. IEEE Visualization' 95, Atlanta:IEEE Computer Society, 1995, 86-93
    [48] Zhao Youbing, Zhou Ji, Shi Jiaoying and Pan Zhigeng. A fast algorithm for large scale terrain walkthrough. In: Peng Qunsheng ed. Proceedings of CAD/Graphics ' 2001. Kunming: International Academic Publishers, 2001, 567-572
    [49] Lindstrom P, Koller D, Ribarsky W. Real-time, continuous level of detail rendering of height fields. In: John F ed. Proceedings of SIGGRAPH' 96, New Orleans:ACM press, 1996, 109-118
    [50] Rottger S, Heidrich W, Slusallek P. Real-time generation of continuous levels of detail for height fields. In: Nadia M T ed. Sixth International Conference in Central Europe on Computer Graphics and Visualization' 98, Plzen-Bory : WSCG Society, 1998, 315-322
    [51] 刘学慧,吴恩华,基于图像空间判据的地表模型加速绘制技术,软件学 报,1998,9(7) :481-486
    [52] Blow J. Terrain rendering research for games. Slides for SIGGRAPH' 2000 course, 2000
    [53] Blow J. Terrain rendering at high levels of detail. Report on Game Developers' Conference 2000, San Jose, 2000
    [54] Lindstrom P, Pascucci V. Visualization of large terrains made easy. In: Bailey M ed. Proceedings of IEEE Visualization' 2001, San Diego: IEEE Computer Society, 2001, 363-370
    [55] Hoppe H. Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Robert M ed. Proceedings of IEEE Visualization' 98, New Caledonia: IEEE Computer Society, 1998, 135-142
    
    
    [56] Ogren A. Continuous level of detail in real-time terrain rendering. http://www. cs. umu. se/~tdv94aog/ROAM. pdf
    [57] Peachey D R. Modeling waves and surf. Computer Graphics, 1986, 20(4) : 65-74
    [58] Fournier A, Reeves W T. A simple model of ocean waves. Computer Graphics, 1986,20(4) : 75-84
    [59] 徐迎庆,苏成,齐东旭,李华,刘慎权,基于物理模型的流水及波浪模拟,计算 机学报, 1996, 19 (增刊): 153-160
    [60] 童若峰,汪国昭,用于动画的水波造型,计算机学报,1996, 19(8) :594-599
    [61] Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. Computer Graphics, 1990, 24(4) : 49-55
    [62] Chen J X, Lobo N V. Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations. Graphical Models and image Processing, 1995, 57(2) : 107-116
    [63] Chen J X, Lobo N V. Real-time fluid simulation in a dynamic virtual environment. IEEE Computer Graphics and Applications, 1997, 17(3) : 52-61
    [64] Foster N, Metaxas D. Realistic animation of liquids. Graphical Models and Image Processing, 1996, 58 (5) :471-483
    [65] Goss M. E. A real time particle system for display of ship wakes. IEEE Computer Graphics and Applications, 1990, 10(2) :30-35
    [66] Sims K. Particle animation and rendering using data parallel computation. Computer Graphics, 1990, 24(4) :405-413
    [67] Miller G, Pearce A. Globular dynamics :a connected particle system for animating viscous fluids. Computer & Graphics, 1989, 13(3) :305-309
    [68] 0' Brien J F, Hodgins J K. Dynamic simulation of splashing fluids. In: Jane W ed. Proceedings of Computer Animation' 95, Geneva: Computer Graphics Society, 1995, 198-205
    [69] 万华根,金小刚,彭群生,基于物理模型的实时喷泉水流运动模拟,计算机学
    
    报,1998,21(9):774~779
    [70] 李翼祺,马素贞.爆炸力学.北京:科学出版社,1992
    [71] 鄢来斌.虚拟海战场景建模与实时绘制技术的研究与实现[博士论文].长沙:国防科学技术大学,2000
    [72] Neff M, Fiume E. A visual model for blast waves and fracture. In: MacKenzie I S ed. Proceedings of Graphics Interface' 99. Kingston: Canadian Information Processing Society, 1999,193~202
    [73] Yngve G D,O' Brien J F, Hodgins J K. Animating explosions. In: White J ed. Proceedings of SIGGRAPH' 2000. New Orleans: ACM press, 2000, 29~36
    [74] Mazarak O, Martins C, Amanatides J. Animating exploding objects. In: MacKenzie I S ed. Proceedings of Graphics Interface' 99. Kingston: Canadian Information Processing Society, 1999,211~218
    [75] O' Brien J F, Hodgins J K . Graphical modeling and animation of brittle fracture. In: Schweppe M ed. Proceedings of SIGGRAPH' 99. Los Angeles: ACM press, 1999,137~146
    [76] O' Brien J F, Hodgins J K. Animating fracture. Communication of the ACM,2000,43(7):69~75
    [77] Smith J, Witkin A, Baraff D. Fast and controllable simulation of the shattering of brittle objects. In: Fels S ed. Proceedings of Graphics Interface' 2000. Montreal: Canadian Information Processing Society, 2000,31~38
    [78] Terzopoulos D, Fleischer K. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Computer Graphics, 1988, 22(4):269~278
    [79] 彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.北京:科学出版社,1999
    [80] Lounsbery M. Multiresolution analysis for surfaces of arbitrary topological type[Ph D dissertation].Washington: Dept. of Computer
    
    Science and Engineering, University of Washington, 1994
    [81] 刘学慧.虚拟现实中三维复杂几何形体的层次细节模型的研究[博士学位论文].北京:中科院软件所,1998
    [82] Faugeras O, Hebert M, Mussi P, Boissonnat J-D. Polyhedral approximation of 3-D objects without holes. Computer Vision, Graphics, and Image Processing, 1984,25(2):169~183
    [83] Delingette H. Simplex meshes: a general representation for 3D shape reconstruction. INRIA, Sophia Antipolis, France, Technical Report: 2214, 1994
    [84] Eck M, DeRose T, Duchamp T et al. Multiresolution analysis of arbitrary meshes. In: Brian H ed. Proceedings of SIGGRAPH' 95, Los Angeles: ACM Press, 1995,173~182
    [85] Eric J S, DeRose T, Salesin D H. Wavelets for computer graphics: theory and applications. San Francisco, CA: Morgann Kaufmann Press, 1996
    [86] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989,11(7):674~693
    [87] Lounsbery M, DeRose T D, Warren J. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. on Graphics, 1997,16(1):34~73
    [88] 成迟薏,潘志庚,石教英.递进网格的一种快速生成算法.中国图象图形学报,1998,3(11):946~951
    [89] Rossignac J, Borrel P. Multi-resolution 3D approximations for rendering complex scenes. In: Falcidieno B, Kunii T L eds. Geometric Modeling in Computer Graphics, New York: Springer Verlag, 1993, 455~465
    [90] Low K L, Tan T S. Model simplification using vertex-clustering. In: Cohen M ed. Proceedings of 1997 Symposium on Interactive 3D Graphics,
    
    Providence: ACM Press, 1997,75-82
    [91] Schaufler G, Sturzl inger W. Generating multiple levels of detail from polygonal geometry models. In: Gobel M ed. Virtual Environment' 95, (Eurographics Workshop on Virtual Environments 1995) , Monte Carlo: Springer Verlag, 1995, 33-41
    [92] Luebke D. Hierarchical structures for dynamic polygonal simplification. Department of Computer Science, University of North Carolina at Chapel Hi 11, Technical Report : 96-006, 1996
    [93] Luebke D, Erikson C. View-dependent simplification of arbitrary polygonal environments. In: Turner W ed. Proceedings of SIGGRAPH' 97, New York: ACM Press, 1997, 199-208
    [94] Kalvin A D, Cutting C B, Haddad B and Noz M E. Constructing topologically connected surfaces for the comprehensive analysis of 3D medical structures. Image Processing, SPIE. 1991, 1445:247-259
    [95] Kalvin A D, Taylor R H. Superfaces: polyhedral approximation with bounded error. Medical Imaging: Image Capture, Format ting and Display, SPIE. 1994,2164:2-13
    [96] Kalvin A D, Taylor R H. Superfaces: polygonal mesh simplification with bounded error. IEEE CG&A, 1996, 16(3) : 64-77
    [97] Hinker P, Hansen C. Geometric optimization. In: Nielson G ed. Proceedings of IEEE Visualization' 93, San Jose: IEEE Computer Society, 1993, 189-195
    [98] Gourdon A. Simplification of irregular surface meshes in 3D medical images. In: Ayache N ed. Computer Vision, Virtual Reality, and Robotics in Medicine (CVRMed' 95) , Nice: Springer, 1995, 413-419
    [99] Reddy M. SCROOGE: Perceptually-driven polygon reduction. Computer Graphics Forum, 1996,15(4) :191-203
    [100] Schroedr W J. A topology modifying progressive decimation algorithm. In: Robert M ed. Proceedings of IEEE Visualization' 97,
    
    Phoenix: IEEE Computer Society, 1997,205-212
    [101] Soucy M, Laurendeau D. Multiresolution surface modeling based on hierarchical triangulation. Computer Vision and Image Understanding, 1996,63(1) :1-14
    [102] Klein R, Liebich G, Straber W. Mesh reduction with error control. In: Nancy J ed. Proceedings of IEEE Visualization' 96, San Francisco: IEEE Computer Society, 1996, 311-318
    [103] Ciampalini A, Cignoni P, Montani C, Scopigno R. Multiresolution decimation based on global error. The Visual Computer, 1997, 13(5) : 228-246
    [104] Kobbelt L, Campagna S, Seidel H P. A general framework for mesh decimation. In: Smith A R ed. Proceedings of Graphics Interface' 98, Vancouver: Canadian Information Processing Society, 1998, 43-50
    [105] 周晓云,刘慎权,基于特征角准则的多面体模型简化方法,计算机学 报,1996,19(增刊):217-223
    [106] Popovic J, Hoppe H. Progressive simplicial complexes. In: Turner W ed. Proceedings of SIGGRAPH' 97, New York:ACM Press, 1997, 217-224
    [107] Ronfard R, Rossignac J. Full-range approximation of triangulated polyhedra. Computer Graphics Forum, 1996, 15(3) : 33-38
    [108] Gueziec A. Surface simplification with variable tolerance. In: Ayache N ed. Second Annual Intl. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS' 95) , Baltimore: Wiley Publisher, 1995, 132-139
    [109] Gueziec A. Surface simplification inside a tolerance volume. IBM Corporation, Technical report:RC 20440,1996
    [110] Gieng T S, Hamann B, Joy K I, Schussman G L, Trotts I J. Constructing hierarchies for triangle meshes. IEEE Trans, on visualization and computer graphics, 1998, 4(2) : 145-161
    [111] Algorri M E, Schmitt F. Mesh simplification. Computer Graphics Forum,
    
    1996, 15(3) :23-30
    [112] Lindstrom P, Turk G. Fast and memory efficient polygonal simplification. In: Robert M ed. Proceedings of IEEE Visualization' 98, New Caledonia: IEEE Computer Society, 1998,279-286
    [113] Melax S. A simple, fast, and effective polygon reduction algorithm. November 1998 issue of Game Developer Magazine, 1998, 44-49
    [114] Lau R, Green M, Danny T, Wong J. Real-time continuous multi-resolution method for models of arbitrary topology. Presence: Teleoperators and Virtual Environments, 1998, 7(1) :22-35
    [115] Hoppe H, DeRose T, Duchamp T. Mesh optimization. Computer Graphics, 1993,27(1) : 19-26
    [116] Hoppe H. View-dependent refinement of progressive meshes. In: Turner W ed. Proceedings of SIGGRAPH' 97, New York:ACM Press, 1997, 189-198
    [117] Ronfard R, Rossignac J. Full-range approximation of triangulated polyhedra. IBM T. J. Watson Research, Yorktown Heights, NY, Technical Report :RC 20423, 1996
    [118] Lindstrom P, Turk G, Image-driven simplification. ACM Transactions on Graphics, 2000, 19 (3) :204-241
    [119] Zhou kun, Shi Jiaoying and Pan Zhigeng. Surface simplification with rendering error metrics. In: Peng Qunsheng ed. Proceedings of CAD/Graphics' 2001. Kunming: International Academic Publishers, 2001, 125-131
    [120] Xia J C, Varshney A. Dynamic view-dependent simplification for polygonal models. In: Nancy J ed. IEEE visualization' 96, San Francisco: IEEE Computer Society, 1996, 327-334
    [121] Floriani L D, Magillo P, Puppo E. Efficient implementation of multi-triangulations. In: Robert M ed. Proceedings of IEEE
    
    Visualization' 98, New Caledonia:IEEE Computer Society, 1998,43~50
    [122] Certain A, Popovic J, DeRose et al. Interactive multiresolution surface viewing. In:John F ed. Proceedings of SIGGRAPH' 96, New Orleans: ACM press, 1996,91~98
    [123] Hughes M, Lastra A A, Saxe E. Simplification of global-illumination meshes. Computer Graphics Forum, 1996,15(3):339~345
    [124] Heckbert P S, Garland M. Multiresolution modeling for fast rendering. In: Wyvill B ed. Proceedings of Graphics Interface' 94, Banff: Canadian Information Processing Society, 1994,43~50
    [125] Garland M. Multiresolution modeling: survey&future opportunities. In: Valle G ed. State of the Art Report of Eurographics'99, Milan: European Association for Computer Graphics, 1999,111~131
    [126] Prenter P M. Splines and variational methods. New York:John Wiley &Sons Press, 1975
    [127] Preparata F P, Shamos M I. Computational Geometry: an introduction. New York:Springer-Verlag Press, 1985
    [128] Cohen J, Varshney A, Manocha D et al. Simplification envelopes. In: John F ed. Proceedings of SIGGRAPH' 96, New Orleans:ACM press, 1996, 119~128
    [129] 蔡伯濂编.力学.长沙:湖南教育出版社,1985
    [130] 曹卫群.保持几何特征的复杂景物多分辨率模型技术研究[博士学位论文].杭州:浙江大学,2000
    [131] 程稼夫编.力学.北京:科学出版社,中国科学技术大学出版社,2000
    [132] 韩小西,唐卫清,朱竞夫,赵壁君.坦克射击模拟器中实时纹理映射技术.计算机辅助设计与图形学学报,1998,10(6):487~493
    [133] 郝鹏威,黄波,朱重光.用于地面可视化的DEM四叉树改进.中国图象图形学报,1997,2(8,9):578~584
    [134] Henrych J著,熊建国等译.爆炸动力学及其应用.北京:科学出版社,1987
    [135] 李捷,唐泽圣,郭红晖.基于分形维数的层次多分辨率模型.计算机学
    
    报,1998,21(9):780~786
    [136] 骆岩林,汪国昭,彭望琭.地形模拟的细分细化方法.计算机学报,1999,22(7):746~751
    [137] 齐锐,张大力,黄磊,李琦.网络化地理信息系统中数据传输技术的探讨.计算机研究与发展,1999,36(3):380~384
    [138] 童若峰,陈凌钧,汪国昭.烟雾的快速模拟.软件学报,1999,10(6):647~651
    [139] 吴亚东,刘玉树.基于连续细节层次的地表模型实时绘制算法.北京理工大学学报,2000,20(3):309~312
    [140] 曾建超,俞志和.虚拟现实的技术及其应用.北京:清华大学出版社,1996
    [141] 赵友兵,潘志庚,石教英.视点相关的地形LOD模型的动态生成算法.软件学报,1999,10(增刊):167~170
    [142] 周昆,马小虎,潘志庚,石教英.基于重新划分的三角形网格简化的一种改进算法.软件学报,1998,9(6):405~408
    [143] Boer W H D. Fast terrain rendering using geometrical mipmapping. http://www. flipcode.com/tutorials/tut_geomipmaps.shtml
    [144] Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. Computer Graphics, 1987,21(4):205~214
    [145] Buckley R L. BwanaVision: a software image generation system supporting dynamic terrain. Department of Computer Science, University of Central Florida. Technical Report:001,1993
    [146] Castle L, Lanier J, McNeill J. Real-time continuous level of detai[(LOD) for PCs and Consoles. Technical Presentation on GDC 2000,2000
    [147] Chen Bin, Ma Zhigang, Wang Guoping and Dong Shihai. Network based real-time fly-through on massive terrain dataset. In: Peng Qunsheng ed. Proceedings of CAD/Graphics' 2001. Kunming: International Academic Publishers, 2001,500~505
    [148] Falby J S, Zyda M J, Pratt D R, Mackey R L. NPSNET:hierarchical data structures for real-time three-dimensional visual simulation.
    
    Computer & Graphics, 1993, 17(1) :65-69
    [149] Floriani L D, Marzano P. Multiresolution models for topographic surface description. The Visual Computer, 1996, 12(7) :317-345
    [150] Yefei H. Multiple resolution surface representations and their extension for dynamic terrain: a survey. Department of computer science, University of Iowa, Technical Report:99-05,1999
    [151] Jim X C, Edward J W. Real-time simulation of dust behaviors generated by a fast traveling vehicle. ACM Transactions on Modeling and Simulation, 2000,9(2) :81-104
    [152] John C P, Alan H B. Constraint methods for flexible models. Computer Graphics,1988,22(4) :279-288
    [153] Lindstrom P, Koller D, Ribarsky W. An integrated global CIS and visual simulation system. Georgia Institute of Technology, Technical report:GIT-GVU-97-07,1997
    [154] Lindstrom P, Koller D, Hodges L F. Level-of-detail management for real-time rendering of phototextured terrain. Georgia Institute of Technology,Gregory Turner Army Research Lab, Technical report: GIT-GVU-95-06,1995
    [155] Pajarola R, Widmayer P. Virtual geoexploration: concepts and design choices. International Journal of Computational Geometry & Applications,2001, 11(1) :1-14
    [156] Pajarola R B. Access to large scale terrain and image databases in Geoinformation systems[Ph D Dissertation]. Swiss Federal Institute of Technology(ETH), Zurich, 1998
    [157] Rabinovich B, Gotsman C. Visualization of large terrains in resource-limited computing environments. In: Yagel R. ed. IEEE Visualization' 97,Phoenix:IEEE Computer Society Press, 1997, 56-62
    [158] Reddy M. Perceptually modulated level of detail for virtual environments[Ph D Dissertation]. University of Edinburgh,Edinburgh,
    
    1997
    [159] Shigeru M. Volumetric shape description of range data using "blobby model" . Computer Graphics,1991, 25(4) :227-235
    [160] Tomoyuki N, Eihachiro N. A method for displaying meatballs by using bezier Clipping.EUROGRAPHICS' 94, 1994, 13(3) :271-280
    [161] Turner B. Real-time dynamic level of detail terrain rendering with ROAM. http://www. gamasutra. com/features/20000403/turner_01
    [162] Ulrich T. Continuous LOD terrain meshing using adaptive quadtrees. http://www. gamasutra.com/features/20000228/ulrich_01
    [163] Velho L, Gomes J. Variable resolution 4-k meshes: concepts and applications. Computer Graphics Forum, 2000, 19(4) :195-214
    [164] Watt M. Light-water interaction using backward beam tracing. Computer Graphics, 1990, 24(4) :377-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700