三坐标测量机动态误差源分析、建模与修正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代制造业的发展对三坐标测量机提出了更高的测量速度和精度要求,但测量机的动态特性限制了测量机测量速度的提高,其原因是测量机动态误差对测量精度有较大影响。本文以测量机主要动态误差源分析为理论基础,以测量机动态特性分析实验为依据,对测量机在不同速度参数和空间位置时进行动态误差建模研究。并采用软硬件相结合的方法进行动态误差修正,以提高动态测量精度。
     在对测量机触发运行模式下的动态特性进行实验研究的基础上,阐明了测量机动态误差的来源和构成。重点研究了测头系统、机体结构、测量系统对测量机动态误差的影响。对于测头系统,研究了测头系统动态瞄准误差的构成,提出等效测头作用直径的概念,分析速度参数对作用直径的影响,建立了理论模型。对于机体结构,研究了机体动态变形产生机理,建立机体结构动态变形与位移误差转换模型,从理论和实验上验证机体动态变形的空间相关性。研究了光栅测量系统光栅栅线刻划误差、光栅副误差、电子系统误差、温度误差,为研发新型的光栅测量系统奠定了基础。
     研制高精度动态误差数据采集对比实验系统,用双频激光干涉仪作为高精度的动态测量基准,实时测量在不同速度下测量机各轴的实际位移,并与光栅系统的读数相比较,二者之差为单轴动态误差。根据ISO 230-2标准处理实验数据,分析不同速度下测量机单轴稳定性及轴之间的相关性,实现比现行静态校准方法更精确的动态校准。
     按照《测量不确定度表示指南》所确定的框架,使用已被校准工件对测量机测量不确定度评定。同时,基于Monte Canto方法对坐标测量机动态测量不确定度进行评定,与按照动态测量不确定度A类评定和B类评定结果相比较,该方法对动态测量不确定度评定更符合实际情况。
     在动态误差源分析、建模的基础上,采用软硬件相结合的方法进行动态误差修正的研究,用2次样条拟合和shape-preserving函数拟合修正动态误差,用二元线性回归建立不同测位与速度变化时测量机综合动态误差模型,以此来修正动态误差。基于二次莫尔条纹原理探讨了纳米测量精度光栅测量标尺,将有可能改善目前光栅信号细分电路延时对测量机动态性能的影响。
     基于坐标测量机动态特性的研究成果,对坐标测量机性能评定和精度评定的国际标准和国家标准进行了分析,重点对ISO 10360-2、ISO 10360-5、ISO 15530-2.2进行研究,并就有关技术条款的制定或修订提出建议。
Modern manufacturing technology has put forward more exacting demand of speed and accuracy on Coordinate Measuring Machines (CMMs). High speed has become a new trend in CMMs technology. However, with the increase of speed of CMMs, the dynamic characteristic will be limited since dynamic errors will have a great impact on the measuring accuracy and act as a barrier to the measuring cycle time. This paper takes the main dynamic error source analysis on CMMs as the theoretical foundation to make research on dynamic error modeling of CMMs running with different velocity parameter and space position based on the CMMs dynamic characteristic analysis and testing. The method combining software with hardware is used to carry on the dynamic error correction to improve the dynamic measuring accuracy.The process of CMMs dynamic characteristic is studied experimentally under the touch-trigger probing pattern. The main dynamic error sources and composition of CMMs are identified and analyzed in detail. This paper makes research mainly on the influence which the probe system, machine structure and measuring system have on the dynamic error of CMMs. As for the probe system, the composition of its dynamic probing error is studied. A new concept of functional diameter of tip is put forward, the impact of the velocity parameters on the functional diameter is analyzed and the model of functional diameter is set in theory. As for the machine structure, the reason for its dynamic deformation is studied. The conversion between dynamic deformation and displacement error is modeled to validate the place-related characteristics of machine structure dynamic deformation both experimentally and theoretically. As for measuring system, the grating system scribing error, grating pairwise error, electronic system error, temperature error are studied, which pave the way for the development of the new grating measuring system.Develop the high-accuracy dynamic error data gathering contrast experiment system, use the double frequency laser interferometers as the high-accuracy dynamic measuring benchmark and measure the actual displacement of every axis of CMMs under different velocity, in real-time. Comparing the displacement with the reading of grating system, the difference is the single axis dynamic error. According to the ISO 230-2 standard to deal with the data, this paper analyzes the CMMs single axis stability and interrelated characteristic among axis under different velocity to realize the dynamic calibration which is more accurate than the static calibration.The dynamic measurement uncertainty of CMMs is evaluated with calibrated
    workpieces according to the framework confirmed by "Guide to the expression of uncertain in measurement". At the same time, the dynamic measurement uncertainty of CMMs is evaluated using Monte Carlo method. By the contrast of the A type and B type evaluation, this method has access to the actual conditions.On the base of dynamic error sources analysis, modeling, the method of combining the software with hardware and the way of square sample stripe fit and shape-preserving function fit are used to make research on the dynamic error correction as weli as the way of setting up CMMs compositive dynamic error model under different measuring position and velocity, adopting dual linear returns. It is possible to smooth the impact of the grating signal subdivision circuit time-delay on the dynamic performance of CMMs when the grating measuring scale with the measuring precision of nanometer is studied based on two times Moire fringe principle.On the base of the research outcome of CMMs dynamic characteristic, this paper analyzes the international standard and national standard of CMMs performance evaluation and precision evaluation, especially ISO 10360-2, ISO 10360-5, ISO 15530-2.2 are studied and give some advices to the establishment or revision of relevant technological clauses.
引文
[1] 费业泰,赵静,王宏涛,马修水.三坐标测量机动态误差研究分析.仪器仪表学报,2004,No.4(增刊),P773~776
    [2] 费业泰,赵静,陈维方.三坐标测量机动态特性与动态精度研究.第四届海峡两岸制造技术研讨会论文集(杭州).2004年11月,P277~284
    [3] 费业泰,卢荣胜.动态误差修正原理与技术.北京,中国计量出版社,2001
    [4] De Nijs, J. F. C, Lammers. Modeling of a coordinate measuring machine for analysis of its dynamic behavior. Annals of the CIRP, 1998, Vol.37, P507~510
    [5] C. Butler. An investigation into the performance of probes on coordinate measuring machine. Ind. Met.2, P59~70, 1991
    [6] Weekers W. G, Schellekens P. H. J.. Assessment of dynamic errors of CMMs for fast probing. Annals of the CIRP, 1995, Vol. 45
    [7] 董晨松,穆玉海,张国雄.用用激光干涉仪测量坐标测量机的动态特性.天津大学学报,1998,Vol.31,No5
    [8] 董晨松,穆玉海,张国雄.移动桥式三坐标测量机z轴运动的动态误差.航空计测技术,1998,Vol.18,No.2
    [9] H. E. F. Castro, M. Burdekin. Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer. International Journal of Machine Tools and Manufacture. 2003, Vol.43, P947~954
    [10] 陈维方.三次元量测仪动态误差之研究.行政院国家科学委员会专题研究计划成果报告,2004
    [11] Y. H. Mu et al. Dynamic error compensation of coordinate measuring machines for high-speed measurement. Journal of Advance Manufacturing Technology, 1999, P810~814
    [12] 董晨松.三坐标测量机动态误差研究.天津大学博士论文,2002
    [13] Vermeulen, M. M, et al. Design of a high-precision 3D-coordinate measuring machine, CIPR Ann, Vol.47(1), P447~450
    [14] James D. Destefani. CMMs. Manufacturing engineering, 2001, Vol.9, P101~105
    [15] Pereira P. H. Dynamic error characteristic on scanning probe CMMs. PHD. Thesis, University of North Carolina at Charlotte, 2001
    [16] Pereira. Dynamic characterization and compensation of dynamic errors of a scanning coordinate. Measuring Machine, 2001
    [17] Yang Q., Butler C. and Barid P. Probe error modeling using artificial neural networks. Proceedings of 5th IMEKO TC-14 Symposium on Dimensional Metrology in Production and Quality Control, 1995, P406~413
    [18] Dong C. S., Zhang G. X., and Mu Y. H.. Assessing the dynamic errors of coordinate measuring machines for fast probing. Chinese Journal of Mechanical Engineering (English Edition), 1998, Vol. 11(4), P305~311
    [19] Cauchick-Miguel P. A. and Kings T. G.. Factors which influence CMM touch trigger probe performance. International Journal of Machine Tools and Manufacture, 1998, Vol.83 (4), P364~374
    [20] W. Tyler Estler et al. Practical aspects of touch-trigger probe error compensation. Precision Engineering, 1997, Vol.21, P1~17
    [21] A. Wozniak, M. Dobosz. Metrological feasibilities of CMM touch trigger probes. Part Ⅰ: P273-286; Part Ⅱ: P287~299, Measurement, 2003
    [22] W. P. Van Vliet et al. Development of a fast mechanical probe for coordinate measuring machines, Precision engineering, 1998, Vol.21, P141~152
    [23] Zhang G. et al.. Error compensation of coordinate measuring machine. Ann. CIPR, 1985, Vol.34, P445~448
    [24] Shetakov A. L.. Dynamic error correction method. IEEE Trans. Instrumn and Measmt, 1996, Vol.45(1), P250~255
    [25] Soons, J. A.. Accuracy analysis of multi-axis machines. PHD Thesis, Eindheven University of Technology, 1993
    [26] 董晨松,穆玉海,张国雄.评定三坐标测量机的动态误差.中国机械工程,1998,Vol.9(7)
    [27] Dong, C. S., Zhang, C., Wang, B., and Zhang, G. X.. Dynamic error prediction and compensation of coordinate measuring machine. IMECE2000, Proceedings of the ASME, Orlando, FL, Manufacturing Engineering Division, 2000, Vol. 11, P55~61
    [28] W. G. Weekers, P. H. J. Schellekens. Compensation for dynamic errors of coordinate measuring machines. Measurement, 1997, Vol.20(3), P197~209
    [29] 宋开臣,张奕群,李书和,张国雄.高速扫描三坐标测量机动态误差模型.天津大学学报,1999,No.3
    [30] 宋开臣,张奕群,李书和,张国雄.三坐标测量机动态误差补偿的研究.仪器仪表学报,1999,No.2
    [31] C. Dong et al. Prediction and Compensation of Dynamic Errors for Coordinate Measuring Machines. ASME Transactions, 2002, Vol. 124, No.3, P509~514
    [32] www.renisaw.com Application
    [33] Carl Zeiss. Innovation. Special edition 4
    [34] 许桢英,费业泰.基于小波神经网络的动态误差溯源研究.农业机械学报,2003,Vol.34,No.4
    [35] 许桢英,费业泰.用多分辨分析方法进行动态测试误差溯源研究.上海交通大学学报,2003,Vol.37,No.1
    [36] 许桢英.动态测量系统误差溯源与精度损失诊断的理论与方法的研究.合肥工业大学博士学位论文,2004
    [37] 张国雄.三坐标测量机的发展趋势.中国机械工程,Vol.11(1~2),2002,P222~226
    [38] Kunzm ann H. A Uniform Concept for Calibration, Acceptance Test, and Periodic Inspection of Coordinate Measuring Machines. CIRP Annal, 1990, 39(1), P561~564
    [39] Zhang G X, Zang Y F. A method for machine geometry calibration using 1-D ball array. CIRP Annals, 1991, 40(1), P519~522
    [40] JJF 1001-1998.通用计量术语及定义
    [41] 王为农.坐标测量机溯源及校准规范.现代计量测试,NO.2,2002.P12~14
    [42] EAL-G17.坐标测量机校准.欧洲实验室认可合作组织(European Cooperation for Accreditation of Laboratories)指南,1995
    [43] JJF 1059-1999.测量不确定度评定与表示
    [44] ISO 10360-1:2000. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM) - Part 1: Vocabulary
    [45] ISO 10360-2:2001. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM) -Part 2: CMMs used for measuring linear dimensions
    [46] ISO 10360-3:2000. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM)-Part 3: CMMs with the axis of a rotary table as the fourth axis
    [47] ISO 10360-4:2000. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM)-Part 4: CMMs used in scanning measuring mode
    [48] ISO 10360-5: 2000. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM)-Part 5: CMM probing performance with contacting probing system
    [49] ISO 10360-6:2001. Geometrical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM)-Part 6: Estimation of errors in computing of Gaussian associated features
    [50] ISO/WD 10360-7:2005. Geometical product specifications (GPS)-Acceptance test and reverification test for coordinate measuring machines (CMM)-Part7: CMMs equipped with video probing systems
    [51] ISO/WD 15530-1:2005. Geometrical product specifications (GPS)-Techniques for determining the uncertainty of measurement - Part 1: Overview and general
    [52] ISO/PWI 15530-2:2004. Geometrical product specifications (GPS)-Techniques for determining the uncertainty of measurement- Part 2: Use of expert judgement
    [53] ISO/TS 15530-3:2004. Geometrical product specifications (GPS)-Techniques for determining the uncertainty of measurement-Part 3: Use of Calibrated workpieces or standards
    [54] ISO/DT 15530-4:2004. Geometrical product specifications (GPS)-Techniques for determining the uncertainty of measurement - Part 4: Use of computer simulation
    [55] ISO/PWI 15530-5:2004. Geometrical product specifications (GPS)-Techniques for determining the uncertainty of measurement - Part 5: Use of statistical estimation
    [56] ISO/PWI 15530-6:2003. Geometrical product specifications (GPS) - Techniques for determining the uncertainty of measurement - Part 6: Use of un-calibrated workpieces
    [57] ISO/DTS 23165: 2005, Guide to the evaluation of CMM test uncertainty
    [58] JJF 1064-2000.坐标测量机校准规范
    [59] GB/T 16857.1-2002,eqv ISO 10360-1:2000.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第1部分:词汇
    [60] GB/T 16857.2-1997,eqv ISO 10360-2:1994.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第2部分:测量尺寸的坐标测量机
    [61] GB/T 16857.4-2003,eqv ISO 10360-4:2000.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第4部分:在扫描测量模式下使用的坐标测量机
    [62] GB/T 16857.5-2004,eqv ISO 10360-5:2000.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第5部分:使用多探针探测系统的坐标测量机
    [63] GB/T 16857.6,IDT ISO 10360-6:2000.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第6部分:计算高斯拟合要素的误差的评定(草案)
    [64] GB/T 16857.3,IDT ISO 10360-3:2000.产品几何量技术规范(GPS)-坐标测量机的验收检测和复检检测,第3部分:配置转台为第四轴的坐标测量机(草案)
    [65] Fei Yetai, Zhao Jing, Chen Weifang, Lin Shenwang. Dynamic characteristics of Touch-trigger Probe. ISIST'2004, (Xi'an, 2004.8), Vol. 1, P94-99
    [66] 张国雄.三坐标测量机.天津:天津大学出版社,1998
    [67] 赵静.三坐标测量机动态误差溯源分析与建模研究.合肥工业大学硕士学位论文,2005
    [68] 林叙温,吴昭同.三坐标测量机基本运动误差的相关性分析.工具技术,2004,No.12,P36~38
    [69] 徐科军主编.传感器与检测技术.北京:电子工业出版社,2004
    [70] 强锡富.传感器.北京:机械工业出版社,1998
    [71] S. Hamlin. Fabry-Perot grating interferometer in polarization-maintaining fiber. NTIS, 1999
    [72] I.K. Buehring, D. Mansfield. Phase grating interferometer gauge. Proc. Of 9th IPES, 1997
    [73] 孟超,费业泰.光栅信号时钟脉冲细分的误差分析.宇航计测技术,16(6),1996.12
    [74] A. Teimwl. Technology and appllication of grating interferometers in high-precision measurement. Progress in Precision Engineering, Braunschweig, Germany, 1991
    [75] 田红芳.受温变形试验装置高精度光栅测量系统的研究.合肥工业大学硕士学位论文,1994
    [76] 林叙温,吴昭同,李刚.三坐标测量机非刚性效应测量误差分布特征.仪器仪表学报,2001.4,Vol.22,P94~99
    [77] Fei Yetai, Zhao Jing, Chen Xiaohuai, Wang Hongtao. Research on influence of velocity parameters on dynamic performance of coordinate measuring machines, contributed to Sino_Uk workshop on measurement and instruments
    [78] Fei Yetai, Zhao Jing, et al. Research on high-speed measurement accuracy of coordinate measuring machines. ISMTII'2005, Sep5th~8th., Journal of Physics
    [79] 沙定国主编.误差分析与测量不确定度评定.北京:中国计量出版社,2003
    [80] 费业泰主编.误差理论与数据处理.北京:机械工业出版社,2002
    [81] 刘智敏.不确定度及其实践.北京:中国标准出版社,2002
    [82] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the expression of uncertain in measurement[GUM]. ISO, 1995
    [83] 费业泰.现代误差理论及其基本问题.宇航计测技术,1996,NO.4~5
    [84] 林洪桦.动态测量不确定度A类评定.宇航计测技术,1996,NO.4~5
    [85] 许陇云.动态测量不确定度初探.宇航计测技术,1996,NO.4~5
    [86] 林洪桦.动态测试数据处理.北京:北京理工大学出版社,1995
    [87] 吴俊杰,潘麟生.随机过程.长沙:湖南大学出版社,1988
    [88] 项静恬等.动态和静态数据处理—时间序列和数据统计分析.北京:气象出版社,1991
    [89] 张贤达.现代信号处理.北京:清华大学出版社,1995
    [90] Proakis J. G., et al. Advanced digital signal processing. Macmillian, 1992
    [91] 陈尚勤,李晓峰.快速自适应信息处理.北京:人民邮电出版社,1993
    [92] 陈晓怀.万工显误差修正不确定度分析与计算.宇航计测技术,1996,NO.4~5
    [93] 国际标准化组织2004年9月6-8日在法国巴黎召开的三坐标测量机验收检测和复检检测标准工作组会议纪要及技术资料
    [94] 国际标准化组织2005年1月在美国新奥尔良召开的三坐标测量机验收检测和复检检测标准工作组会议纪要及技术资料
    [95] ALPHA Collaboration, Ulli Woff. Monte Carlo errors with less errors. Computer physics Communication. 2004, Vol. 156, P143~153
    [96] 裴鹿成.计算机随机模拟.长沙:湖南科学技术出版社,1989
    [97] 肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法.北京:科学出版社,2003
    [98] 徐钟济.蒙特卡罗方法.上海:上海科学技术出版社,1985
    [99] 裴鹿成.蒙特卡罗方法及其在粒子运输问题中的应用.北京:科学出版社,1980
    [100] 薄晓静.基于贝叶斯理论的不确定度评定.合肥工业大学硕士论文,2005
    [101] Jeha Ryu, Jongeun cha. Volumetric error analysis and architecture optimization for accuracy of HexaSlide type parallel manipulators. Mechanism and Machine Theory. 2003, Vol.38, P227~240
    [102] Aneta Karaivanova, Lvan Dimov. Error analysis of an adaptive Monte Carlo method for numerical integration. Mathematics and Computers in Simulation. 1998, Vol.47, P201~203
    [103] Ma Xiushui, Fei Yetai, Chen Xiaohuai, Zhao Jing, Wang Hongtao. Dynamic Measurement Accuracy Evaluation for Touch-trigger Probe of CMMs Based Monte Carlo Method. ISMTII'2005, UK, Sep.9, 2005
    [104] Dean lee, Nathan Salwen, Mark Windoloski. Introduction to stochastic error correction methods. Physics letters B, 2001, Vol.502, P329~337
    [105] Ferran Verdu, Yolanda Villacampa. A computer program for a Monte Carlo analysis of sensitivity in equations of environmental modelling obtained from experimental data. Advances in Engineering Software, 2002, Vol.33, P351~359
    [106] M. Abbe, K. Takamasu, S. Ozono. Reliability on calibration of CMM. Measurement. 2003, Vol33, P359~368
    [107] Shen-Wang Lin. Dynamic measurement accuracy evaluation of coordinate measuring machines. Proceedings of the Institute of Mechanical Engineers, Journal of Engineering Manufacture, Part B, 2001, Vol.215, P1091~1097
    [108] Knapp, W.. Measurment uncertainty on coordinate measuring machines. Proceedings of 6th IMEKO Symposium, 1998, P331~335
    [109] Yongqing Wu, Shuqui Liu, Guoxiong Zhang. Improvement of coordinate measuring machine probing accessibility. Precision Engineering, 2004, Vol.28, P89~94
    [110] Antonio Pirateli-Filho, Benedito Di Giacomo. CMM uncertainty analysis with factorial design. Precision Engineering, 2003, Vol.27, P283~288
    [111] 马修水,费业泰等.ISO 10360-2标准若干问题的探讨.合肥工业大学学报,2004,No.10,P1141~1143
    [112] 马修水,费业泰,陈晓怀,李桂华,权继平.光栅纳米测量的研究与进展.仪表技术与传感器,已录用
    [113] Ma Xiushui, Fei Yetai, Chen Xiaohuai, Zhao Jing. New measuring scale of CMMs. ISIST'2004, Harbin Institute of Technology Press, 2004, Vol.1, P906~910
    [114] 马修水,费业泰,陈晓怀,赵静.一种新型纳米光栅传感器的理论研究.仪器仪表学报,已录用
    [115] Loewen, E. G. and E. Popov. Diffraction gratings and applications. Marcel Dekker, (New York), 1997
    [116] Richardson Grating Laboratory. Diffraction grating handbook, forth edition, 2002
    [117] C. Palmer, W. Mckinney and B. Wheeler. Imaging equations for spectroscopic systems using Lie transformations. Part Ⅰ-Theoretical foundations. Proc. SPIE 3450, 1998, P55~56
    [118] E. K. Popov, E. G. loewen and M. Nevicre. Transmission grating for beam sampling and beam splitting. Applied Optics, 1996, Vol.35, P3072~3075
    [119] Zhang Zhaozong, Zhang Haifeng. Nanometer grating technology and its research direction. Proceedings of 2nd International Symposium on Science and Technology, Harbin Institute of Technology Press. 2002, Vol.2, P100~104
    [120] J.Thiel, E. Spanner, Dr. Johannes Heidenhain GmbH, Traunreut. Interferential linear encoder with 270mm measuring length for nanometrology, http://www.Heidenhain.com/thiel.mtml
    [121] 余文新,胡小唐等.光栅纳米测量中的系统误差修正技术研究.计量学报,No.2,2002,P100~105
    [122] 余文新,胡小唐等.光栅纳米测量中实时动态误差修正方法的研究.仪器仪表学报,No.3(增刊),2001,P63-64
    [123] 张善锺.计量光栅技术.北京:机械工业出版社,1985
    [124] 苑文瑛.地轨式双立柱三坐标测量机.航空精密制造技术,No.2,1994,P9-12
    [125] Ma Xiushui, Xu Kejun. Scribing error of capacitive displacement sensor. Proceedings of the International Symposium Precision Mechanical Measurement, Harbin Institute of Technology Press, 2002, P1~4
    [126] 徐科军、马修水、廖健芳、马文.容栅式机床标尺若干误差的实测与建模.工具技术,No.8,1994,P40~46
    [127] 徐科军、马修水、廖健芳、马文.容栅传感器研究与开发现状.工具技术,No.12,1994,P37~40
    [128] 诸锡荆,姜雅颜等向ISO坐标测量机中国工作组提交的“关于慎重取消探测误差的建议”,2004年7月
    [129] 马修水,费业泰,陈晓怀,王宏涛,赵静.接触探测系统CMM验收检测和复检检测标准的探讨.工具技术,No5,2005,P80~82
    [130] 全国产品尺寸和几何技术规范标准化技术委员会2005年9月在太原召开的坐标测量机国家标准工作组扩大会议技术资料
    [131] ISO/DTS 15530-2.2:2005. Geometrical product specifications (GPS) - Techniques for determining the uncertainty of measurement - Part 2: Use of multiple measurements strategies in calibration of artifacts
    [132] 王宏涛,刘巧云,马修水.三坐标测量机的气源维护.合肥工业大学学报,No.10,2004,P1359~1361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700