用户名: 密码: 验证码:
超高精度非球面面形检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在光学设计中,单个球面可以供优化的自由度只有曲率半径;而非球面除了顶点曲率半径之外,还有二次曲面常数和高阶项系数。由于非球面比球面拥有更多设计自由度,所以在高NA投影光刻物镜中,都普遍采用非球面元件来减小系统的复杂度,并提高系统的成像质量。虽然非球面有优良的光学性质,但是非球面检测,特别是超高精度非球面面形检测,一直是光学检测领域的一个难题,也是制约非球面元件应用的关键因素。对于非球面偏离度较小的非球面,可以采用环带拼接法或子孔径拼接法进行检测,但检测精度往往受制于机械定位误差和干涉仪的非共光路误差。如果非球面是二次曲面,也可以采用无像差点法进行检测,但往往会引入中心遮拦;而高次非球面,则采用零位补偿法进行检测。对于高NA投影光刻物镜而言,非球面度往往比较大,并且对面形精度要求极为苛刻(RMS为亚纳米量级),对于如此高精度的非球面,一般只能采用零位补偿法进行检测。
     针对高NA投影光刻物镜对超高精度非球面面形检测的需要,本论文以计算全息图(Computer-Generated Hologram, CGH)和补偿镜为零位补偿器,主要开展了以下研究内容:
     1、高精度CGH设计。分析了CGH的工作原理、工作模式和衍射效率,给出了CGH相位和空间频率的计算方法;针对高NA投影光刻物镜中的一高次偶次非球面,详细论述了零位补偿CGH和辅助调节CGH的设计方法,并重点分析了衍射鬼像的产生机理和剔除方法;基于Matlab软件平台,利用论文所论述的方法,编写了CGH设计软件,利用该软件实现对光刻物镜中的非球面所需CGH的设计。
     2、用CGH对非球面检测的误差分析及标定方法。系统分析了CGH的基底误差、CGH的刻蚀误差、CGH和非球面的调节误差、CGH的成像畸变和温度压强波动等对非球面检测精度的影响;针对CGH基底误差,给出了基底的标定方法;针对CGH的成像畸变,建立了畸变校正模型,并实现了对CGH成像畸变的高精度校正;针对CGH和非球面的调节误差(球差和彗差),提出了误差控制的方法;采用非线性最小二乘算法,在测量非球面面形的同时,也实现了对非球面顶点曲率半径的高精度测量。同时,考虑到整个系统的轴对称性,采用多角度平均的方法,实现了对非球面旋转非对称面形的绝对标定,进一步提高了非球面的检测精度。
     3、高精度补偿镜的设计及公差分配。论文提出采用平行光入射的补偿镜设计方案,与其他设计方法相比,该设计方案便于调节(不用调节补偿镜的轴向距离和偏心),避免了补偿镜的调节误差对非球面测量精度的影响。另外,由于在光学加工和装配过程中采用了“光学复算”的方法,在满足非球面检测精度的情况下,使补偿镜的曲率半径加工公差、中心厚加工公差和透镜间隔装配公差变的相对宽松,方便补偿镜的加工和装配。
     4、检测结果的比对和实验验证。针对一抛物面,分别采用无像差点法和CGH法进行了高精度检测;通过对比二者的检测结果,从实验上验证了CGH法的准确性。
In optical design, the radius of curvature (ROC) is used as the only variable parameterfor optimizing a sphere surface. By contrast, a conic constant and many high-orderaspheric coefficients can be used as variables for optimizing an aspheric surface.Therefore, aspheric surfaces are commonly used in the high numerical aperture (NA)projection objectives to decrease the complexity and to improve the imagingperformance. However, its applications are limited by the testing level despite ofmany superior optical features. Especially the ultra-precision aspheric surface testinghas become a challenge that we have to deal with. Usually, Annular stitching orsub-aperture stitching method can test an asphere with a mild departure from the bestfit radius (BFR), but the testing precision is restricted by the mechanical positioningerror and the retrace error of the interferometer. Stigmatic null testing can test a conicsurface, but with the center usually obscured. Thus, null lens compensator is the bestchoice for testing a high-order aspheric surface. Furthermore, the testing precisionshould be less than1nm RMS in order to meet the surface precision requirements ofasphere elements in high NA projection objectives.
     Aiming at the requirements of ultra-precision aspheric surface testing in high NAprojection objectives, this dissertation focuses on the research of computer-generatedhologram (CGH) and null lens as compensators and contains the following sections:
     1. Designing high precise CGH. The thesis analyses the CGH working principle,CGH working modes and diffraction efficiency; gives the calculatingmethods of CGH phase and CGH spatial frequency. For a general even highorder asphere in high-NA projection objectives, the thesis discusses thedesign method of null CGH and alignment CGH in detail, and then analysesthe reason how the diffracting ghosts turn up, and proposed a method toavoid them. According to the methods described in this thesis, a programbased on Matlab platform is compiled to complete the CGH design for theaspheres in the high-NA projection objective.
     2. Error analysis of aspheric testing with CGH and calibrating methods. Thethesis analyses the substrate error, etching error, alignment error betweenCGH and asphere, imaging distortion and the influence of temperature andpressure fluctuation. The thesis gives the calibration methods for thesubstrate error of CGH and builds a model to correct the imaging distortion of CGH precisely. The thesis also gives an effective method to restrict thealignment errors such as spherical aberration and coma. Using the nonlinearleast-square method, the vertex radius of curvature is acquired whenmeasuring the aspheric surface. To improve the testing precision, therotational asymmetric surface is calibrated absolutely using the multi-angleaveraging method.
     3. Designing high precise null lens and tolerance analysis. Compared to otherdesigns, the design which uses the parallel beam illuminating the null lenscould be easily aligned (need not to take the axial and decenter alignment)and avoid the alignment errors for aspheric surface testing. Furthermore, thefabricating tolerance of ROC and center thickness, and the aligning toleranceof spacing will be much loosened by using the optical redesign method in thefabricating and aligning process. This will be very favorable for opticalfabrication and alignment.
     4. The results comparing and experimental verification. A paraboloid is testedprecisely using stigmatic null test and CGH null test respectively. Theprecision of CGH is verified experimentally by comparing the two testingresults.
引文
[1]姚汉民,胡松,刑廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006.
    [2] K. Jain, R. T. Kerth. Excimer Laser Projection Lithography[J]. Applied Optics,1984,23(5):648-650.
    [3] R. T. Kerth, K. Jain, M. R. Latta. Excimer Laser Projection Lithography on aFull-Field Scanning Projection System[J]. Ieee Electron Device Letters,1986,7(5):299-301.
    [4] G. E. Moore. Lithography and the future of Moore's law[J]. Proceedings of SPIE,1995,2438:2-17.
    [5] C. Sparkes, L. F. Thompson, R. J. Travers. ArF MicroStep for193-nm processdevelopment[J]. Proceedings of SPIE,1996,2726:690-697.
    [6] J. H. Bruning. Optical lithography-Thirty years and three orders of magnitude-The evolution of optical lithography tools[J]. Emerging LithographicTechnologies,1997,3048:14-27.
    [7] D. R. Cote, D. Ahouse, D. N. Galburt, et al. Advances in193-nm lithographytools[J]. Proceedings of SPIE,2000,4000:542-550.
    [8] C. Wagner, W. M. Kaiser, J. Mulkens, et al. Advanced technology forextending optical lithography [J]. Proceedings of SPIE,2000,4000:344-357.
    [9] D. M. Williamson. DUV or EUV, that is the question[J]. Proceedings of SPIE,2000,4146:1-12.
    [10] A. K.-K. WONG. Resolution Enhancement Techniques in OpticalLithography[M]. SPIE-The International Society for Optical Engineering,2001.
    [11] R. Paetzel, H. S. Albrecht, P. Lokai, et al. Excimer lasers for super-high NA193nm lithography[J]. Optical Microlithography Xvi, Pts1-3,2003,5040:1665-1671.
    [12] A. Namba, S. Uzawa, K. Kotoku.0.85NA ArF scanner: advancing features andperformances[J]. Proceedings of SPIE,2004,5377:758-769.
    [13] H. Ikezawa, Y. Ohmura, T. Matsuyama, et al. A hyper-NA projection lens forArF immersion exposure tool[J]. Proceedings of SPIE,2006,6154:615421.
    [14] B. Kneer, P. Gr upner, R. Garreis, et al. Catadioptric lens design: thebreakthrough to hyper-NA optics[J]. Proceedings of SPIE,2006,6154:615420.
    [15] S. Owa, H. Nagasaka, K. Nakano, et al. Current status and future prospect ofimmersion lithography[J]. Optical Microlithography Xix, Pts1-3,2006,6154:U176-U187.
    [16] J. H. Bruning. Optical Lithography...40years and holding-art. no.652004[J].Optical Microlithography XX, Pts1-3,2007,6520:52004-52004.
    [17] B. J. Lin. Successors of Arf Water-Immersion Lithography: Euv Lithography,Multi-E-Beam Maskless Lithography, or Nanoimprint?[J]. Journal ofMicro-Nanolithography Mems and Moems,2008,7(4):040101.
    [18] G. W. Forbes. Shape specification for axially symmetric optical surfaces[J]. OptExpress,2007,15(8):5218-5226.
    [19] G. W. Forbes. Robust and fast computation for the polynomials of optics[J]. OptExpress,2010,18(13):13851-13862.
    [20] G. W. Forbes. Robust, efficient computational methods for axially symmetricoptical aspheres[J]. Opt Express,2010,18(19):19700-19712.
    [21] G. W. Forbes, C. P. Brophy. Asphere, O Asphere, how shall we describe thee?[J].Proceedings of SPIE,2008,7100:710002.
    [22] T. W. J. Unti. Best-Fit Sphere Approximation to a General Aspheric Surface[J].Applied Opitcs,1996,5(2):319-319.
    [23] http://www.bruker.com/products/surface-analysis/stylus-profilometry.html.
    [24] http://www.taylor-hobson.com/products/10/107.html#Form-Talysurf-PGI-12402
    [25] http://www.optipro.com/asphere-measurement.html.
    [26] B. Alessandro, P. Pasquale, Q. Franco, et al. Fast One-DimensionalProfilometer with a Compact Disc Pickup[J]. Applied Optics,2001,40(7):1044-1048.
    [27] M. Adachi, H. Miki, I. Kawaguchi, et al. Optical precision profilometer usingthe differential method[J]. Optics Letters,1987,12(10):792-794.
    [28] http://www.optipro.com/noncontact-metrology.html.
    [29] R. J. Whitefield. Noncontact optical profilometer[J]. Applied Optics,1975,14(10):2480-2485.
    [30] T. Shouhong, H. Y. Y. Fast profilometer for the automatic measurement of3-Dobject shapes[J]. Applied Optics,1990,9(1):3012-3018.
    [31] D. V. Semenov, E. Nippolainen, Alexei A Kamshilin. Ultrahigh accuracy3-Dprofilometer[J]. Applied Opitcs,2006,45(3):411-418.
    [32] http://www.acuitylaser.com/support/measurement-principles.
    [33] http://www.stilsa.com/EN/prod/chr/capteurs.htm.
    [34] http://www.edmundoptics.com/testing-targets/testing-alignment/chromatic-confocal-point-sensor-systems/3371.
    [35] http://www.nikonmetrology.com/en_US/Products/Coordinate-Measuring-Machines.
    [36] http://ecatalog.mitutoyo.com/Coordinate-Measuring-Machines-C101.aspx.
    [37] http://www.globalspec.com/learnmore/manufacturing_process_equipment/inspection_tools_instruments/coordinate_measuring_machines_cmm.
    [38] http://metrology.zeiss.com/industrial-metrology/en_us/products/systems.html.
    [39] S. Kang, J. Zhuangde. Estimation of measuring uncertainty for opticalmicro-coordinate measuring machine[J]. Chinese Optics Letters,2004,2(12):704-707.
    [40] M. Antonin, N. Jiri. Noncontact interferometric optical probe for calibration ofcoordinate measuring machines[J]. Applied Optics,2011,50(5):671-678.
    [41] http://www.zygo.com/?/met/interferometers/&gclid=CN2n_IW-grwCFW9V4godKhcAWg.
    [42] http://esdimetrology.com/.
    [43] http://qedmrf.com/metrology/.
    [44] http://www.4dtechnology.com/home/index2.php.
    [45] L. A. Selberg. Interferometer Accuracy and Precision[J]. Optical Fabrication andTesting,1991,1400:24-32.
    [46] D. Malacara. Optical Shop Testing(Third Edition)[M]. John Wiley&Sons, Inc.,2007.
    [47] A. Offner. A Null Corrector for Paraboloidal Mirrors[J]. Applied Opitcs,1963,2(2):153-155.
    [48] A. Offner. Field Lenses and Secondary Axial Aberration[J]. Applied Opitcs,1969,8(8):1735-1736.
    [49] J. R. Moya, J. E. A. Landgrave. Third-order design of refractive Offnercompensators[J]. Applied Opitcs,1987,26(13):2667-2672.
    [50] Y. S. Kim, B. Y. Kim, Y. W. Lee. Design of Null Lenses for Testing of EllipticalSurfaces[J]. Applied Opitcs,2001,40(19):3215-3219.
    [51] R. T. Holleran. An Algebraic Solution for the Small Lens Null Compensator[J].Applied Opitcs,1968,7(1):137-144.
    [52] D. Shafer. Null lens design techniques[J]. Applied Opitcs,1992,31(13):2184-2187.
    [53] D. E. Stoltzmann, P. Ceravolo. Ross null test for conic mirrors[J]. Applied Opitcs,1993,32(7):1189-1199.
    [54] D. J. Nicholas, C. Pataky, W. T. Welford. High aperture lens for lasercompression experiments: a new type[J]. Applied Opitcs,1978,17(21):3368-3371.
    [55] L. Furey, T. Dubos, D Hansen, et al. Hubble Space Telescope primary-mirrorcharacterization by measurement of the reflective null corrector[J]. AppliedOpitcs,1993,32(10):1703-1714.
    [56] A. W. L. a. D. P. Paris. Binary Fraunhofer Holograms, Generated by Computer[J].Applied Optics,1967,6(10):1739-1748.
    [57] J. C. Wyant, V. P. Bennett. Using Computer Generated Holograms to TestAspheric Wavefronts[J]. Applied Optics,1972,11(12):2833-2839.
    [58] J. C. Wyant, P. K. O’Neill. Computer Generated Hologram; Null Lens Test ofAspheric Wavefronts[J]. Applied Optics,1974,13(12):2762-2765.
    [59] J. Burge. A Null Test for Null Correctors-Error Analysis[J]. Quality andReliability for Optical Systems,1993,1993:86-97.
    [60] J. Burge. Certification of Null Correctors for Primary Mirrors[J]. AdvancedOptical Manufacturing and Testing Iv,1994,1994:248-259.
    [61] S. M. Arnold, R. Kestner. Verification and certification of CGH aspheric nulls[J].Optical Manufacturing and Testing,1995,2536:117-126.
    [62] J. H. Burge. Applications of computer-generated holograms for interferometricmeasurement of large aspheric optics[J]. International Conference on OpticalFabrication and Testing,1995,2576:258-269.
    [63] Y. C. Chang, J. Burge. Error ananlysis for CGH optical testing[J]. Proceedings ofSPIE,1999,6723:67235S.
    [64] E. Curatu, M. Wang. Tolerancing and testing of CGH aspheric nulls[J]. OpticalManufacturing and Testing Iii,1999,3782:591-600.
    [65] C. Pruss, S. Reichelt, H. J. Tiziani, et al. Computer-generated holograms ininterferometric testing[J]. Optical Engineering,2004,43(11):2534-2540.
    [66] R. Schreiner, T. Herrmann, J. R der, et al. Design Considerations forComputer Generated Holograms as supplement to Fizeau Interferometers[J].Proceedings of SPIE,2005,5965:59650K.
    [67] J.-B. Song, H.-S. Yang, H.-G. Rhee, et al. Modified alignment CGHs foraspheric surface test[J]. Proceedings of SPIE in Optical Manufacturing andTesting VIII,2009,7426:742616.
    [68] J. Pfund, N. Lindlein, J. Schwider. NonNull Testing of Rotationally SymmetricAspheres: A Systematic Error Assessment[J]. Applied Opitcs,2001,40(4):439-446.
    [69] J. E. Greivenkamp, R. O. Gappinger. Design of a Nonnull Interferometer forAspheric Wave Front[J]. Applied Opitcs,2004,43(27):5143-5151.
    [70] R. O. Gappinger, J. E. Greivenkamp. Iterative Reverse Optimization Procedurefor Calibration of Aspheric Wave-Front Measurements on a NonnullInterferometer[J]. Applied Opitcs,2004,43(27):5152-5161.
    [71] C. Tian, Y. Yang, T. Wei, et al. Nonnull interferometer simulation for aspherictesting based on ray tracing[J]. Applied Opitcs,2011,50(20):3559-3569.
    [72] C. Tian, Y. Yang, Y. Zhuo. Generalized data reduction approach for aspherictesting in a non-null interferometer[J]. Applied Opitcs,2012,51(10):1598-1604.
    [73] L. Zhang, D. Liu, T. Shi, et al. Practical and accurate method for asphericmisalignment aberrations calibration in non-null interferometric testing[J].Applied Opitcs,2013,52(35):8501-8511.
    [74] Y. Wen, H. Cheng, H.-Y. Tam, et al. Modified stitching algorithm for annularsubaperture stitching interferometry for aspheric surfaces[J]. Applied Opitcs,2013,52(13):5686-5694.
    [75] X. Hou, F. Wu, L. Yang, et al. Stitching algorithm for annular subapertureinterferometry[J]. Chinese Optics Letters,2006,4(4):211-214.
    [76][76] X. Wang, L. Wang, L. Yin, et al. Measurement of large aspheric surfacesby annular subaperture stitching interferometry[J]. Chinese Optics Letters,2007,5(11):645-647.
    [77] M. Melozzi, A. Mazzoni, L. Pezzati. Testing aspheric surfaces using multipleannular interferograms[J]. Optical Engineering,1993,32(5):1073-1079.
    [78] X. Hou, F. Wu, S. Wu, et al. Annular subaperture interferometric testingtechnique for large aspheric surfaces[J]. Proceedings of SPIE,2005,5638:992.
    [79] Y.-M. Liu, G. N. Lawrence, C. L. Koliopoulos. Subaperture testing of asphereswith annular zones[J]. Applied Optics,1988,27(21):4504-4513.
    [80] M. F. Küchel. Interferometric Measurement of Rotationally Symmetric AsphericSurfaces[J]. Proceedings of SPIE,2009,7389:738916.
    [81] S. Chen, S. Li, Y. Dai, et al. Experimental study on subaperture testing withiterative stitching algorithm[J]. Optics Express,2008,16(7):4760-4765.
    [82] P. Murphy, G. Forbes, J. Fleig, et al. Stitching Interferometry: A FlexibleSolution for Surface Metrology[J]. Optics and Photonics News,2003,14(5):38-43.
    [83] P. Murphy, J. Fleig, G. Forbes, et al. Subaperture stitching interferometry fortesting mild aspheres[J]. Proceedings of SPIE,2006,6293:6293J.
    [84] P. Murphy, G. DeVries, J. Fleig, et al. Measurement of high-departureaspheric surfaces using subaperture stitching with variable null optics[J].Proceedings of SPIE,2009,7426:74260P.
    [85] J. E. Greivenkamp. Sub-Nyquist interferometry[J]. Applied Opitcs,1987,26(24):5245-5258.
    [86] M. Servin, D. Malacara, Z. Malacara, et al. Sub-Nyquist null aspheric testingusing a computer-stored compensator[J]. Applied Opitcs,1994,33(19):4103-4108.
    [87] R. J. Palum, J. E. Greivenkamp. Sub-Nyquist Interferometry: Results AndImplementation Issues[J]. Proceedings of SPIE,1990,1162:378.
    [88] J. E. Greivenkamp, A. E. Lowman, R. J. Palum. Sub-Nyquist interferometry:implementation and measurement capability[J]. Optical Engineering,1996,35(10):2962-2969.
    [89] M. Wang, B. Zhang, S. Nie, et al. Radial shearing interferometer for asphericsurface testing[J]. Proceedings of SPIE,2002,4927:673-676.
    [90]贺俊,陈磊.使用红外干涉仪测量非球面面形[J].光学精密工程,2010,18(1):69-74.
    [91] W. Yongqian, Z. Yudong, W. Fan. Optical testing of large rough asphericsurface using far-infrared interferometer[J]. Proceedings of SPIE,2009,7383:73832Y.
    [92] O. Kwon, J. C. Wyant, C. R. Hayslett. Rough surface interferometry at10.6μm[J].Applied Optics,1980,19:1862-1869.
    [93] J. K.Sinha, H. V. Tippur. Infrared interferometry for rough surface measurements:application to failure characterization and flaw detection[J]. Optical Engineering,1997,36(8):2233-2239.
    [94] http://en.wikipedia.org/wiki/Hubble_Space_Telescope.
    [95] http://www.zygo.com/library/papers/proc_TD04-25.pdf.
    [96] http://www.zygo.com/met/interferometers/verifire/at/verifire_at_specs.pdf.
    [97] http://www.zygo.com/met/interferometers/verifire/asphere/verifire_asphere_spec.pdf.
    [98] http://103.2.211.229/videoplayer/09-Aspheric%20Testing.pptx.pdf?ich_u_r_i=20313ba0f34e85ba5ea8bd9bc9b81adf&ich_s_t_a_r_t=0&ich_e_n_d=0&ich_k_e_y=1445038906750163262434&ich_t_y_p_e=1&ich_d_i_s_k_i_d=10&ich_u_n_i_t=1.
    [99] http://qedmrf.com/qis.
    [100] http://qedmrf.com/metrology7/products77/asiq.
    [101] http://www.photonic-sourcing.com/photonics/intellium-asphere-249.pdf.
    [102] http://esdimetrology.com/w/fizeau-interferometers/dimetior-series/dimetior_as
    [103] A. W. Lohmann, D. P. Paris. Binary Fraunhofer Holograms, Generated byComputer[J]. Applied Optics,1967,6(10):1739-1748.
    [104] B. R. Brown, A. W. Lohmann. Complex Spatial Filtering with Binary Masks[J].Applied Optics,1966,5(6):967-969.
    [105] A. J. MacGovern, J. C. Wyant. Computer Generated Holograms for TestingOptical Elements[J]. Applied Optics,1971,10(3):619-624.
    [106] J.C.Wyant, P.K.O'Neill, J.MacGovern. Interferometric Method of MeasuringPlotter Distortion[J]. Applied Optics,1974,13(7):1549-1551.
    [107] A. Ono, J. C. Wyant. Plotting errors measurement of CGH using an improvedinterferometric method[J]. Applied Optics,1984,23(21):3908-3901.
    [108] S. M. Arnold. Electron Beam Fabrication Of Computer-Generated Holograms[J].Optical Engineering,1985,24(5):245803.
    [109] J.H.Burge. Applications of computer-generated holograms for interferometricmeasurement of large aspheric optics[J]. Proceedings of SPIE,1995,2576:258-269.
    [110] V. P. Koronkevich, V. P. Kiryanov, V. P. Korolkov, et al. Fabrication ofdiffractive optical elements by direct laser-writing with circular scannin[J].Proceedings of SPIE,1995,2363:290.
    [111] A. G. Poleshchuk, V. P. Korolkov. Laser writing systems and technologies forfabrication of binary and continuous relief diffractive optical elements[J].Proceedings of SPIE,2007,6732:67320X.
    [112] Q.-Z. Zhao, J.-R. Qiu, X.-W. Jiang, et al. Direct writing computer-generatedholograms on metal film by an infrared femtosecond laser[J]. Optics Express,2005,13(6):2089-2092.
    [113] http://en.wikipedia.org/wiki/Diffraction_grating.
    [114] http://emlab.utep.edu/ee5390em21/Lecture%209%20--%20Diffraction%20gratings.pdf.
    [115] http://www.dallas.radiology.arizona.edu/OpSci%20627/00%20Miscellaneous/01%20Burge%20CGH%20Optical%20testing.pdf.
    [116] http://arizona.openrepository.com/arizona/handle/10150/280200.
    [117] http://www.osa-opn.org/home/articles/volume_19/issue_4/features/testing_aspheres/#.Uxqz5HmiQSs.
    [118] http://www.aspe.net/publications/Winter_2004/PAPERS/3METRO/1376.PDF.
    [119] http://photonics.intec.ugent.be/education/ivpv/res_handbook/v2ch31.pdf.
    [120] Y. Chang. Diffraction wavefront analysis of Computer-Generated Holograms[D].Tucson: the University of Arizona,1999.
    [121] P. Zhou. Error analysis and data reduction for interferometric surfacemeasurements[D]. Tucson: the University of Arizona,2009.
    [122] P. Zhou, J. H. Burge. Fabrication error analysis and experimental demonstrationfor computer-generated holograms[J]. Applied Optics,2006,46(5):657-663.
    [123] ZEMAX Optical Design Program User's Guide(ZEMAX DevelopmentCorporation,2009).
    [124] N. Lindlein. Analysis of the disturbing diffraction orders of computer-generatedholograms used for testing optical aspherics[J]. Applied Optics,2001,40(16):2698-2708.
    [125] Y. Xie, Q. Chen, F. Wu. Design of twin computer-generated holograms used fortesting concave conic mirrors[J]. Proceedings of SPIE,2007,6723:67235S.
    [126] D. Casasent, F. Coetzee, S. Natarajan, et al. Accuracy of CghEncoding-Schemes for Optical-Data Processing[J]. Computer and OpticallyGenerated Holographic Optics,1991,1555:23-33.
    [127] J. O. Fan, D. Zaleta, K. S. Urquhart, et al. Efficient Encoding Algorithms forComputer-Aided-Design of Diffractive Optical-Elements by the Use ofElectron-Beam Fabrication[J]. Applied Optics,1995,34(14):2522-2533.
    [128] H. Farhoosh, M. R. Feldman, S. H. Lee, et al. Comparison of BinaryEncoding-Schemes for Electron-Beam Fabrication of Computer GeneratedHolograms[J]. Applied Optics,1987,26(20):4361-4372.
    [129] M. T. Yang, J. P. Ding. Area encoding for design of phase-onlycomputer-generated holograms[J]. Optics Communications,2002,203(1-2):51-60.
    [130] C. Y. Zhao, J. H. Burge. Estimate of Wavefront Error Introduced by Encoding ofComputer Generated Holograms[J].2009Lasers&Electro-Optics&the PacificRim Conference on Lasers and Electro-Optics, Vols1and2,2009:293-294.
    [131]高松涛,王高文,张健, et al.用计算全息图校正非球面的畸变[J].光学精密工程,2013,21(8):1929-1935.
    [132] C. Y. Zhao, J. H. Burge. Imaging aberrations from null correctors-art. no.67230L[J].3rd International Symposium on Advanced Optical Manufacturingand Testing Technologies: Optical Test and Measurement Technology andEquipment, Parts1-3,2007,6723: L7230-L7230.
    [133] P. Zhou, J. H. Burge, C. Zhao. Imaging issues for interferometric measurementof aspheric surfaces using CGH null correctors[J]. Proceeds of SPIE,2010,7790:7790L.
    [134] J. H. Burge, C. Zhao, P. Zhao. Imaging issues for interferometry with CGH nullcorrectors[J]. Proceeds of SPIE,2010,7739:77390T.
    [135]刘满林,杨旺,许伟才.干涉仪成像畸变引起测量误差的校正方法[J].光学精密工程,2011,19(10):2349-2354.
    [136] J. Wang, F. Shi, J. Zhang, et al. Anewcalibration model of camera lensdistortion[J]. Pattern Recognition,2008,41:607-615.
    [137] D. C. Brown. Decentering distortion of lenses[J]. Photogrammetric EngineerRemote Sensing,1966,32(3):444-462.
    [138] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models andaccuracy evaluation[J]. IEEE Transactions on pattern analysis and machineintellience,1992,14(10):965-980.
    [139]程灏波,冯之敬.波像差法构建非球面干涉检测的误差分离模型[J].清华大学学报(自然科学版),2006,46(2):187-190.
    [140] Zygo's Guide to Typical Interferometer Setups(Zygo Corporation,2003)[J].
    [141] C. J. Evans, R. N. Kestner. Test optics error removal[J]. Applied Optics,1996,35(7):1015-1021.
    [142] R. Freimann, B. D rband, F. H ller. Absolute measurement of non-comaticaspheric surface errors[J]. Optics Communications,1999,161:106-114.
    [143]潘君骅.光学非球面的设计、加工与检测[M].苏州:苏州大学出版社,2004.
    [144] http://www.oharacorp.com/measure.html
    [145]高松涛,隋永新,杨怀江.用计算全息图对非球面的高精度检测与误差评估[J].光学学报,2013,33(6):0612003.
    [146] C. Evans, C. Smith, J. Soobitsky, et al. Full area calibration of large opticalflats[C]. the ASPE spring topical conference, Proceedings,2009:
    [147] R. E. Parks, L. Shao, C. J. Evans. Pixel-based absolute topography test for threeflats[J]. Applied Optics,1998,37(25):5951-5956.
    [148] U. Griesmann, Q. Wang, J. Soons, et al. A Simple Ball Averager for ReferenceSphere Calibrations[J]. Proceedings of SPIE,2006,5869:58690S.
    [149] H.J. Rostalski, A. Dodoc, W. Ulrich, et al. Projection optical system[P]. UnitedStates, US2007/0258152A1.2007-11-8
    [150] A. Dodoc. High-NA projection objective[P]. United States, US7,848,016B2.2010-12-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700