紫外光通信大气传输特性和调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光通信是一种利用“日盲”特性进行散射通信的无线光通信方式,具有保密性好、抗干扰能力强及非视距等优点,非常适合于保密通信,但目前离实用化还有较远的距离。本文围绕紫外光通信的若干基础问题展开了初步的理论和实验研究,采用理论推导、仿真分析和样机测试相结合的方法,对大气传输理论、信道传输特性、调制技术及实验样机研制等内容做了深入细致地工作。
     在详细论述紫外光大气传输理论的基础上,对紫外光的非视距单次散射和多次散射信道模型进行了理论分析和仿真模拟,进而提出了改进的基于蒙特卡洛方法的多次散射模型。将目前模型的基于共面散射角度大小的探测判定方法,改为采用空间距离的远近来判定的方法,从而将接收端探测判定的条件,从共面扩展为空间,更符合光子在空间传输时绝大多数都是非共面的实际情况;同时对模型建立过程中的计算量、精确度等进行了优化。利用多次散射模型,研究了紫外光通信信道的脉冲响应特性,获得了完整的信道响应结果,揭示了传输距离、收发端几何参数配置等对脉冲延迟、脉冲展宽及路径损耗等的影响。
     建立了基于蒙特卡洛方法的各次散射对比模型,通过深入分析比较在不同光深度时,单次、二次及多次散射对接收能量的贡献率,认为在晴天天气下,光深度小于0.5时,采用单次散射进行信道建模是合理的,与Van de Hulst提出的单散射近似条件一致;利用此对比模型,首次研究了各次散射的权重、路径损耗及对能量贡献率等随距离增大时的变化趋势,为采用几次散射进行信道建模提供了参考;同时通过仿真,认为光子存活率对路径损耗影响相对较小。
     分别在泊松和高斯两种噪声模式下,结合紫外光传输信道理论模型,建立了一套综合评估紫外光通信调制技术性能的数学模型。利用此评估模型,在OOK、PPM、DPPM及DPIM等四种不同调制制式下,综合分析了传输距离、发射功率、传输速率及误码率(或误包率)间的平衡关系,推导了在给定误包率条件下所需发射功率的公式,比较了功率利用率、带宽效率及实现复杂度,研究了收发仰角、调制阶数等对发射功率和带宽的影响。
     提出了非视距紫外光散射通信样机系统的总体方案,设计并优化了紫外光通信实验样机的通信协议及软件架构。基于自主研发的STM32核心处理板,研究了发射和接收系统中的关键技术及其实现方法;提出了自适应能量阈值算法,解决了接收样机中如何寻找最佳判决门限的问题;成功研制了基于紫外LED和低压汞灯两种光源的实验用通信样机,实现了最高速率可达lOkbps的短距离语音通信,、为进一步开展紫外光通信理论分析、测试验证及实际应用提供了一个良好的平台。
UV communication is a kind of wireless optical scatter communication using "solar-blind"characteristics, has a good security, strong anti-jamming ability, non-line-of-sight and other advantages, and is very suitable for secure communication, but is still far from practical application now. This thesis carries out preliminary theoretical and experimental research on some basic problems of UV communication by means of theoretical derivation, simulation and prototype testing, and does a thorough and meticulous work on the atmospheric transmission theory, channel propagation characteristics, modulation technology and experimental prototype developed etc.
     On the basis of a detailed discussion of the UV atmospheric propagation theory, UV non-line-of-sight single scattering and multiple scattering channel models are analyzed and simulated, and then an improved multiple scattering model based on Monte Carlo methods is proposed. The receiving terminal of currently model detects the photon according to the size of the coplanar scattering angle, we replace it with the range of the spatial distance, so the condition of the detection is extended from the coplanar to the space, which is more in line with the actual situation that transmission of the vast majority photons in space are non-coplanar. At the same time, the amount of computation and accuracy in the process of establishing the model are optimized. By using the multiple scattering model, we study the pulse response characteristics of the ultraviolet communication channel, obtain the integrate channel response results,and reveal the impact of the transmission distance, the transmitter and receiver geometry configuration parameters on the pulse delay, pulse broadening and path loss.
     A scattering contrast channel model based on Monte Carlo method is created, through the simulation experiments, the single scattering approximation condition that Van de Hulst proposed in UV communication field is verified. The contribution ratio of the single, secondary and multiple scattering on the reception of energy are in-depth studied, which provides the basis for channel modeling using how many times of scattering; meanwhile the survival rate of photon effect on the path loss is relatively small.
     In the Poisson and Gauss noise models, we systematically analyze the tradeoff among the transmission distance, power, rate and bit error rate (or packet error rate) in the OOK, PPM, DPPM and DPIM modulation with UV transmission channel model, derive in the required transmit power formula of the four kinds of modulation under a given packet error rate, and compare the power efficiency of the different modulation technology, bandwidth efficiency, implementation complexity, and the impact on the system performance by using of the different modulation order. The performances of the communication link are obtained according to the different modulation.
     The general scheme of NLOS UV communication prototype system is put forward. Based on the STM32core processing board that we independently research and develope, we design and optimize the communication protocol of the UV communication test-bed and software architecture, propose an adaptive energy threshold algorithm. The key technologies of UV communication test-bed are systematically researched, and the architecture of the NLOS UV communication system is constructed, each component of the transceiver terminal and the methed of implementation are builded. Finally successfully develope two communication test-beds differently based on the light source of UV LED and low-pressure mercury lamp, the short-distance communication rate is up to lOkbps. These lay a foundation for the further development of ultraviolet communication theory analysis, test and practical application, and provide a good platform.
引文
[1]许桂华.紫外光通信.[J].现代通信.2000,第4期:6~7.
    [2]Jeffery J. Puschell, Robert Bayse. High Data Rate Ultraviolet Communication Systems for the Tactical Battlefield. [J]. Proc. Of the Tactical Communications Conference, Vol.1 Tactical Communications. Challenges of the 1990's (1990). pp:253~267.
    [3]金伟其,何玉青,王岭雪等.大气紫外传输特性的计算机仿真分析.[J].兵工学报.2001.2,22卷,1期:49~52.
    [4]蓝天,倪国强.紫外通信的大气传输特性模拟研究.[J].北京理工大学学报.2003.8,23卷,4期:419~423.
    [5]倪国强,钟生东,刘榴绨等.自由大气紫外光学通信的研究.[J].光学技术.2000.7,26卷,4期:297~303.
    [6]Zhengyuan Xu. Approximate Performance Analysis of Wireless Ultraviolet Links. Proc. IEEE Int'l. Conf. Acoustics, Speech, and Sig. Processing, Honolulu, HI, Apr.15-20,2007.
    [7]Zhengyuan Xu, Brian M.Sadler. Ultraviolet Communications Potential and State-Of-The-Art. [J]. IEEE Communications Mag 46.2008.05. pp:67~73.
    [8]E O Hulburt. Experiments with sensitive "Detectors of UV and IR Radiations".1939.
    [9]Dan Moriarty, Brandon Hombs. System design of tactical communications with solar blind ultraviolet NON Line-of_Sight systems. [J]. Military Communications Conference (MILCOM),2009. Oct. Boston, MA. pp:1~7.
    [10]G A. Shaw, Melissa Nischan. Short-Range NLOS Ultraviolet Communication Test Bed and measurements. [J]. Proceedings of SPIE vol.4396, April,2001. pp:31~40.
    [11]G. A. Shaw, M. Nischan, M. Iyengar, et al. NLOS UV Communication for Distributed Sensor Systems. [J]. SPIE Vol 4126, pp 83-96,2000.
    [12]G A. Shaw, A. M. Siegel, M. L. Nischan. Demonstration System and Applications for Compact Wireless Ultraviolet Communications. [J]. Processings of SPIE vol.5071, pp: 241-252,2003.
    [13]G A. Shaw, Andrew M. Siegel and Joshua Model, et al. Field Testing and Evaluation of a Solar-Blind UV Communication Link for Unattended Ground Sensors. [J]. Processings of SPIE Vol.5417,2004. pp:250~261.
    [14]G A. Shaw, Andrew M. Siegel and Joshua Model. Ultraviolet comm links for distributed sensor networks. [J]. Optical Society of America.2005 Digest of the LEOS Summer Topical Meetings, pp:39~40.
    [15]Claire Lavigne, Gerard Durand and Antoine Roblin. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid. [J]. Applied Optics.2006.12. Vol.45, No.36. pp:9140~9150.
    [16]Debbie Kedar, Shlomi Arnon. Subsea ultraviolet solar-blind broadband free-space optics communication. [J]. Optical Engineering Vol.48(4), April 2009.046001-1-7.
    [17]David M. Reilly, Cardinal Warde. Temporal characteristics of single-scatter radiation. [J]. Opt.Soc. Am.69,464-470,1979.
    [18]M. Geller, G. B. Johnson, and J. H. Yen, et al. Short-range UV Communication Links. [C]. Proc. The Tactical Communication Conference,1986, pp:1-50.
    [19]M. Geller, G. B. Johnson, and R. L. Shimabukuro. An Experimental Non-line-of-sight Communication System using Ultraviolet Light. [J]. AD-A226024. San Diego:1983.
    [20]M. Geller, G. B. Johnson, and G. H. Yen, et al. Short-range UV Communication Links. [J]. San Diego:1990.
    [21]M. R. Luettgen, J. H. Shapiro, and D. M. Reilly. Noe-Line-of-sight single-scattler propagation model. [J]. Journal Optical Society of America. Vol.8, No.12, pp 1964~1972, Dec.1991.
    [22]G A. Shaw, Jim Fitzgerald, and Melissa L. Nischan, et al. Collaborative sensing test bed and experiments. [J]. Proceedings of SPIE Vol.5101 (2003). pp:27~38.
    [23]Andrew M. Siegel, G A. Shaw, and Joshua Model. Short-Range Communication with unltra-violet LEDS. [J]. Fourth International Conference on Solid State Lighting, Proc. Of SPIE Vol.5530(2004). pp:182~193.
    [24]G A. Shaw, Andrew M. Siegel, and Joshua Model, et al. Recent Progress in Short-Range Ultraviolet Communication. [J]. Unattended Ground Sensor Technologies and Applications VII, Proceedings of SPIE Vol.5796(2005). pp:214~225.
    [25]G A. Shaw, Andrew M. Siegel, and Joshua Model. Extending the range and performance of non-line-of-sight ultraviolet communication links. [J]. Unattended Ground, Sea, and Air Sensor Technologies and Applications VIII, Proc. Of SPIE Vol.6231 (2006),62310C-1-12.
    [26]G A. Shaw, Andrew M. Siegel, and Joshua Model, et al. Deep UV photon-counting detectors and applications. [J]. Advanced Photon Counting Techniques Ⅲ, Proc. Of SPIE Vol. 7320(2009),73200J-1-15.
    [27]Peter M. Sandvik, Stanislav I. Soloviev, and Alexey V. Vert, et al. SiC APDs and Arrays for UV and Solar Blind Detection. Invited paper.978-1-4244-3681-1/09.2009 IEEE.pp: 291~292.
    [28]Debbie Kedar, Shlomi Arnon. An Ultraviolet Optical Wireless Sensor Network in Multiscattering Channels.5th International Workshop, CP860, Information Optics.2006 American Institute of Physics. pp:436~445.
    [29]Debbie Kedar, Shlomi Arnon. Non-line-of-sight optical wireless sensor network operating in multiscattering channel. [J]. Applied Optics, Vol.45, No.33, Nov.2006, pp: 8454~8461.
    [30]Debbie Kedar. Multi access interference in a non-line-of-sight ultra violet optical wireless sensor network. [J]. Applied Optics, Vol.46, No.23, Aug.2007, pp:5895~5901.
    [31]Zhengyuan Xu, Gang Chen, and Feras Abou-Galala, et al. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. [J]. Free-Space Laser Communications Ⅶ, Proc. Of SPIE Vol.6709(2007),67090Y-1-12.
    [32]Haipeng Ding, Gang Chen, and Arun K. Majumdar, et al. A parametric single scattering channel model for non-line-of-sight ultraviolet communications. [J]. Free-Space Laser Communications Ⅷ, Proc. Of SPIE Vol.7091, (2008) 70910M-1-6.
    [33]Zhengyuan Xu, Haipeng Ding, and Brian M. Sadler, et al. Analytical performance study of solar blind non-line-of-sight ultra violet short-range communication links. [J]. OPTICS LETTERS. Vol.33, No.16, Aug 15,2008. pp:1860-1862.
    [34]Gang Chen, Feras Abou-Galala, and Zhengyuan Xu, et al. Experimental evaluation of LED-based solar blind NLOS communication links. [J]. OPTICS EXPRESS, Vol.16, No.19, Sep.2008. pp:15059~15068.
    [35]Zhengyuan Xu, Brian M. Sadler. Performance Evaluation of Solar Blind NLOS Ultraviolet Communication Systems. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4 Dec.2008. ADM002187.
    [36]Zhongyu Dong, Kaiyun Cui, and Gang Chen, et al. Non-line-of-sight link performance study for indoor visible light communication systems. [J]. Free-Space Laser Communications X, Proc of SPIE Vol.7814, (2010),781404-1~10.
    [37]Kaiyun Cui, Gang Chen, and Qunfeng He, et al. Indoor optical wireless communication by ultraviolet and visible light. [J]. Free-Space Laser Communications IX, Proc. Of SPIE Vol. 7464, (2009),74640D-1-9.
    [38]Yunfan Li, Zhengyuan Xu. Transmitted Reference Schemes for Wireless Optical Communications. [J]. Prof. IEEE GLOBECOM, San Francisco, CA, Nov.27-30,2006.
    [39]Qunfeng He, Brian M. Sadler, and Zhengyuan Xu. Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications. [J]. Free-Space Laser Communications IX, Proc. Of SPIE Vol.7464, (2009),74640H-1~12.
    [40]Qunfeng He, Zhengyuan Xu, and Brian M. Sadler. Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers. [J]. OPTICS EXPRESS, Vol.18, No.12, June 2010, pp:12226~122238.
    [41]Gang Chen, Zhengyuan Xu, and Haipeng Ding, et al. Path loss modeling and performance trade-off study for short-range NLOS ultraviolet communications. [J]. OPTICS EXPRESS, Vol.17, No.5, Mar.2009. pp:3929~3940.
    [42]Qunfeng He, Brian M. Sadler, and Zhengyuan Xu. On the achievable performance of non-line-of-sight ultraviolet communications. [J]. Free-Space optical communication,2009.
    [43]Gang Chen, Zhengyuan Xu, and Brian M. Sadler. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. [J]. OPTICS EXPRESS, Vol.18, No.10,May 2010.pp:10500-10509.
    [44]Haipeng Ding, Gand Chen, and Arun K. Majumdar, et al. Non-line-of-sight ultraviolet communication channel characterization:modeling and validation. [J]. Free-Space Laser Communications IX, Proc. Of SPIE Vol.7464, (2009),746401-1-7.
    [45]Haipeng Ding, Gang Chen, and A K. Majumdar, et al. Modeling of Non-Line-of-Sight Ultraviolet Scattering Channels for Communication. [J]. IEEE Journal of Selected Areas in Communications, Vol.27, No.9, Dec.2009. pp:1535~1544.
    [46]Haipeng Ding, Gang Chen, and Zhengyuan Xu, et al. Characterization and Modeling of Non-Line-of-Sight Ultraviolet Scattering Communication Channels. Invited Paper. OWC-16, CSNDSP 2010, pp:593~597.
    [47]Robert J. Drost, Terrence J. Moore, and Brian M. Sadler. Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications. [J]. Atmospheric Propagation Ⅷ, Proc. Of SPIE Vol.8038, (2011), pp:803802-1-9.
    [48]Robert J. Drost, Terrence J. Moore, and Brian M. Sadler. UV communications channel modeling incorporating multiple scattering interactions. [J]. Optical Society of America, Vol. 28, No.4, Apr.2011, pp:686~695.
    [49]Haipeng Ding, Zhengyuan Xu, and Brian M. Sadler. A Path LossModel for Non-Line-of-Sight UltravioletMultiple Scattering Channels. [J]. EURASIP Journal on Wirelsss Communications and Networking, Volume 2010, Article ID 598572.12pages.
    [50]Leijie Wang, Qunfeng He, and Zhengyuan Xu, et al. Performance of non-line-of-sight ultraviolet communication receiver in ISI channel. [J]. Free-Space Laser Communications X, Proc. Of SPIE Vol.7814, (2010), pp:781409-1-7.
    [51]Haipeng Ding, Gang Chen, Arun K. Majumdar, et al. Turbulence modeling for non-line-of-sight ultraviolet scattering channels. [J]. Atmospheric Propagation Ⅷ, Proc. Of SPIE,2011, Vol.8038. pp:80380J-1-8.
    [52]Leijie Wang, Zhengyuan Xu, and Brian M. Sadler. Non-line-of-sight ultraviolet link loss in noncoplanar geometry. [J]. OPTICS LETTERS, Vol.35, No.8, Apr.2010, pp:1263~1265.
    [53]Leijie Wang, Zhengyuan Xu, and Brian M. Sadler. An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry. [J]. OPTICS LETTERS, Vol.36, No.7, Apr.2011, pp:1224-1226.
    [54]Qunfeng He, Zhengyuan Xu, and Brian M. Sadler. Non-line-of-sight Serial Relayed Link for Optical Wireless Communications. The 2010 Military Communications Conference. pp:2289~2294.
    [55]Leijie Wang, Yiyang Li, and Zhengyuan Xu, et al. Wireless ultraviolet network models and performance in noncoplanar geometry. IEEE Globecom 2010 Workshop on Optical Wireless Communications, pp:1037~1041.
    [56]Yiyang Li, Jianxia Ning, and Zhengyuan Xu, et al. UVOC-MAC A MAC protocol for outdoor ultraviolet networks.18th IEEE International Conference on Network Protocols (ICNP 2010), Kyoto, Japan, October 2010.
    [57]Yiyang Li, Leijie Wang, and Zhengyuan Xu, et al. Neighbor Discovery for Ultraviolet Ad Hoc Networks. IEEE Journal on Selected Areas in Communications, Vol.29, No.10, Dec. 201l,pp:2002~2011.
    [58]Tang Yi, Wu Zhong-liang, and Ni Guo-qiang, et al. NLOS single scattering model in digital UV communication. [J]. Optical Transmission, Switching, and Subsystems VI, Proc. Of SPIE Vol.7136,713615, (2008), pp:713615-1~10.
    [59]Tang Yi, Ni Guo-qiang, and Zhang Li-jun, et al. Study of Channel Character of solar blind UV Communication. [J]. International Symposium on Photoelectronic Detection and Imaging 2007:Laser, Ultraviolet, and Terahertz Technology, Proc. Of SPIE Vol.6622, 66220H, (2008), pp:66220H-1-8.
    [60]Tang Yi, Ni Guo-qiang, and Wu Zhong-liang, et al. Research on channel character of solar blind UV communication. [J]. Advanced Materials and Devices for Sensing and Imaging III, Proc. Of SPIE Vol.6829,682907 (2007), pp:682907-1~10.
    [61]杨建坤,常胜利,杨俊才等.紫外光通信系统中的关键技术研究.[J].中国激光.2004.3,31卷,增刊:224~226.
    [62]Zhi Feng, Shengli Chang, and Honghui Jia, et al. Design and realization of optical scattering signal receiving system. [J]. Advanced Sensor Systems and Applications IV, Proc. Of SPIE Vol.7853,785320 (2010), pp:785320-1-7.
    [63]尹红伟,贾红辉,杨俊才等.高速紫外光通信系统发射装置研究.张以谟.中国光学学会光电技术专业委员会成立二十周年暨第十一届全国光电技术与系统学术会议.北京.2005.8.pp:474~477.
    [64]Shengli Chang, Jiankun Yang, and Juncai Yang, et al. The Experimental Research of UV Communication. [J]. Wireless Communications and Networks, Proceedings of SPIE Vol. 5284 (SPIE, Bellingham, WA,2004),344~348.
    [65]Honghui Jia, Jiankun Yang, and Shengli Chang, et al. Study and design on high data rate UV communication system. [J]. Optical Transmission, Switching, and Subsystems III, Proc. Of SPIE Vol.6021,602110 (2005), pp:60211O-1-7.
    [66]Jia Honghui, Zhang Hailiang, and Yin Hongwei, et al. The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology. [J]. Optical Transmission, Switching, and Subsystems V, Proc. Of SPIE Vol.6783,67833B, (2007), pp: 67833B-1-8.
    [67]邵铮铮,常胜利,兰勇等.非视线紫外光信号传输时间特性的数值模拟.[J].光学与光电技术.2006.12,第4卷,6期:18~24.
    [68]贾红辉,常胜利,杨建坤等.单次散射近似研究非视线光传输中的误差.[J].光学精密工程.2007.1,第15卷,1期:40,-44.
    [69]贾红辉,常胜利,杨建坤等.散射大气对脉冲紫外光传输时间特性研究.[J].光散射学报.2007.3,第19卷,1期:37,-42.
    [70]Hongwei Yin, Shengli Chang, and Xiaofeng Wang, et al. Analytical model of non-line-of-sight single-scatter propagation. [J]. Optical Society of America, Vol.27, No.7, July 2010.pp:1505~1509.
    [71]贾红辉,常胜利,杨建坤等.非视线紫外通信大气传输特性的蒙特卡罗模拟.[J].光子学报.2007.5.第36卷,5期:955~960.
    [72]尹红伟,常胜利,贾红辉等.影响非视线紫外光传输距离的诸因素分析.[J].光学与光电技术.2007.12.第5卷,6期:18-23.
    [73]何新,杨俊才,贾红辉等.天气对光散射传输影响的仿真分析.[J].光学技术.2009.1.第35卷,1期:56-,59.
    [74]贾红辉,黄红锡,张海良等.紫外光散射通信系统的数据传输速率影响因素的研究.[J].光学与光电技术.2010.2.第8卷,1期:20~22.
    [75]朱孟真.基于离散坐标方法的紫外光大气传输特性研究.[硕士学位论文].湖南.国防科学技术大学.2007.
    [76]尹红伟.非视线偏振紫外大气传输特性研究.[博士学位论文].湖南.国防科学技术大学.2011.
    [77]冯涛,陈刚,方祖捷.非视线紫外光散射通信的信道特性.[J].红外与激光工程.2006.10.第35卷,增刊:226~230.
    [78]冯涛,陈刚,方祖捷.非视线光散射通信的大气传输模型.[J].中国激光,2006,33 卷,11期:1522~1526.
    [79]Tao Feng, Gang Chen, and Zujie Fang. Multipath dispersion of pulse signals in a non-line-of-sight optical scattering channel. [J]. Chinese Optics Letters, Vol.4, No.11, Nov. 2006, pp:633~635.
    [80]Tao Feng, Fei Xiong, and Qing Ye, et al. Non-Line-of-Sight optical scattering communication based on solar-blind ultraviolet light. [J]. Optical Transmission, Switching, and Subsystems V, Proc. Of SPIE Vol.6783, (2007), pp:67833X-1-7.
    [81]张静,廖云,伍保剑.紫外光通信大气信道模型研究.[J].电子科技大学学报.2007.4.第36卷,2期:199~202.
    [82]张静.非直视紫外光通信大气信道模型研究及编解码设计.[硕士学位论文].成都.电子科技大学.2007.
    [83]冯平兴.紫外光通信信道散射模型研究及实验系统设计.[硕士学位论文].成都,电子科技大学,2009.
    [84]李义文.自由大气紫外光通信系统研究.[硕士学位论文].北京.中国科学院研究生院,2007.
    [85]罗畅,李霁野,陈晓敏.无线紫外通信信道分析.[J].激光与光电子学进展.2011.040602-1~040602-6.
    [86]刘润斌,李霁野.新型紫外光非视距通信系统信道估计的研究.[J].光通信研究.2011.02.第163期:31~33.
    [87]刘润斌.紫外光非视距通信信道估计算法研究及DSP实现.[硕士学位论文].北京.中国科学院.2011.
    [88]Chang Luo, Jiye Li, and Xiaomin Chen. A MAP equalizer for the wireless ultraviolet communication. IEEE International Conference on Electric Information and Control Engineering, ICEICE 2011, Vol.5, pp:3853~3857.
    [89]罗畅.非视距光通信信号处理研究与基带系统设计.[博士学位论文].北京.中国科学院.2011.
    [90]Ping Wang, Jun Gao, and Hongxia Wang, et al. Research and Simulation of superenvelopes UV communication system. The Ninth International Conference on Electronic Measurement & Instruments,2009. pp:3-889~3-893.
    [91]密立生,王平,田培根等.紫外光非直视通信模型.[J].舰船电子:[程.2008.第164期:68~76.
    [92]Tian Pei-gen, Wang Ping, and Guan Jian-xin, et al. A Modulation Scheme for Ultraviolet Communication by Switching the Frequency of Light Power Envelope.2010 Second International Conference on Networks Security, Wireless Communicaitons and Trusted Computing. pp:305~308.
    [93]Wang Ping, Gao Jun. Research on Performance of Marine UV Communication.2008 11th IEEE International Conference on Communication Technology Proceedings. pp: 371~374.
    [94]徐香,王平,闫颖良等.紫外光在雨中的传输衰减研究.[J].通信技术.2009.第42卷,209期:31~33.
    [95]Wang Ping, Gao Jun, and Xu Zhijun, et al. Study on Time Characteristics of Marine UV. 2009 International Conference on Computer Technology and Development.pp:53~56.
    [96]徐志军,王平.基于蒙特卡罗方法的多散射修正模型.[J].海军工程大学学报.2010.02.第22卷,第1期:50,~56.
    [97]Wang Junliang, Luo Ting, Dai Meng, et al. UV NLOS communications atmospheric channel model and its performance.2009 World Congress on Computer Science and Information Engineering.2009. Pp:85~88.
    [98]汪俊良.紫外光非视距通信大气信道模拟与分析.[J].计算机工程与科学.2009,31卷,6期:156~158.
    [99]Wang Junliang, Luo Ting, and Dai Meng, et al. UV NLOS communications atmospheric channel model and its performance.2009 World Congress on computer Science and Information Engineering.pp:85~88.
    [100]汪俊良,罗挺,刘洪娟等.紫外光非视距后勤应急通信系统研究.[J].后勤工程学院学报.2009.11.第25卷,第6期:74~78.
    [101]徐智勇,沈连丰,汪井源等.紫外散射通信实验系统及其性能分析.[J].东南大学学报(自然科学版).2009.11.第39卷第6期:1087~1092.
    [102]徐智勇,沈连丰,汪井源等.分离双脉冲位置调制及其性能研究.[J].通信学报.2009.11.第30卷第11期:113~119.
    [103]汤双庆.非球形混合气溶胶紫外和可见光的传输与散射特性.[硕士学位论文].西安,西安电子科技大学,2010.
    [104]Ming Li, Lu Bai, and Zhen-Sen Wu, et al. The effects of ultraviolet communication in different working wavelength base on single-scatter model.2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, May,2010, pp:132~135.
    [105]李明.非视距紫外光散射传输特性研究.[硕士学位论文].西安,西安电子科技大学,2011.
    [106]Bai Lu, Wu Zhensen, and Li haiying. UV Multi-scatter Propagation Model of Point Probability.2011 International Conference on Physics Science and Technology (ICPST 2011). Physics Procedia 22 (2011). pp:532~536.
    [107]侯倩,李晓毅,何攀等.紫外光非视距单散射信道模型研究.[J]-现代电子技术.2010.第330期:58~61.
    [108]侯倩,李晓毅,侯志昊等.不同天气对紫外光非视距传输的影响.[J].通信对抗.2011.第115期:13~19.
    [109]侯倩,李晓毅,李子等.紫外光非视距二次散射信道模型研究.[J].现代电子技术.2011.03.第34卷第5期:59~62.
    [110]侯倩,李晓毅,何刚等.紫外光非视距多次散射信道模型研究.[J].光学技术.2011.11.第37卷第6期:699~703.
    [111]何华,柯熙政,赵太飞.紫外光非视距单次散射链路模型的研究.[J].光学学报.2010.11.第30卷第11期:3148~3152.
    [112]Peilin Yang, Xizheng Ke, and Taifei Zhao. Study of Ultraviolet Mobile Ad Hoc Network.2009 International Conference on Photoincs and Optoelectronics, Aug.2009, pp: 1-4.
    [113]柯熙政,何华,陈祥.一种新的紫外光自组织通信网络MAC层避退算法.[J].光电子激光.2010.07.第21卷第7期:1002~006.
    [114]Taifei Zhao, Xiaorui Wang, and Rongli Xue, et al. Research on Multi-LEDs-based UV Communication System.2011 International Conference on Future Information Technology, Vol.13,2011, Singapore, pp:29~33.
    [115]赵太飞,冯艳玲,柯熙政.“日盲”紫外光通信网络中节点覆盖范围研究.[J].光学学报.2010.08.第30卷第8期:2229~2235.
    [116]柯熙政.紫外光自组织网络理论.北京:科学出版社,2011,31-32.
    [117]朱诗波.基于STM32的紫外光散射通信系统设计与实现.[硕士学位论文].北京,北京邮电大学.2010.
    [118]王兴涛.日盲紫外光通信系统的信号检测技术研究.[硕士学位论文].北京,北京邮电大学.2011.
    [119]Houfei Xiao, Yong Zou, and Jian Wu, et al. Non-line-of-sight ultraviolet single-scatter propagation model. [J]. Optics Express, Vol.19, No.18, Aug 2011, pp: 17864~17875.
    [120]张灿.紫外通信信道建模技术和OTN设备入网测试规范研究.[硕士学位论文].北京,北京邮电大学.2011.
    [121]朱洁.短距离紫外光无线通信系统设计及其调制解调的FPGA实现.[硕士学位论文].北京,北京邮电大学.2011.
    [122]汪科.日盲紫外光语音通信系统的研究.[硕士学位论文].重庆,重庆大学.2006.
    [123]肖沙里,徐东镪,蓝玉侦等.基于AMBE_2000_TM_的日盲紫外光语音系统的设计.[J].光电子技术.2007.03.第27卷第1期:55~58.
    [124]刘宇.紫外光语音通信接收系统的研制.[硕士学位论文].重庆,重庆大学.2007.
    [125]徐智敏.自由空间紫外语音通信调制与编码的研究.[硕士学位论文].重庆.重庆大学.2007.
    [126]雷小明.日盲紫外自由空间通信调制系统的研究.[硕士学位论文].重庆,重庆大学.2008.
    [127]徐东镪.无线光通信中Viterbi译码器FPGA设计实现.[硕士学位论文].重庆,重庆大学.2008.
    [128]蓝玉侦.紫外光通信系统解调技术的研究.[硕士学位论文].重庆,重庆大学.2008.
    [129]高红杰.日盲紫外语音通信调制系统的研究.[硕士学位论文].重庆,重庆大学.2009.
    [130]高平.日盲紫外语音通信解调与解码研究.[硕士学位论文].重庆,重庆大学.2009.
    [131]大气成分.http://baike.baidu.com/view/42408.htm.
    [132]辐射到地面的太阳光波长范围.http://zhidao.baidu.com/question/167533364.htm.
    [133]David M. Reilly, Daniel T. Moriarty, John A. Maynard. Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks. [J]. Proc. of SPIE,2004, Vol.5611:244-254.
    [134]吴健,杨春平,刘建斌.大气中的光传输理论.北京:北京邮电大学出版社,2006,51.
    [135]光的散射.http://baike.baidu.com/view/49804.htm.
    [136]倪国强,钟生东,刘榴绨等.自由大气紫外光学通信的研究,光学技术,2000(7),26卷,4期:297~303.
    [137]大气湍流.http://baike.baidu.com/view/90139.htm.
    [138]Tao Feng, Fei Xiong, and Gang Chen, et al. Effects of atmosphere visibility on performances of non-line-of-sight ultraviolet communication systems. [J]. Optik 119 (2008), pp:612~617.
    [139]A. N. Witt. Multiple scattering in reflection nebulae 1:A Monte Carlo approach. [J]. The Journal Supplement Series.1-6, Sep.1977.
    [140]张里荃.紫外光大气传输特性的模拟研究.[J].吉林大学学报(信息科学版).2012.09.第30卷,第5期:534~539.
    [141]R. M. Gagliardi and S. Karp, Optical Communications,2nd, ed., Chap 6. John Wiley and Sons, New York,1995. pp:183.
    [142]Ghassemlooy Z and A R. Digital pulse interval modulation for optical communications. [J]. IEEE Communication Magazine,1998.12. pp:95~99.
    [143]张凯,张海涛,巩马理等.红外双幅度脉冲间隔调制通信系统性能分析.[J].红外与毫米波学报.2003.12.第22卷第6期:411~414.
    [144]Aaron Michael Stark. Ultraviolet Non-Line of Site Digital Communications. [Master's Project]. New Hampshire. The University of New Hampshire. May.2003.
    [145]J. R. Barry. Wireless Infrared Communications. [M]. Kluwer Academic Publishers, Boston,1994.
    [146]Hyuncheol Park, J. R. Barry. [J]. Modulation Analysis for Wireless Infrared Communications. Proc. Of IEEE ICC'95, Vol.2,1995. pp:1182~1186.
    [147]John G. Proakis, Masoud Salehi. [M]. McGraw-Hill Higher Education, New York, Fifth Edition,2008.
    [148]Da-shan Shiu, Joseph M. Kahn. Differential Pulse-Position Modulation for Power-Efficient Optical Communication. [J]. IEEE Trans. Commu. Vol.47. No.8, Aug.1999. pp:1201~1210.
    [149]Joseph M. Kahn, J. R. Barry. Wireless Infrared Communications. [J]. Proc. Of the IEEE, Vol.85, No.2, Feb.1997. pp:265~298.
    [150]Jinlong Zhang. Modulation Analysis for Outdoors Applications of Optical Wireless Communications. [J]. Communications Technology Proceedings, WCC-ICCT2000. International Conference on 2000,2(2), pp:1483~1487.
    [151]王永虹,徐炜,郝立平.ARM Cortex-M3微控制器原理与实践.[M].北京航空航天大学,2008.7.
    [152]PerkinElmer. Datasheet:Ultra High Sensitivity CPM Photon Counting Module [EB/OL]. http://datasheet.elcodis.com/pdf2/76/17/761713/mp1363.pdf.
    [153]吴重庆.光通信导论.[M_].清华大学出版社.2008.
    [154]王华奎,李艳萍,张立毅等.移动通信原理与技术.[M].清华大学出版社.2009.pp:77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700