~(60)Coγ射线与HNO_2复合处理辣椒诱变效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
~(60)Coγ射线与HNO_2复合处理辣椒干种子,试验按2因素4水平设计。研究了辣椒M_1代根长、发芽势、最终发芽率和成株率的生理损伤,M_2代的开花期、株高、单株果数、侧枝数等性状的诱变效应以及M_1代生理损伤和M_2代诱变效应的相关性,实验结果表明:
     1.在供试剂量范围内,M_1代的生理损伤随着剂量的增大而增大,而M_2代突变频率并不随剂量的增大而增大,而是呈抛物面型,存在峰值。γ射线与HNO_2复合处理对M_1代生理损伤和M_2代突变频率比单一处理效果明显。
     2.γ射线与HNO_2复合处理在M_1代根长性状上的生理损伤表现为累加效应,在成株率上表现为协同效应,但对最终发芽率影响很小。
     3.M_1代根长可作为早期测定复合处理生物学效应大小的可靠形态指标,其根长为对照的64%—28%都可以出现较多的变异类型,M_2代开花期、株高、单株果数、侧枝数变异最优诱变剂量的早期形态预测指标是M_1代根长为对照的54%;M_2代叶绿素缺失变异最优诱变剂量的早期形态预测指标是M_1代根长为对照的30%。
     4.M_2代开花期、株高、单株果数、侧枝数和叶绿素缺失突变频率统计分析结果表明,复合处理30(1×10)Gy+60min[用~(60)Coγ射线照射30(1×10)Gy后再用(0.05mol/L)HNO_2浸种60分钟]、30(1×10)Gy+70min、30(1×10)Gy+80min、70(1×10)Gy+60min组合对辣椒诱变效应明显,获得开花期、株高、单株果数和侧枝数变异最优诱变剂量组合为30(1×10)Gy+70min,获得叶绿素缺失变异最优诱变剂量组合为70(1×10)Gy+60min。
     5.诱变剂在辣椒M_2代株高、单株果数、侧枝数、开花期性状上仍然存在生理损伤。
     6.相关分析表明,M_1代的发芽势、成株率和株高相关均达到极显著水平。M_1代发芽势、成株率与M_2代株高和单株果数突变率相关不显著,因此,不能用M_1代的发芽势、成株率性状预测M_2代的株高和单株果数的突变率。M_1代株高与M_2代株高、单株果数突变率相关性因品种而异。
     7.不同品种对γ射线与HNO_2的诱变敏感性不同。从M_2代叶绿素缺失、开花期、株高、单株果数和侧枝数突变频率看,品种2034敏感性最强,其次为品种2032,品种2017最不敏感。
Dry seeds of 3 varieties of peppers were treated with 60Co-gamma rays, HNO2 and their combination. The basic scheme of the study adopted the design of four levels under two factors. In M1, the biological injuries of the root length, the germination viability, the germination rate at last and the rate of survival plant were studied, In M2, the mutation effects of the plant height, the flowering stage, the No. of fruits per. plant and the No. of lateral branches per. plant were studied, at the same time, correlation coefficient between injury effects in M1 and mutation effects in M1 were analyzed. The results showed that:
    1. In experimental dosages, the biological injuries of M1 increased with the increase of gamma-ray doses and the treating time of HNO2, but the mutation frequencies of M2 did not increased, they showed paraboloid shape and had peak value. Combination treatments with γ-ray and HNO2 were more effective than single treatment for the biological injuries in M1 and the mutation frequency in M2.
    2. Combinating treatments with γ-ray and HNO2, in M1, the independent effect was observed on root length, the synergistic effect was observed on the rate of survival plant, but they affected the final germination rate very little.
    3. 63%-28% of root length in M1 could be used for predicting effect in M2 under the better combined treatment, 54% of root length in M1 could be used for predicting effect in M2 under the best combined treatment for the flowering stage, the plant height, the No. of fruits per plant, the No. of lateral branches per. plant. 30% of root length in M1 could be used for predicting effect in M2 under the best one for chlorophyll-reduced mutants.
    4. Analyzing mutagenic effect of the chlorophyll-reduced mutation, the flowering stage, the plant height, the No. of fruits per plant, the No. of lateral branches per. plant in M2, the results showed that: the Combination treatments of 30(1×10)Gy+60min [the treatment of 30(1×10)Gy 60Co-gamma ray and 70min (0.05mol/L) HNO2], 30(1×10)Gy+70min, 30(1×10)Gy+80min, 70(1×10)Gy+60 min were suitable for inducing mutation; the treatment of 30 (1×10)Gy+80min was the best one for mutation of the flowering stage, the plant height, the No. of fruits per plant, the No. of lateral branches per. Plant in M2; the treatment of 70(1×10)Gy+60min was the best one for the chlorophyll-reduced mutation.
    5. Single and combination treatments with γ-ray and HNO2 to dry seeds of peppers, the biological injuries still retained on the plant height, the No. of fruits per. plant, the flowering stage and the No. of lateral branches per. plant in M2.
    
    
    
    6. In M1, the plant height, the germination viability and the rate of survival plant had significant relationship. But the germination viability and the rate of survival of M1 were not related to the mutation frequencies of the plant height and the No. of fruits per. plant of M2. The germination viability and the rate of survival plant could not be used for predicting the mutagenic effect of the plant height and the No. of fruits per. plant of M2.
    7. Different varieties showed different mutation sensitivity. Studied the mutation frequencies of the chlorophyll-reduced mutation, the flowering stage, the plant height, the No. of fruits per plant, the No. of lateral branches per. plant in M2, 2034 was the most sensitivity, second was 2032, the last one was 2017.
引文
[1]卞坡等.离子束的生物效应及应用.河南农业大学学报,1999,33(2):178-182
    [2]王长泉.果树诱变育种的研究进展.核农学报,2000,14(1):61-64
    [3]王玉怀.黄瓜子叶颜色遗传规律的研究.东北农学院学报 1990,21(2):196-197
    [4]王立秋,杨国忠,陈风德.激光诱变生物学效应及其在动植物遗传育种上德应用.激光生物学报,1997,6(2):1097-1102
    [5]王祖秀,汤泽生.大麦叶色黄化突变体的遗传分析.西南农业学报,1996,9:180-182
    [6]王彩莲.人工诱发植物叶绿素突变分析,核农学通报,1990 ,11(6):261-265
    [7]王彩莲,陈秋方,慎政等.几种新的诱变因素对水稻的诱变效应.核农学报,2000,14(5):268-273
    [8]王彩莲.诱发突变与大麦改良.核农学通报,1997,18(5):238-242
    [9]王琳清.我国植物诱变育种进展剖析.核农学报,1992,6:282-295
    [10]邓红,梅曼彤,卢永根等.加速器氩离子辐射在水稻育种中的应用.核农学报,1994,8(2):70-74
    [11]邓晓建,周开达,李仁端等.水稻品种生育期的遗传和基因定位.四川农业大学学报.2001,19(2):173-178
    [12]长谷川等.溴化乙啶(EB)堤高NaN_3对水稻的诱变率.原子能农业译丛,1984,(2):58
    [13]叶春海.香蕉(60)~Co辐射诱变效应的研究,西南农业大学学报.2000,22(4):301-303
    [14]司述明等.53种植物γ射线辐照适宜剂量范围.王琳清主编,诱发突变与作物改良,原子能出版社.1995:379-384
    [15]左请凡,梅曼彤,卢永根等.加速器氩离子辐射对水稻诱发效应的初步研究.核农学报,1991,5(4):199-204
    [16]申慧芳,李国柱等.(60)~Co-γ射线对苦荞干种子的辐射效应.杂粮作物,2002,22(3):144-146
    [17]刘光珍.咖啡因对辐射效应的影响.核农学报,1988,2(2):114—123
    [18]刘录祥.植物诱变育种新技术研究进展.核农学通报,1997,18(14):187-190
    [19]刘承宪.空间生物学与空间生物技术研究发展.空间科学学报,1999,19(增):1-8
    [20]吐尔逊.伊不拉音,等,离子束诱变蔬菜,药材等种子M_1生物效应.种子,2001,5:3-4
    [21]吕善勇.世界蔬菜诱变育种及发展趋势.北方园艺,1993(1):16-17
    [22]华北农业大学,西北农学院主编.普通化学.上海科学技术出版社,1978,93-98
    [23]孙立华等.具广亲和性的水稻隐性高杆细胞突变体.遗传学报,1994,21(1):67-73
    [24]孙敬三,朱至清,王敬驹等.甘蔗黄化突变体质体的发育和超微结构.植物学报,1981,23(1):1-5
    [25]孙漱乡,金卫,骆倩.水稻突变品种原丰早抽穗期的遗传分析.浙江农业学报.1990,2(3):97-101
    [26]庄楚雄等.高能重离子诱导水稻半矮杆突变株系的RFLP分析.核农学报,1997,11(2):74-78
    
    
    [27]成英,汤泽生,王祖秀等.叶绿素缺乏大麦突变体的生理与遗传研究.四川师范学院学报(自然科学版),2001,22(2):131-133,138
    [28]成雄鹰等.大麦咖啡因后处理对EMS和γ射线诱变性的影响.原子能农业应用,1986,,2:12-16
    [29]朱校奇.农作物化学诱变的研究进展.核农学通报,1990,11(3):101-103
    [30]朴铁夫,许耀奎,李国全等.(60)~Coγ射线和EMS复合处理对大麦遗传效应的研究.1993,14(5):263-266
    [31]毕宏文.蔬菜空间诱变育种研究与展望.北方园艺,1999,1:13-14
    [32]江泽慧,彭镇华.离子束应用于生物样品改良的研究,安徽农业大学学报,1994,21(3):295-298
    [33]邬振祥,伊国香,李素梅.等离子注入在番茄育种上的应用.安徽农业大学学报,1994,21(3):321-325
    [34]何瑞锋,丁毅,余金洪等.水稻温敏叶绿素突变体叶片超微结构的研究.武汉植物学研究,2001,19(1):1-5
    [35]余增亮.离子注入水稻诱变育种机理的研究进展.安徽农业科学,1998,39(1):12-16[35]
    [36]刘后利等.作物诱变育种研究与发展见.作物育种研究与发展(第2卷).南辛:东南大学出版社,1994,1-16
    [37]吴世弼等.水稻诱变获得隐性高杆基因.福建省农科院学报,1988,3(1):41-44
    [38]吴关庭,王贤裕,金卫.水稻温敏型紫叶突变体PLM12及其遗传研究.核农学报,2001,15(2):70-74
    [39]吴殿星,舒庆尧,夏英武等.水稻转绿型白化突变系W_(25)的叶绿体超微结构研究.浙江农业大学学报,1997,23(4):451-452
    [40]张再君,范树国等.~(60)Co-γ射线与NaN_3复合处理对珍汕97A的诱变效应.西北植物学报,2000,20(2):229-233
    [41]张军民.甜椒空间诱变后代的遗传变异检测及分析初报.黑龙江农业科学,1999,3:27-29[30]
    [42]张亮芳.结合对DNA分子结构的分析谈激光育种的一些设想.应用激光,1985,5(2):46-48
    [43]张铭堂.诱变科学.农业出版,1996,444(1,2):31-52
    [44]李丕皋,封如敏.小麦特异材料-返白系的初步研究.陕西省遗传学会论文摘要,1985,53-56
    [45]李加旺.~(60)Co γ射线在黄瓜诱变育种中的应用初报.中国蔬菜,1997,2:22-24[13]
    [46]李永红,谷运红,秦广雍.低能离子注入对大豆同功酶活性的影响.河南农业大学学报,2001,35(2):111-114
    [47]李永红.离子束的生物效应及诱变机理研究进展.河南农业大学学报,2002,36(2):159-163
    
    
    [48]李兴林,李增权等.50MeV/u碳离子辐射休眠和萌发的春小麦种子的M_1代比较.核农学报,2001,15(13):129-133
    [49]李社荣,曾孟潜等.植物空间研究进展.核农学报,1998,12(6):375-379
    [50]李社荣等.返回式卫星搭载后玉米叶绿体色素变化的研究,核农学报,2001,15(2):75-80
    [51]李忠杰.辐射外源DNA导入小麦诱变效果初探.核农学通报,1995,11(1):1-4
    [52]李金国.蔬菜航天诱变育种.中国蔬菜,1999,1:4-5
    [53]李春兰等.对小麦种子诱变效应的研究.原子能农业应用,1985(增):274-275
    [54]李能芳,张伦德等.番茄种子经卫星搭载后的变异初报.四川农业大学学报,1997,15(2):229-232
    [55]李耀华,胡志辉.荠菜辐射诱变育种研究Ⅰ干种子辐射的适宜剂量及性状变异.种子,1999,3:21-22
    [56]杨乃崔等.若干水稻矮杆和早熟突变体的遗传分析.原子能农业应用,1980,4:24-29
    [57]杨立锡,郑秀龙等.生物化学与生物物理学报,1988,20:212-216
    [58]杨建明等.极低温辐照大麦种子及热冲击后处理诱变效应的研究.核农学报,1991,5:1-6
    [59]杨毅,隋好林等.卫星搭载黄瓜主要性状的变异研究.山东农业大学学报.2001,32(2):171-175
    [60]苏小静,汪沛洪.小麦突变体返白系返白机理的研究.西北农业大学学报,1990,18(2):73-77
    [61]苏敏.新显性矮源-辐矮1号的矮化遗传分析,核农学通报,1989,10(2):62-64
    [62]谷爱秋等.博来霉素后处理提高EMS诱变的遗传学效应.原子能农业应用,1985,增刊:225-230
    [63]邵继荣,王玉忠,刘永胜等.水稻温敏型突变体叶片间断失绿的超微结构.植物学报,1999,41(1):20-24
    [64]陆兆新.日本辐射诱变育种的最新进展.核农学通报,1997,18(6):296-299
    [65]陈世儒.蔬菜育种学.农业出版社(西南农业大学主编)1995,133
    [66]陈宇,林梓鑫,张峰等.离子注入红霉素产生菌诱变高产菌株及其机理初步研究.中国抗生菌杂志,1997,22(60:410-414
    [67]陈绍江,宋同明.EMS花粉诱变获得高油玉米突变体.中国农业大学学报,2002,7(3):12-17
    [68]宗仁鹤,白春礼.激光对DNA作用机理的ATM研究.激光生物学报,2001,1:7-
    [69]林国平.氮离子注入烟草种子的效应影响.安徽农业大学学报,1991,18(4):317-319
    [70]林音等.菊花不同器官辐射敏感性的研究,核农学通报,1988,9(5):213-214
    [71]罗景桂.放射生物学.北京:中国农业出版社,1996:144-171
    [72]郑冬宫.离子注入在棉花育种中的诱变效应.安徽农业大学学报,1994,21(3):315-317
    
    
    [73]赵云.缺乏叶绿素的油菜突变体的叶绿体组成和结构的变化.植物学报,2001,43(8):877-880
    [74]赵玉锦等.空间诱导高粱突变体的研究.植物学通报,2001,18(1):81-89
    [75]骆荣挺,张铭铣,沈守江.CO_2激光与NaN_3、γ射线复合处理水稻的诱变效应.核农学通报,1996,17(5):219-220
    [76]夏英武,刘贵付,舒庆尧等.籼型温敏核不育水稻叶绿素突变体的诱发及其初步研究.核农学报,1995,9(3):129-133
    [77]夏英武.离子注入与γ射线对水稻诱变效应的初步研究,浙江农业大学学报,1992,4(3):108-112
    [78]夏英武等.水稻辐射白色转绿突变系的遗传及叶绿体超微结构的分析.核农学报,1996,17(1):1-4
    [79]徐阿炳.γ射线与NaN_3对大麦的诱变效应.原子能农业应用,1985,增刊:271-272
    [80]徐国生.水稻化学诱变效果的初步研究,遗传,1987,9(2):1-4
    [81]徐建龙.空间诱变因素对不同梗稻基因型的生物学效应研究.核农学报,2000,14(1):56-60
    [82]徐建龙等.空间条件诱发水稻突变体.浙江农业学报.1999,11(2):63-66
    [83]贾玉峰,许耀奎,邬信康等.春小麦黄绿苗突变系的遗传及叶绿体结构的分析.吉林农业大学学报,1992,14(1):1-4
    [84]顾月红,罗江虹,严晓红.N~+离子束注入烟草愈伤组织对脂摸过氧化及相关酶活性的影响.激光生物学报,1998,7(3):180-183
    [85]顾瑞琦.十字花科植物中芥子碱的辐射保护作用.原子能农业应用,1985,增刊:206-210
    [86]高明尉,朱月荣.籼稻早熟突变体的遗传分析.原子能农业应用,1981,1:4-10
    [87]高映宏,左颖.激光在现代农业及生物科学中的应用.天津农学院学报,2002,9(1):55-58
    [88]梁劬,王琳清.(60)~Coγ射线与EMS复合处理小麦的诱变效应.原子能农业应用,1985,增刊:117-122
    [89]程汝宏.谷子氮离子注入研究.安徽农业大学学报,1994,21(3):310-314
    [90]蒋兴村.863-2空间诱变育种进展的前景.空间科学学报,1996,16(增):77-82
    [91]虞秋成等.作物空间诱变育种的现状及展望.江苏农业科学,2001,4:3-6
    [92]缪炳良.诱变效应比较研究中的指标性状及其突变临界的无偏估计.核农学通报,1990,11(6):287-289
    [93]魏良明等.植物诱变新技术及其在玉米育种上的应用.玉米科学,2000,8(1):19-21
    [94]Reddy,C.S,半脱氨酸后处理对高粱幼苗生长的影响.原于能农业译丛,1980.4:29
    [95]Babaev,M.S.et al.,对苯二酚对小麦种子的辐射保护作用.核农学通报,1990,11(5):242
    
    
    [96] D.M:Ram Rao,et al.,遗传分析印度水稻诱变产生的半矮生突变体.核农学报,1997,9(1) :45-48
    [97] Yamagnchi,H.:使用非按期DNA合成的抑制剂提高γ射线对大麦种子的诱变效率.原子能 农业译丛,1981,(4) :21-23
    [98] Aastvelt, K.;Effects of combinations of mutagens on mutation frequency in barley.Mutations in Plant Breeding Ⅱ IAEA. Vienna. 1968:5-14
    [99] Alper T. and HowardFlandersP.,Role of oxygen in modifying the radiosensitivity, Nature, 1956, 178: 978-979
    [100] AL-Rubeai M. A. F., Radiosensitivity of dormant phaseolus seeds. Environmental and Experi-mental Botany 1981,21:71-71
    [101] A1-Rubeai, M. A. F. et al., Genetic control of radiosensitivity in Phaseolus vulgaris L. Envir-onmental and Experimental Botany, 1981 ,21 , 211-216
    [102] Bachmann MD.Robertson DS,Bowen CC,et al,Chloroplust development in pigment deficient mutants of maize, I.structural anomalies in plastids of allelie mutants at the W3 locus,J. Ultrastruce. Res., 1967,21:41-60
    [103] Bekendam,J., X-ray induced mutations in rice , The Effects of Ionizing Radiations on Seeds. Proc. Symp. Karlssruhe, 1961,609-629
    [104] By Yasuo Ukai,Polyploidy and radiosensitivity in the genus avena. The Japanese Journal of Genetics ,1981,56(6) :565-580
    [105] Chen Zhengo, Laser technology and laser breeding in modern agriculture. Laser biology, 1992, 1(3) : 99-103
    [106] Constatin. M. J. et al., The chlorophyll-deficient mutant assay in barley (Hordeum vulgare). A report of the U.S. Enviromental Protection Agency Gene-tox Program. Mutation Research, 1982, 99: 37-49
    [107] Das, S. R. et al.: Induction of polygenic mutation in rice with gamma-ray and chemical. Oryza, 1979, 16(1) : 37-42
    [108] Doll, H. et al., Mutagenic effect of gamma rays, diethyl sulphate, ethymethane sulphonate, and various combianation of gamma-rays and the chemicals. Induced Mutation in Plant (Proc. Symp. Pullman), IAEA. 1969: 195-205
    [109] Favret, E. A., Genetic effects of single and combined treatment of ionizing radiation and ethylmethane.Sulphonate on barley seeds. Ploc. 1st Int. Barley Genetices Symp. 1963:6881
    [110] Gao, Z. S.; Sugita, S.; Ikeda, S.; et al., Linkage of AFLP markers to Ihdl, a recesive heterochr-
    
    onic gene in Italian ryegrass. Genome, 2002, 45(4) : 752-758
    [111] -Gustaffsson, A. et al. The mutation system of the chlorophyll apparatus. K. Fysiogr. Sallsk. Lund Forh.N. F. 194051: 1-40.
    [112] Hanna W.W. and BurtonG. W., Morphological characteristics and genetics of two mutations for early maturity in pearl millet. Crop Science, 1985,25:79-81
    [113] Hassein , H. A. S. et al. , Effects of single and combined EMS on the Mi-fertility and M2 chlorophyll mutations in Vicia fobal.. Egypt. J. Genet. Cytol., 1974, 3: 246-258
    [114] Hosticka,L.P.et al., Structure of DNA cold spring harbor symposium on quantitative Biology,Vol XLVII. Heredity, 1984,75:242-246
    [115] labal J., Effect of acute gamma irradiation, developmental stages and cultivar differences on growth and yield of wheat and sorghum plants. Environmental and Experimental Botany, 1980, 20:219-232
    [116] Inoue M. et al., Varietal differences in the repair of gamma radiation in duced lesions in barley. Environmental and Experimental Botany, 1980, 20: 161-168
    [117] Jaranowsski,J.K. et al., Mutations in soybean, part I, specificcc response of soybean varieties to mutagenic factor in M1 generation, Genetics Polonica, 1977,18(3) :225-233
    [118] Johnson E. L., The relation of X-ray dosage to degree of in jury in nemophila and zinnia. Amer. Journal Botany, 1936, 23: 414
    [119] Kar, G. N. et al., Frequency and spectrm of macro and micro mutation induced in wheat varieties by physical and chemical mutagens. 4th Intl. SABRAO Cong., 1981: 30
    [120] Kar, G. N. et al., Induction of semi-dwarf mutants in bread wheat var. C-306. J. Nuclear Asric Biol., 1982,11:51-53
    [121] Kensuke Kusumi, Hisayo Komori, Hikaru Satoh, Characterization of a zebra mutant of rice with Increased Susceptibility to Lighy Stress. 2001,127 (1) : 67-77. [128]
    [122] Koba T. and Futsuhara y., Character expression of induced dwarf mutants in rice. II . Morphological and his tological observation on the effects of temperature on culm elongation in the dwarf mutant, Japanese Journal. Breeding, 1982,32:259-265
    [123] M Chen, M. Jensen. The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in Chloroplast biogenesis. Journal of Heredity, 1999, 90(1) :207-214,
    [124] Maekawa, M. et al., Interaction of eui gene for the elongation of uppermost intermode and some genes for elongation of rice. Japan. Journal Breeding, 1983,33(Suppl.1) :124-125
    
    
    [125] Maluszynski M., Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica ,1995,85:303-315
    [126] Maneesha.R.Alaru,Hanhony Bae,Dongying Wu, and Steven R, Todermel. The Arebidopsis immatans, Mutation Affects Plastid Differentiation and the Morphogeneses of White and Green Sectors in Variegated Plants. Plant Physiol., 200 1 , 127 (1) : 67-77
    [127] Nakai H. et al., Increasing mutagenic efficiency of gamma-radiation in rice by irradiation of seeds at extremely low temperrure, Euphytica, 1979, 28: 697-704
    [128] Norsk P. Role of arginine vasopressin in the regulation of extracellular fluid volume. Med Science Sports Exer , 1996, 28(10) : 36-41
    [129] Osbprne T. S. and Lunder A. O., Seed radiosensitivity: anew constant. Science, 1964, 145: 710-711
    [130] Porterfield D M., Mathew S W., Dangberty C J., et al., Spaceflight exposure effects on transcription, activity and localization of alcohol dehydrogenase in the root of Arabidopsis thaliana. Plant physical, 1997, 113(3) : 685-693
    [131] Rutger J.N. et al., A fourth genetic element to facilitate hybrid production, a recessive tall in rice. Crop Science, 1981, 21: 373-376
    [132] Sax I., Swanson K. A. and Swanson C. P., Differential sensitivify of cells to X-rays. Amercia Journal Botany, 1941, 28: 51-56
    [133] Sharma, R. P., On the combined effects of physical and chemical mutagens, Radiation and Radiomimetic in Mutation Breeding, 1969, (3) : 70-74
    [134] Sideris, E. G. et al., Differential effect of sodinmmmmm azide on the frequency of radiation-induced chromosome aberrations Vs. the frequency of radiation induced choloropyll mutations in Hordeum vulguer. Radiation Botany, 1973,13:315-322
    [135] Singh S. P. and Drolsom P. N., Genetic analyses of four diethyl sulfate-induced culm height mutants of sorghum, Crop Science , 1977, 17:617-621
    [136] Singh, S.P. and Drolsom P. N., Induced early-muturing mutation in sorghum. Crop Science, 1974,14:377-380
    [137] Skorupska,H. , Identification and evaluation for mutation of agricultural characters in soybean, Sovbean Genetics Newsletter, 1984,1 1: 53-59[165]
    [138] Soto S., Sakamoto I., Shirakawa K., et al., Chromosomal location of an earliness gene Efl of rice, Oryza Salival, 1988, 38:385-396
    
    
    [139] Stadler, L. J., Genetic effects of X-rays in maize. Proc. Natl. Acad. Science. USA,1928, 14: 69-75
    [140] Sukhader, P., Saideswara, Y. and et al., Genetiics of induced dwarf mutants in pearl millet, Euphytica, 1987,36:181-185
    [141] Ukai Y. and Yamashita A.,Varietal differences in gamma-ray induced chromosome aberrations in soybean, Japanese Jouanal Genetese . 1980, 55: 225-234
    [142] Ukai. Y, Studies on varietal difference in radiosensitivity in rice Ⅱ. The radiosensitivity with respect to reduction in seeding height, coleoptile length, pollen fertility and to the frequency of chlorophyll mutation. Japanese Journal Breeding, 1968,18: 127-128
    [143] Vantwest J S., Paulsen A., Spooner B S., In vitro chick pre-cardiac explant tissue differentiation during space flight on spacelab-02. Acta-anatomica, 1995, 154(3) : 169-180
    [144] Von Wettstein D. Gough S., Kannangarac G. chlorophyll biosynthesis. Plant Cell, 1995,7 : 1039-1057
    [145] Wallace, A. T., Increasing the effectiveness of ionizing radiation in inducing mutation at the vital locas controlling resistance to the fungus. The use of Induced Mutation in Plant Breeding, Roma, Italy, 1964:237-250
    [146] Werner, B.K. et al. Inheritance of an Ethyl methanesul fonate-induced dwarf in soybean and analysis of leaf cell. Crop Science, 1987,27:665-668
    [147] Woo, S.C. and Konzak, C. F., Genetic analysis of short culm mutants inducedsss by etyl methane sulphonate in triticum aestioum, Induced Mutations in Plant, 1969,551-555
    [148] Yamaguchi H.A.,et al., Effects of EDTA and caffine on the accessibility of gamma-ray in duced primer in barly toward Ecoli DNA polymerase I .The journal of radiation research, 1977, 18(1) :30-31
    [149] Yamaguchi Y. and Tsunoda, S., Nuclear volume nuclear DNA content and radiosensitivity in brassica and allied genera, Japan Journal Breeding, 1969, 19: 350-356
    [150] Zhao Y, Wang M-L, Zhang Y-Z, Inheritance and agronomic performance of a chlorophyll-reduced seeding mutant in oilseed rape and its utilization in F, hybird production. Plant Breeding, 2000,154 : 131-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700