认知无线网络中的无线资源分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动用户需求的快速增长,未来无线通信网络面临着无线频谱资源短缺的挑战。固定频谱分配和利用方式虽然避免了无线通信网络间的干扰,但是由于用户和业务分布的不均衡性和突发性等特性,其频谱利用率很低,频谱资源短缺和频谱利用率低下的矛盾十分突出。动态频谱分配和利用观念的提出是为了解决由固定频谱分配方式造成的频谱利用率低下的问题。通过动态频谱分配和利用,网络可以根据业务量需求,动态的对频谱进行分配和利用,以解决大业务量时的频谱短缺和小业务量时的频谱资源浪费问题。认知无线网络被认为是实现动态频谱分配和利用的关键技术,其通过对外部环境中的频谱状态信息进行认知,可以在保护具有授权频谱的主用户服务质量的前提下智能的对频谱进行动态的接入和利用。本文主要针对认知无线网络关键技术之一的无线资源分配进行研究。无线资源分配在复杂的无线信道衰落特性、干扰及用户业务分布不均匀的情况下,通过灵活的分配多维无线资源,如频谱、功率、速率等,以尽可能有效的利用这些无线资源来提升频谱利用率等系统性能指标。
     首先,本文研究了认知无线网络中的功率分配:针对非理想信道状态信息下的功率分配问题,提出了同时考虑信道状态信息存在错误估计误差和反馈时延,以最大化遍历容量和中断容量为目标的最优功率分配算法。该功率分配算法能很好的保护主用户免受由于非理想信道状态信息带来的额外干扰。通过理论分析得到了遍历容量和中断容量的表达式,完善了现有非理想信道状态信息下的容量理论分析,并为分析非理想信道状态信息对于认知无线网络容量的影响提供了理论支撑;以最小化认知无线网络的误比特率为目标,提出了在不同的发射功率和干扰功率约束组合下的最优功率分配算法。该算法相比传统的注水功率分配算法能达到更低的误比特率。
     其次,本文研究了时延服务质量约束下的认知无线网络联合功率和速率分配,分别提出了理想信道状态信息和非理想信道状态信息下的最大化有效容量的最优联合功率和速率分配算法。提出的联合分配算法可以很好的保证次用户的时延服务质量需求。进而通过理论推导,分别得到了理想信道状态信息、最大比合并下的有效容量表达式和非理想信道状态信息下的有效容量表达式,为分析各种系统参数对于认知无线网络有效容量的影响提供了理论支撑。
     再次,本文研究了认知无线网络中的联合信道和功率分配:提出了主用户和次用户存在有限合作的情况下的低复杂度、近最优的联合信道和功率分配算法。该算法性能相比非合作的联合信道和功率分配算法大大提升,且其性能非常接近最优算法的性能,但其复杂度相比最优算法大大下降;针对现有研究中对于次用户公平性主要关注于速率公平的问题,提出了资源公平约束下的联合信道和功率分配算法。该算法通过改变分配给次用户的最小和最大信道数约束,灵活的调节次用户间的公平性,相比以速率作为公平性衡量指标的分配算法,其实现更加灵活。
     最后,本文研究了认知无线网络中的联合信道、功率和速率分配:提出了最小化认知无线多播网络中断概率的联合信道、功率和速率分配算法。算法中既考虑了多播组的加权中断概率,也考虑了多播组中次用户的加权中断概率。分析了多种系统参数对于认知无线多播网络中断概率的影响,为认知无线多播网络的实际部署提供了参考;针对同时具有时延敏感和时延不敏感异构业务的认知无线网络,提出了最小化认知无线网络发射功率消耗的联合信道、功率和速率算法。该算法复杂度低,实现简单,且性能相比传统的分配算法在更好的保证次用户的服务质量需求的前提下,发射功率消耗更低。
In recent years, with the increase of rquirements of mobile users, the fu-ture wireless communication networks face the problem of spectrum scarcity. Although the fixed spectrum allocation and usage avoids the interference be-tween wireless networks, its spectrum efficiency is very low due to the uneven and suddenness of the distribution of users and services, which causes the con-flict between the spectrum scarcity and low spectrum efficienty. The concept of dynamic spectrum allocation and usage is proposed to solve the problem of low spectrum efficiency caused by fixed spectrum allocation. Through dy-namic spectrum allocation and usage, wireless networks can allocate and use spectrum according to service requests, and further solve the problem of spec-trum scarcity with heavy service load and the problem of spectrum waste with light service load. Cognitive wireless network is believed to be one of the key technologies to achieve dynamic spectrum allocation and usage. It can acquire spectrum status information by cognitive methods, then dynamically access and use spectrum as long as the quality of service of primary users on the licensed spectrum is protected. This thesis focuses on the radio resource allocation re-search, which is one of the key technologies in the cognitive wireless network. Radio resource allocation is used to allocate radio resources, e.g., spectrum, power, rate, in the complex wireless channel fading environment, interference and uneven user distribution, in order to efficiently use these radio resources to improve system performance indicators such as spectrum efficiency.
     Firstly, this thesis investigates the problem of power allocation in cognitive wireless network. For the problem "of power allocation with imperfect channel state information, we propose optimal power allocation algorithms to maximize ergodic capacity and outage capacity, respectively, taken both channel estima-tion errors and feedback delay into consideration. The proposed power alloca- tion algorithms can well protect the primary user transmission due to imperfect channel state information. Closed-form expressions for ergodic capacity and outage capacity are derived, which complete the existing capacity results anal-ysis with imperfect channel state information. Aiming at minimizing bit errir rate of cognitive wireless network, we propose the optimal power allocation algorithms under various transmit power and interference power constraints, which can provide lower bit error rate than that of waterfill power allocation algorithm.
     Secondly, this thesis investigates the problem of joint power and rate al-location in cognitive wireless network under the delay quality of service con-straint. We propose the optimal joint power and rate allocation algorithms to maximize the effective capacity with the perfect channel state information and imperfect channel state information, respectively. The proposed algorithms can well protect the delay quality of service of secondary users. The expression for the effective capacity with perfect channel state information and maximum ra-tio combining as well as the expression for the effective capacity with imperfect channel state information are also derived.
     Thirdly, this thesis investigates the problem of joint channel and power allocation in cognitive wireless network. We propose a low complexity and close optimal joint channel and power allocation algorithm with primary user-s'limited cooperation. The performance of the proposed algorithm is great-ly improved compared with that of the non-cooperative algorithm and is very close to that of the optimal cooperative algorithm with much lower complexi-ty. Considering the fact that most of the studies focus on rate fairness between secondary users, we proposed joint channel and power allocation algorithms based on resource fairness constraint. The proposed algorithms can flexibly adjust the fairness between secondary users through regulating the allocated minimum and maximum number of channels constraints.
     Lastly, this thesis investigates the problem of joint channel, power and rate allocation in cognitive wireless network. Aiming at minimizing the outage probability for cognitive wireless multicast network, we propose joint channel, power and rate allocation algorithms. The proposed algorithms consider two types of outage probabilities, i.e., group outage probability and individual out-age probability. The impacts of various system parameters on the outage prob-abilities for cognitive wireless multicast network are also investigated. For the scenario that there are heterogeneous services, i.e., delay-sensitive and delay-insensitive services, provided by cognitive wireless network, an efficient joint channel, power and rate allocation algorithm is proposed to minimize the trans-mit power consumption of cognitive wireless network. Compared with existing algorithms, the proposed algorithm provides lower transmit power consump-tion while guaranteeing the quality of service of secondary users.
引文
[1]ITU-R M.2079. Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced [S].
    [2]McHenry M. NSF spectrum occupancy measurements project summary [R].2005.
    [3]Zhao Q, Sadler B. A survey of dynamic spectrum access [J]. IEEE Signal Processing Magazine,2007, 24 (3):79-89.
    [4]Mitola Ⅲ J, Maguire Jr G. Cognitive radio:Making software radios more personal [J]. IEEE Personal Communications,1999,6(4):13-18.
    [5]Haykin S, et al. Cognitive radio:Brain-empowered wireless communications [J]. IEEE journal on selected areas in communications,2005,23 (2):201-220.
    [6]Mitola J. Cognitive radio architecture evolution [J]. Proceedings of the IEEE,2009,97 (4):626-641.
    [7]Author F. An architecture for cognitive radio networks with cognition, self-organization and recon-figuration capabilities [C]. In Proc. IEEE Vehicular Technology Conference (VTC) Fall,2012:1-5.
    [8]ITU-R 5A 241-1/5. Cognitive radio systems in the land mobile service [S].
    [9]ITU-R 5D 410-E. Cognitive radio systems specific for IMT systems [S].
    [10]Stevenson C, Chouinard G, Lei Z, et al. IEEE 802.22:The first cognitive radio wireless regional area network standard [J]. IEEE Communications Magazine,2009,47 (1):130-138.
    [11]Filin S, Harada H, Murakami H, et al. International standardization of cognitive radio systems [J]. IEEE Communications Magazine,2011,49 (3):82-89.
    [12]Granelli F, Pawelczak P, Prasad R, et al. Standardization and research in cognitive and dynamic spectrum access networks:IEEE SCC41 efforts and other activities [J]. IEEE Communications Mag-azine,2010,48 (1):71-79.
    [13]Mueck M, Piipponen A, Kallioja?rvi K, et al. ETSI reconfigurable radio systems:Status and fu-ture directions on software defined radio and cognitive radio standards [J]. IEEE Communications Magazine,2010,48 (9):78-86.
    [14]ECMA-392 Std. MAC and PHY for Operation in TV White Space [S].2009.
    [15]Axell E, Leus G, Larsson E, et al. Spectrum sensing for cognitive radio:State-of-the-art and recent advances [J]. IEEE Signal Processing Magazine,2012,29 (3):101-116.
    [16]Akter L, Natarajan B. QoS constrained resource allocation to secondary users in cognitive radio networks [J]. Computer Communications,2009,32 (18):1923-1930.
    [17]Almalfouh S, Stuber G. Interference-aware radio resource allocation in OFDMA-based cognitive radio networks [J]. IEEE Transactions on Vehicular Technology,2011,60 (4):1699-1713.
    [18]Piazza D, Cosman P, Milstein L, et al. A resource allocation algorithm for real-time streaming in cognitive networks [C]. In Proc. IEEE Wireless Communications and Networking Conference (WC-NC),2009:1-5.
    [19]George J, Sultan A, Nafie M. Distributed power and admission control for cognitive radios in spec-trum underlay networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2009:1-6.
    [20]Gu H, Yang C, Fong B. Low-complexity centralized joint power and admission control in cognitive radio networks [J]. IEEE Communications Letters,2009,13 (6):420-422.
    [21]Mitliagkas I, Sidiropoulos N, Swami A. Convex approximation-based joint power and admission control for cognitive underlay networks [C]. In Proc. IEEE Wireless Communications and Mobile Computing Conference (IWCMC),2008:28-32.
    [22]Mitliagkas I, Sidiropoulos N, Swami A. Distributed joint power and admission control for ad-hoc and cognitive underlay networks [C]. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),2010:3014-3017.
    [23]Tadrous J, Sultan A, Nafie M. Admission and power control for spectrum sharing cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2011,10 (6):1945-1955.
    [24]Xing Y, Mathur C, Haleem M, et al. Dynamic spectrum access with QoS and interference tempera-ture constraints [J]. IEEE Transactions on Mobile Computing,2007,6 (4):423-433.
    [25]Chronopoulos A, Musku M, Penmatsa S, et al. Spectrum load balancing for medium access in cog-nitive radio systems [J]. IEEE Communications Letters,2008,12 (5):353-355.
    [26]Fischer S, Petrova M, Mahonen P, et al. Distributed load balancing algorithm for adaptive channel allocation for Cognitive Radios [C]. In Proc. International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWN),2007:508-513.
    [27]Fischer S, Mahonen P, Schongens M, et al. Load balancing for dynamic spectrum assignment with local information for secondary users [C]. In Proc. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN),2008:1-9.
    [28]Wang H, Ren J, Li T. Resource allocation with load balancing for cognitive radio networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2010:1-5.
    [29]Wang L, Wang C, Adachi F. Load-balancing spectrum decision for cognitive radio networks [J]. IEEE Journal on Selected Areas in Communications,2011,29 (4):757-769.
    [30]Liu H, Wang Z, Li S, et al. Study on the performance of spectrum mobility in cognitive wireless network [C]. In Proc. IEEE Singapore International Conference on Communication Systems (ICCS), 2008:1010-1014.
    [31]Kaur P, Udin M, Khosla A. An efficient spectrum mobility management strategy in cognitive ra-dio networks [C]. In Proc. UK-India International Workshop on Cognitive Wireless Systems (UKI-WCWS),2009:1-6.
    [32]Chen Y, Cho C, You I, et al. A cross-layer protocol of spectrum mobility and handover in cognitive LTE networks [J]. Simulation Modelling Practice and Theory,2011,19 (8):1723-1744.
    [33]Southwell R, Huang J, Liu X. Spectrum mobility games [C]. In Proc. IEEE International Conference on Computer Communications (INFOCOM),2012:37-45.
    [34]Khalife H, Malouch N, Fdida S. Multihop cognitive radio networks:To route or not to route [J]. IEEE Network,2009,23 (4):20-25.
    [35]Saad M. Optimal spectrum-efficient routing in multihop wireless networks [J]. IEEE Transactions on Wireless Communications,2009,8(12):5822-5826.
    [36]Shih C, Liao W, Chao H. Joint routing and spectrum allocation for multi-hop cognitive radio net-works with route robustness consideration [J]. IEEE Transactions on Wireless Communications, 2011,10(9):2940-2949.
    [37]Abbagnale A, Cuomo F. Leveraging the algebraic connectivity of a cognitive network for routing design [J]. IEEE Transactions on Mobile Computing,2012,11 (7):1163-1178.
    [38]Clancy C, Hecker J, Stuntebeck E, et al. Applications of machine learning to cognitive radio net-works [J]. IEEE Wireless Communications,2007,14 (4):47-52.
    [39]Ge F, Chen Q, Wang Y, et al. Cognitive radio:From spectrum sharing to adaptive learning and reconfiguration [C]. In Proc. IEEE Aerospace Conference,2008:1-10.
    [40]Unnikrishnan J, Veeravalli V. Algorithms for dynamic spectrum access with learning for cognitive radio [J]. IEEE Transactions on Signal Processing,2010,58 (2):750-760.
    [41]Clancy T, Goergen N. Security in cognitive radio networks:Threats and mitigation [C]. In Proc. International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom),2008:1-8.
    [42]Baldini G, Sturman T, Biswas A, et al. Security aspects in software defined radio and cognitive radio networks:A survey and a way ahead [J]. IEEE Communications Surveys and Tutorials,2011,14 (2): 355-379.
    [43]Ghasemi A, Sousa E. Capacity of fading channels under spectrum-sharing constraints [C]. In Proc. IEEE International Conference on Communications (ICC),2006:4373-4378.
    [44]Ghasemi A, Sousa E. Fundamental limits of spectrum-sharing in fading environments [J]. IEEE transactions on wireless communications,2007,6 (2):649-658.
    [45]Musavian L, Aissa S. Ergodic and outage capacities of spectrum-sharing systems in fading channels [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2007:3327-3331.
    [46]Musavian L, Aissa S. Capacity and power allocation for spectrum-sharing communications in fading channels [J]. IEEE Transactions on Wireless Communications,2009,8 (1):148-156.
    [47]Kang X, Liang Y, Nallanathan A. Optimal power allocation for fading channels in cognitive ra-dio networks:Delay-limited capacity and outage capacity [C]. In Proc. IEEE Vehicular Technology Conference (VTC) Spring,2008:1544-1548.
    [48]Kang X, Liang Y, Nallanathan A, et al. Optimal power allocation for fading channels in cognitive radio networks:Ergodic capacity and outage capacity [J]. IEEE Transactions on Wireless Communi-cations,2009,8 (2):940-950.
    [49]Kang X, Liang Y, Nallanathan A. Optimal power allocation for fading channels in cognitive radio networks under transmit and interference power constraints [C]. In Proc. IEEE International Confer-ence on Communications (ICC),2008:3568-3572.
    [50]Kang X, Liang Y, Garg H. Outage probability minimization under both the transmit and interference power constraints for fading channels in cognitive radio networks [C]. In Proc. IEEE International Conference on Communications (ICC) Workshops,2008:482-486.
    [51]Zhang R. Optimal power control over fading cognitive radio channel by exploiting primary user CSI [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), Nov.2008:1-5.
    [52]Kang X, Zhang R, Liang Y, et al. Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint [J]. IEEE Journal on Selected Areas in Communica-tions,2011,29 (2):374-383.
    [53]Kang X, Zhang R, Liang Y-C, et al. On Outage capacity of secondary users in fading cognitive radio networks with primary user's outage constraint [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), Dec.2009:1-5.
    [54]Kang X, Zhang R, Liang Y-C, et al. Optimal power allocation for cognitive radio under primary user's outage loss constraint [C]. In Proc. IEEE International Conference on Communications (ICC), Jun.2009:1-5.
    [55]Chen Y, Yu G, Zhang Z, et al. On cognitive radio networks with opportunistic power control strate-gies in fading channels [J]. IEEE Transactions on Wireless Communications,2008,7 (7):2752-2761.
    [56]Pei E, Wang S, Zhang Z. Capacity and optimal power allocation for spectrum-sharing with primary transmission consideration in fading channels [J]. IEEE Communications Letters,2011,15 (4):389-391.
    [57]Gatsis N, Marques A, Giannakis G. Utility-based power control for peer-to-peer cognitive radio net-works with heterogeneous QoS constraints [C]. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2008:2805-2808.
    [58]Musavian L, Aissa S. Quality-of-service based power allocation in spectrum-sharing channels [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2008:1-5.
    [59]Musavian L, Aissa S. Effective capacity of delay-constrained cognitive radio in Nakagami fading channels [J]. IEEE Transactions on Wireless Communications,2010,9 (3):1054-1062.
    [60]Ma Y, Zhang H, Yuan D, et al. Adaptive power allocation with quality-of-service guarantee in cog-nitive radio networks [J]. Computer Communications,2009,32 (18):1975-1982.
    [61]Li D. Efficient power allocation for multiuser cognitive radio networks [J]. Wireless Personal Com-munications,2011,59 (4):589-597.
    [62]Huang S, Liu X, Ding Z. Distributed power control for cognitive user access based on primary link control feedback [C]. In Proc. IEEE International Conference on Computer Communications (INFOCOM),2010:1-9.
    [63]Musavian L, Aissa S. Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information [J]. IEEE Transactions on Communications,2009,57 (11):3472-3480.
    [64]Bagayoko A, Fijalkow I, Tortelier P. Power control of spectrum-sharing in fading environment with partial channel state information [J]. IEEE Transactions on Signal Processing,2011,59 (5):2244-2256.
    [65]Dall'Anese E, Kim S, Giannakis G, et al. Power allocation for cognitive radio networks under chan-nel uncertainty [C]. In Proc. IEEE International Conference on Communications (ICC),2011:1-6.
    [66]Dall'Anese E, Kim S, Giannakis G, et al. Power control for cognitive radio networks under channel uncertainty [J]. IEEE Transactions on Wireless Communications,2011,10 (10):3541-3551.
    [67]Zhou X, Wu B, Ho P, et al. An efficient power allocation algorithm for OFDM based underlay cognitive radio networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2011:1-5.
    [68]Bansal G, Hossain M, Bhargava V. Optimal and suboptimal power allocation schemes for ofdm-based cognitive radio systems [J]. IEEE Transactions on Wireless Communications,2008,7 (11): 4710-4718.
    [69]Wang P, Zhao M, Xiao L, et al. Power allocation in OFDM-based cognitive radio systems [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2007:4061-4065.
    [70]Wang P, Zhong X, Xiao L, et al. A general power allocation algorithm for OFDM-based cognitive radio systems [C]. In Proc. IEEE International Conference on Communications (ICC) Workshops, Jun.2009:1-5.
    [71]Chen C-H, WangC-L. An efficient power allocation algorithm for multiuser OFDM-based cognitive radio systems [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), Apr.2010:1-6.
    [72]Zhang Y, Leung C. An efficient power-loading scheme for OFDM-based cognitive radio systems [J]. IEEE Transactions on Vehicular Technology,2010,59 (4):1858-1864.
    [73]Zhang Y, Leung C. Performance of equal power allocation in multiuser OFDM-based cognitive radio systems [J]. Journal of Electrical and Computer Engineering,2008,2008.
    [74]Wang S, Huang F, Zhou Z. Fast power allocation algorithm for cognitive radio networks [J]. IEEE Communications Letters,2011,15 (8):845-847.
    [75]Son K, Jung B, Chong S, et al. Opportunistic underlay transmission in multi-carrier cognitive radio systems [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2009: 1-6.
    [76]Kang X, Garg H, Liang Y, et al. Power allocation for OFDM-based cognitive radio systems with hybrid protection to primary users [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2009:1-6.
    [77]Kang X, Garg H, Liang Y-C, et al. Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria [J]. IEEE Transactions on Wireless Communications, 2010,9 (6):2066-2075.
    [78]Xu Y, Chen W, Cao Z. Optimal power allocation for spectrum sharing in frequency-selective unli-censed bands [J]. IEEE Communications Letters,2008,12 (7):511-513.
    [79]Son K, Jung B C, Chong S, et al. Power allocation for OFDM-based cognitive radio systems under outage constraints [C]. In Proc. IEEE International Conference on Communications (ICC),2010: 1-5.
    [80]Bansal G, Hossain M, Bhargava V. Adaptive power loading for OFDM-based cognitive radio sys-tems with statistical interference constraint [J]. IEEE Transactions on Wireless Communications, 2011,10(9):2786-2791.
    [81]Chai C, Chew Y. Power control for cognitive radios in Nakagami fading channels with outage proba-bility requirement [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2010: 1-5.
    [82]Bansal G, Duval O, Gagnon F. Joint overlay and underlay power allocation scheme for ofdm-based cognitive radio systems [C]. In Proc. IEEE Vehicular Technology Conference (VTC), May 2010: 1-5.
    [83]Brandt-Pearce M, Kansanen K,Oien G. Fast distributed resource allocation for multi-cell cognitive radio systems [C]. In Proc. IEEE International Conference on Communications (ICC),2010:1-6.
    [84]Hasan Z, Bansal G, Hossain E, et al. Energy-efficient power allocation in OFDM-based cognitive radio systems:A risk-return model [J]. IEEE Transactions on Wireless Communications,2009,8 (12):6078-6088.
    [85]Hasan Z, Hossain E, Despins C, et al. Power allocation for cognitive radios based on primary user activity in an OFDM system [C]. In Proc. IEEE Global Telecommunications Conference (GLOBE-COM),2008:1-6.
    [86]Chen C-H, Wang C-L. Power allocation for OFDM-based cognitive radio systems under primary user activity [C]. In Proc. IEEE Vehicular Technology Conference (VTC) Spring, May 2010:1-5.
    [87]Da B, Ko C. Dynamic spectrum sharing in orthogonal frequency division multiple access-based cognitive radio [J]. IET Communications,2010,4 (17):2125-2132.
    [88]Tadrous J, Sultan A, Nafie M, et al. Power control for constrained throughput maximization in spec-trum shared networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2010:1-6.
    [89]Attar A, Holland O, Nakhai M, et al. Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks [J]. IET Communications,2008,2 (6):806-814.
    [90]Ruan L, Lau V. Power control and performance analysis of cognitive radio systems under dynam-ic spectrum activity and imperfect knowledge of system state [J]. IEEE Transactions on Wireless Communications,2009,8 (9):4616-4622.
    [91]Sun C, Alemseged Y, Tran H, et al. Power control of cognitive radio system in Rayleigh fading [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2009:1-6.
    [92]Sun C, Alemseged Y, Tran H, et al. Transmit power control for cognitive radio over a Rayleigh fading channel [J]. IEEE Transactions on Vehicular Technology,2010,59 (4):1847-1857.
    [93]Asghari V, Aissa S. Rate and power adaptation for increasing spectrum efficiency in cognitive radio networks [C]. In Proc. IEEE International Conference on Communications (ICC),2009:1-5.
    [94]Asghari V, Aissa S. Adaptive rate and power transmission in spectrum-sharing systems [J]. IEEE Transactions on Wireless Communications,2010,9 (10):3272-3280.
    [95]Li J, Zhang W, Yuan J. Opportunistic spectrum sharing in cognitive radio networks based on primary limited feedback [J]. IEEE Transactions on Communications,2011,59 (12):3272-3277.
    [96]Abdallah M, Salem A, Alouini M, et al. Adaptive discrete rate and power transmission for spectrum sharing systems [J]. IEEE Transactions on Wireless Communications,2012,11 (4):1283-1289.
    [97]Gao L, Wu P, Cui S. Power and rate control with dynamic programming for cognitive radios [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2007:1699-1703.
    [98]Gao L, Cui S. Multi-band power and rate control for cognitive radios with energy constraints:A dynamic programming approach [C]. In Proc. IEEE International Conference on Communications (ICC),2008:3563-3567.
    [99]Sun D, Zheng B, Cui J, et al. A research of resource allocation algorithm in multi-media heteroge-neous cognitive OFDM system [C]. In Proc. IEEE Global Telecommunications Conference (GLOBE-COM) Workshops,2010:944-948.
    [100]Wang S. Efficient resource allocation algorithm for cognitive OFDM systems [J]. IEEE Commu-nications Letters,2010,14 (8):725-727.
    [101]Zhao C, Kwak K. Power/Bit loading in OFDM-Based cognitive networks with comprehensive interference considerations:The single-SU case [J]. IEEE Transactions on Vehicular Technology, 2010,59(4):1910-1922.
    [102]Zhu Y, Sun Z, Wang W, et al. Joint power and rate control considering fairness for cognitive radio network [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2009: 1-6.
    [103]Ma Y, Xu Y, Zhang D. Power allocation for orthogonal frequency division multiplexing-based cognitive radio systems with and without integral bit rate consideration [J]. LET Communications, 2011,5(5):575-586.
    [104]Dashti M, Azmi P, Navaie K. Resource allocation for underlay CDMA cognitive radio networks [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2012:2792-2796.
    [105]Kim D, Le L, Hossain E. Joint rate and power allocation for cognitive radios in dynamic spectrum access environment [J]. IEEE Transactions on Wireless Communications,2008,7(12):5517-5527.
    [106]Le L, Hossain E. Resource allocation for spectrum underlay in cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2008,7(12):5306-5315.
    [107]Shaat M, Bader F. A two-step resource allocation algorithm in multicarrier based cognitive radio systems [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2010: 1-6.
    [108]Bansal G, Hasan Z, Hossain M, et al. Subcarrier and power adaptation for multiuser OFDM-based cognitive radio systems [C]. In Proc. IEEE National Conference on Communications (NCC),2010: 1-5.
    [109]Tej G, Nadkar T, Thumar V, et al. Power allocation in cognitive radio:Single and multiple sec-ondary users [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2011:1420-1425.
    [110]Zhang J, Lv T, Gao H, et al. Joint uplink power and subchannel allocation in cognitive radio net-work [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2012: 306-311.
    [111]Digham F. Joint power and channel allocation for cognitive radios [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), Mar.2008:882-887.
    [112]Chen C-H, Wang C-L. Joint subcarrier and power allocation in multiuser OFDM-based cognitive radio systems [C]. In Proc. IEEE International Conference on Communications (ICC), May 2010: 1-5.
    [113]Tang Z, Wei G. An efficient subcarrier and power allocation algorithm for uplink OFDMA-based cognitive radio systems [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2009:1-6.
    [114]Tang Z, Wei G, Zhu Y. Weighted sum rate maximization for OFDM-based cognitive radio systems [J]. Telecommunication Systems,2009,42 (1):77-84.
    [115]Pao W, Chen Y, Lai C. Subcarrier and power allocation for multiuser OFDM-based cognitive radio uplink systems [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM) Work-shops,2010:1172-1176.
    [116]Hoang A, Liang Y, Islam M. Maximizing throughput of cognitive radio networks with limited primary users'cooperation [C]. In Proc. IEEE International Conference on Communications (ICC), 2007:5177-5182.
    [117]Hoang A, Liang Y, Islam M. Power control and channel allocation in cognitive radio networks with primary users'cooperation [J]. IEEE Transactions on Mobile Computing,2010,9 (3):348-360.
    [118]Ngo D T, Le-Ngoc T. Distributed resource allocation for cognitive radio ad-hoc networks with spectrum-sharing constraints [C]. In Proc. IEEE Global Telecommunications Conference (GLOBE-COM), Dec.2010:1-6.
    [119]Ngo D, Le-Ngoc T. Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints [J]. IEEE Transactions on Vehicular Technology,2011,60 (7):3436-3449.
    [120]Cheng P, Zhang Z, Huang H, et al. A distributed algorithm for optimal resource allocation in cognitive OFDMA systems [C]. In Proc. IEEE International Conference on Communications (ICC), 2008:4718-4723.
    [121]Gao S, Qian L, Vaman D. Distributed energy efficient spectrum access in cognitive radio wireless ad hoc networks [J]. IEEE Transactions on Wireless Communications,2009,8 (10):5202-5213.
    [122]Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDM-based cognitive radio multicast networks [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2009: 1-6.
    [123]Ngo D, Tellambura C, Nguyen H. Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration [J]. IEEE Transactions on Vehicular Technology, 2010,59 (4):1668-1679.
    [124]Ngo D, Tellambura C, Nguyen H. Efficient resource allocation for OFDMA multicast systems with spectrum-sharing control [J]. IEEE Transactions on Vehicular Technology,2009,58 (9):4878-4889.
    [125]Shaat M, Bader F. Efficient resource allocation algorithm for uplink in multicarrier-based cognitive radio networks with fairness consideration [J]. IET Communications,2011,5(16):2328-2338.
    [126]Hoang A, Liang Y. Downlink channel assignment and power control for cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2008,7 (8):3106-3117.
    [127]Choi K, Hossain E, Kim D. Downlink subchannel and power allocation in multi-cell OFDMA cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2011,10 (7):2259-2271.
    [128]Peng H, Fujii T. Joint resource allocation and interference avoidance with fairness consideration for multi-cell cognitive radio networks [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2012:1348-1353.
    [129]Gong X, Vorobyov S, Tellambura C. Optimal bandwidth and power allocation for sum ergodic capacity under fading channels in cognitive radio networks [J]. IEEE Transactions on Signal Pro-cessing,2011,59 (4):1814-1826.
    [130]Gong X, Vorobyov S, Tellambura C. Joint bandwidth and power allocation in cognitive radio net-works under fading channels [C]. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2011:2976-2979.
    [131]Xie R, Ji H, Si P, et al. Dynamic channel and power allocation in cognitive radio networks support-ing heterogeneous services [C]. In Proc. IEEE Global Telecommunications Conference (GLOBE-COM),2010:1-5.
    [132]Shi C, Wang Y, Wang T, et al. Cross-layer design for interference-limited spectrum sharing systems with heterogeneous QoS [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2011:1-5.
    [133]Xie R, Yu F, Ji H. Dynamic resource allocation for heterogeneous services in cognitive radio net-works with imperfect channel sensing [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), Dec.2011:1-5.
    [134]Xie R, Yu F, Ji H. Dynamic resource allocation for heterogeneous services in cognitive radio net-works with imperfect channel sensing [J]. IEEE Transactions on Vehicular Technology,2012,61 (2): 770-780.
    [135]Qin T, Leung C, Miao C, et al. Resource allocation in a cognitive radio system with imperfect channel state estimation [J]. Journal of Electrical and Computer Engineering,2010,2010.
    [136]Huang D, Shen Z, Miao C, et al. Resource allocation in MU-OFDM cognitive radio systems with partial channel state information [J]. EURASIP Journal on Wireless Communications and Network-ing,2010,2010:12.
    [137]Marques A, Giannakis G, Lopez-Ramos L, et al. Stochastic resource allocation for cognitive ra-dio networks based on imperfect state information [C]. In Proc. IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP),2011:3196-3199.
    [138]Kim S, Soltani N, Giannakis G. Resource allocation for OFDMA cognitive radios under chan-nel uncertainty fC]. In Proc.2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),2011:3188-3191.
    [139]Cheng P, Zhang Z, Chen H, et al. Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems [J]. IET Communications,2008,2 (6):815-826.
    [140]Ma Y, Kim D. Centralized and distributed optimization of ad-hoc cognitive radio network [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2009:1-7.
    [141]Ma Y, Kim D. Subchannel-sharing based distributed optimization of ad-hoc cognitive radio net-work [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2010:1-6.
    [142]Leith A, Kim D, Alouini M, et al. Distributed optimization of a multisubchannel ad hoc cognitive radio network [J]. IEEE Transactions on Vehicular Technology,2012,61 (4):1786-1800.
    [143]Ma Y, Kim D, Wu Z. Optimization of OFDMA-based cellular cognitive radio networks [J]. IEEE Transactions on Communications,2010,58 (8):2265-2276.
    [144]Tran N, Hong C. Joint rate control and spectrum allocation under packet collision constraint in cognitive radio networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2010:1-5.
    [145]Mokari N, Navaie K, Khoshkholgh M. Downlink radio resource allocation in OFDMA spectrum sharing environment with partial channel state information [J]. IEEE Transactions on Wireless Com-munications,2011,10 (10):3482-3495.
    [146]Zhang Y, Leung C. Resource allocation in an OFDM-based cognitive radio system [J]. IEEE Trans-actions on Communications,2009,57 (7):1928-1931.
    [147]Zhang Y, Leung C. Subcarrier, bit and power allocation for multiuser OFDM-based multi-cell cognitive radio systems [C]. In Proc. IEEE Vehicular Technology Conference (VTC) Fall,2008:1-5.
    [148]Marques A, Wang X, Giannakis G. Dynamic resource management for cognitive radios using limited-rate feedback [J]. IEEE Transactions on Signal Processing,2009,57 (9):3651-3666.
    [149]Zhang Y, Leung C. A distributed algorithm for resource allocation in OFDM cognitive radio sys-tems [J]. IEEE Transactions on Vehicular Technology,2011,60 (2):546-554.
    [150]Salameh H. Rate-maximization channel assignment scheme for cognitive radio networks [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM),2010:1-5.
    [151]Li L, Xu C, He J. Resource allocation for OFDMA-based cognitive radio systems with primary user activity consideration [C]. In Proc. IEEE International Conference on Communications (ICC), 2011:1-5.
    [152]Zhang Y, Leung C. Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems [J]. Telecommunication Systems,2009,42 (1):97-108.
    [153]Zhang Y, Leung C. Cross-layer resource allocation for mixed services in multiuser OFDM-based cognitive radio systems [J]. IEEE Transactions on Vehicular Technology,2009,58 (8):4605-4619.
    [154]Zhang Y, Leung C. Resource allocation for non-real-time services in OFDM-based cognitive radio systems [J]. IEEE Communications Letters,2009,13(1):16-18.
    [155]Zhang R, Cui S, Liang Y-C. On ergodic sum capacity of fading cognitive multiple-access and broadcast channels [J]. IEEE Transactions on Information Theory,2009,55 (11):5161-5178.
    [156]Xin Kang Y-C L, Garg H K. Optimal power allocation for fading cognitive multiple access channels Individual outage capacity region [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2010:1-6.
    [157]Kang X, Liang Y-C, Garg H K. Fading cognitive multiple access channels:Outage capacity re-gions and optimal power allocation [J]. IEEE Transactions on Wireless Communications,2010,9 (7):2382-2391.
    [158]Limmanee A, Dey S, Evans J. Service-outage capacity maximization in cognitive radio [C]. In Proc. IEEE International Conference on Communications (ICC),2011:1-6.
    [159]Duan R, Ja?ntti R, Elmusrati M, et al. Capacity for spectrum sharing cognitive radios with MRC diversity and imperfect channel information from primary user [C]. In Proc. IEEE Global Telecom-munications Conference (GLOBECOM),2010:1-5.
    [160]Suraweera H, Smith P, Shafi M, et al. Channel capacity limits of cognitive radio with imperfec-t channel knowledge [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2009:1-6.
    [161]Suraweera H, Smith P, Shafi M. Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge [J]. IEEE Transactions on Vehicular Technology,2010,59 (4):1811-1822.
    [162]Kim H, Wang H, Lim S, et al. On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments [J]. IEEE Transactions on Wireless Communica-tions,2012,11 (1):284-295.
    [163]Lim S, Wang H, Kim H, et al. Mean value-based power allocation without instantaneous CSI feedback in spectrum sharing systems [J]. IEEE Transactions on Wireless Communications,2012, 11 (3):874-879.
    [164]Goldfeld L, Lyandres V, Wulich D. Minimum BER power loading for OFDM in fading channel [J]. IEEE Transactions on Communications,2002,50 (11):1729-1733.
    [165]Iserte A, Hernandez L, Perez-Neira A. Robust power allocation for minimum BER in a SISO-OFDM system [C]. In Proc. IEEE International Conference on Communications (ICC),2003:1263-1267.
    [166]Wang N, Blostein S. Minimum BER power allocation for MIMO spatial multiplexing systems [C]. In Proc. IEEE International Conference on Communications. (ICC),2005:2282-2286.
    [167]Fareed M, Uysal M. BER-optimized power allocation for fading relay channels [J]. IEEE Trans-actions on Wireless Communications,2008,7 (6):2350-2359.
    [168]Clarke R. A statistical theory of mobile-radio reception [J]. Bell Syst. Tech. J,1968,47 (6):957-1000.
    [169]Simon M, Alouini M. Digital communication over fading channels [M]. Wiley-IEEE Press,2005.
    [170]Gradshtein I, Ryzhik I, Jeffrey A, et al. Table of integrals, series and products [M].7th ed. Aca-demic press,2007.
    [171]Boyd S, Vandenberghe L. Convex Optimization [M]. Cambridge, U.K.:Cambridge Univ. Press, 2004.
    [172]Choi B, Hanzo L. Optimum mode-switching-assisted constant-power single-and multicarrier adap-tive modulation [J]. IEEE Transactions on Vehicular Technology,2003,52 (3):536-560.
    [173]Luo Z, Yu W. An introduction to convex optimization for communications and signal processing [J]. IEEE Journal on Selected Areas in Communications,2006,24 (8):1426-1438.
    [174]Palomar D, Chiang M. A tutorial on decomposition methods for network utility maximization [J]. IEEE Journal on Selected Areas in Communications,2006,24 (8):1439-1451.
    [175]Wu D, Negi R. Effective capacity:a wireless link model for support of quality of service [J]. IEEE Transactions on Wireless Communications,2003,2 (4).
    [176]Author F. Protecting primary users in cognitive radio networks with effective capacity loss con-straint [J]. IEICE Transactions on Communications,2012,95 (1):349-353.
    [177]Akin S, Gursoy M. QoS analysis of cognitive radio channels with perfect csi at both receiver and transmitter [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2010:1-6.
    [178]Akin S, Gursoy M. Effective capacity analysis of cognitive radio channels for quality of service provisioning [J]. IEEE Transactions on Wireless Communications,2010,9(11):3354-3364.
    [179]Akin S, Gursoy M. Performance analysis of cognitive radio systems under qos constraints and channel uncertainty [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM), 2010:1-5.
    [180]Akin S, Gursoy M. Performance analysis of cognitive radio systems under QoS constraints and channel uncertainty [J]. IEEE Transactions on Wireless Communications,2011,10 (9):2883-2895.
    [181]Duan R, Elmusrati M, Jantti R, et al. Capacity for spectrum sharing cognitive radios with MRC diversity at the secondary receiver under asymmetric fading [C]. In Proc. IEEE Global Telecommu-nications Conference (GLOBECOM),2010:1-5.
    [182]Li D. Performance analysis of MRC diversity for cognitive radio systems [J]. IEEE Transactions on Vehicular Technology,2012,61 (2):849-853.
    [183]Blagojevic V, Ivanis P. Ergodic capacity for TAS/MRC spectrum sharing cognitive radio [J]. IEEE Communications Letters,2012,16 (3):321-323.
    [184]Blagojevic V, Ivanis P. Ergodic capacity of spectrum sharing cognitive radio with MRC diversity and Nakagami fading [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2012:2797-2801.
    [185]Al-Hussaini E, Al-Bassiouni A. Performance of MRC diversity systems for the detection of signals with Nakagami fading [J]. IEEE Transactions on Communications,1985,33 (12):1315-1319.
    [186]Zhang R. On peak versus average interference power constraints for protecting primary users in cognitive radio networks [J]. IEEE Transactions on Wireless Communications,2009,8 (4):2112-2120.
    [187]Author F. Minimum average BER power allocation for fading channels in cognitive radio networks [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC),2011:78-83.
    [188]Goldsmith A, Varaiya P. Capacity of fading channels with channel side information [J]. IEEE Transactions on Information Theory,1997,43(6):1986-1992.
    [189]Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems-part Ⅰ:chunk allocation [J]. IEEE Transactions on Communications,2009,57 (9):2734-2744.
    [190]Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems-part Ⅱ:joint chunk, power and bit allocation [J]. IEEE Transactions on Communications,2012,60 (2):499-509.
    [191]Ahlfors L. Complex Analysis [M]. McGraw-Hill:New York, NY,1979.
    [192]Luo Z, Zhang S. Duality gap estimation and polynomial time approximation for optimal spectrum management [J]. IEEE Transactions on Signal Processing,2009,57 (7):2675-2689.
    [193]Kelly F, Maulloo A, Tan D. Rate control for communication networks:shadow prices, proportional fairness and stability [J]. Journal of the Operational Research society,1998,49 (3):237-252.
    [194]Dai J, Ye Z, Xu X. Power allocation for maximizing the minimum rate with QoS constraints [J]. IEEE Transactions on Vehicular Technology,2009,58 (9):4989-4996.
    [195]Peha J. Approaches to spectrum sharing [J]. IEEE Communications Magazine,2005,43 (2):10-12.
    [196]Bertsekas D. Nonlinear programming [J],1999.
    [197]Bland R, Goldfarb D, Todd M. The ellipsoid method:A survey [J]. Operations Research,1981,29 (6):1039-1091.
    [198]Gopala P, El Gamal H. On the throughput-delay tradeoff in cellular multicast [C]. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), Jun.2005:1401-1406.
    [199]Biglieri E, Proakis J, Shamai S. Fading channels:Information-theoretic and communications as-pects [J]. IEEE Transactions on Information Theory,1998,44 (6):2619-2692.
    [200]Papadimitriou C, Steiglitz K. Combinatorial optimization:algorithms and complexity [M]. Dover Pubns,1998.
    [201]Bourgeois F, Lassalle J. An extension of the Munkres algorithm for the assignment problem to rectangular matrices [J]. Communications of the ACM,1971,14 (12):802-804.
    [202]Bourgeois F, Lassalle I. Algorithm 415:Algorithm for the assignment problem (rectangular ma-trices) [J]. Communications of the ACM,1971,14 (12):805-806.
    [203]Shor N, Kiwiel K, Ruszcaynski A. Minimization methods for non-differentiable functions [J], 1985.
    [204]Herring K, Holloway J, Staelin D, et al. Path-Loss characteristics of urban wireless channels [J]. IEEE Transactions on Antennas and Propagation,2010,58 (1):171-177.
    [205]Goldsmith A, Chua S. Variable-rate variable-power MQAM for fading channels [J]. IEEE Trans-actions on Communications,1997,45 (10):1218-1230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700