坡面岩体—基质—植被互作的效应和金发草atpA耐寒基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济建设的快速发展,岩石边坡的生态防护已受到社会各界的广泛关注与高度重视。岩石边坡植被护坡技术是岩石坡面生态防护的主要技术手段,其功能决定于“坡面岩体—基质—植被”系统的效应发挥,开展系统各要素间相互作用效应及系统稳定的调控途径研究,对系统阐明岩石坡面的植被防护机理及工程应用具有重要的科学意义及现实意义。本文围绕工程条件下“坡面岩体—基质—植被”相互作用的力学效应、抵抗降雨效应、物质循环特征及植被功能稳定调控理论等关键,采用生物学、生态学、岩土工程学、生物地球化学和环境科学等学科交叉,阐明了“坡面岩体—基质—植被”相互作用的内在机制及效应表达,并定量出了相应的控制要素,建立了系统的调控技术体系,也从分子水平对抗逆植物金发草的抗寒性特征进行了研究,为其在岩石边坡生态防护中的应用提供了依据。
     论文基于生态系统生态学、景观生态学及恢复生态学基本原理,对“坡面岩体—基质—植被”系统结构与功能进行了详细阐述。研究结果显示:“坡面岩体—基质—植被”系统是与环境的相互作用、相互交织、相互渗透而构成的具有一定结构和功能的统一体,不仅具有整体性、开放性等自然属性,还具有明显的社会经济属性,人是这一系统的重要调节者,人为的物质能量输入对系统功能效应发挥具有重要的影响。坡面岩体、基质及植被是系统的基本结构组成,三者之间相互作用、相互联系,形成力学、水分及养分的功能结构体,维持着系统的功能实现,系统在发挥其坡面防护功能的同时,还具有显著的生态恢复功能。
     论文通过根系与岩体互作、“基质—根系”复合体自身及其与岩体互作的力
With the fast development of the economy construction, ecological protection of rock slope attracts extensive attention and high recognition. Eco-Engineering for Rock Slope Protection (EERSP) is the main technique for ecological protection of rock slope, which relied on the effect of Slope rock mass-Substrate-Vegetation (SSV) system. It is scientific and realistic to illustrate vegetation protection mechanism and engineering application, with investigating the interactive effect of the factors and the regulation method of system stability. Under engineering condition, with the intercross of biology, ecology, geotechnical engineering, biogeochemistry and environmental science, the paper researched the mechanical effect, precipitation resistance effect, characteristics of material cycle and regulation theory of vegetation stability, illuminated the inner mechanism and effect expression of the SSV system, quantified corresponding dominated factors, and built systemic regulation technique. The cold resistance characteristics of Pogonatherum paniceum on molecule level was also researched, which provided foundation to applying the stress resistance plant to the ecological protection of rock slope.
    The structure and function of SSV system was expatiated based on the principles of ecosystem ecology, landscape ecology and restoration ecology. The results showed: the SSV system, which had not only natural attribute such as integrity and openness, but also social and economic attribute, was the syntheses formed by the interaction between the system and the environment. Human is the important regulator, who presents significant influence by material and energy input. The system, which consisted of slope rock mass, substrate and vegetation, maintained the system functions such as rock slope protection and remarkable
引文
1.赵明阶,何光春,王多垠.边坡工程处置技术.北京.人民交通出版社.2003(1):1~2.
    2.李绍才,孙海龙.我国岩石边坡植被护坡技术现状及发展趋势.资源科学,2004.26:61~66.
    3.张俊云,周德培,李绍才.岩石边坡生态护坡研究简介.水土保持通报.2000,20(4):36~38.
    4.张俊云,周德培,李绍才.岩石边坡生态种植试验研究.岩石力学与工程学报,2001,20(2):239~242.
    5.李绍才,孙海龙,杨志荣等.坡面岩体—基质—根系互作的力学特性.岩石力学与工程学报.2005.2(12):2074~2081.
    6.周跃.植被与侵蚀控制:坡面生态工程基本原理探索,应用生态学报,1999,11(2):298~301.
    7. Ellison, L., Coaldrake, J. E. Soil-mantle movement in relation to forest clearing in Southeastern Quennsland. Ecology,. 1954, 35(5): 380~388
    8. Skaugset, A. E. Modeling root reinforcement in shallow forest soils[D]. Oregon State University. 1997
    9. Bishop, D. M., Stevens, M. E.. Landslides on logged areas in southeast Alaska. United States Forest Service Research Paper NOR-1. 1964: 18
    10. Gray, D. H. Reinforcement and stabilization of soil by vegetation. J. Geotch. Engrg. DIV., ASCE. 1974, 100(GT6): 695~899
    11. Swanston, D. N., Lienkaemper, G. W., Mersereru, R. C., etc. Timber harvest and progressive deformation of slopes in Southwestern Oregon. Bulletin of the Association of Engineering Geologists. 1988, 25(3): 371~381
    12. O' Loughlin, C. L. The effect of timber removal on the stability of forest soils. J. of Hydrology. New Zerland. 1974,(13): 121~134
    13. Kitamura, Y., Namba, S. A field experiment on the uprooting resistance of tree roots. In Proceedings of the 77th Meeting of Japanese Forest Socicty. Translated from Japanese by J. M. Arata and R. R. Ziemer. USDA Forest Service, Areata, California. 1976: 568~570
    14. Greenway, D. R. Vegetation and slop stability. In: Anderson and Richards ed. Slop Stabity. New York: John&Sons, 1987
    15. Gray D H, Sotir R B. Biotechnical and Soil Bioengineering, Slope Stabilization, A Practical Guide for Erosion Control. New York: John Wiley&Sons, 1996
    16.王可均,李焯芬.植被固坡的力学分析.岩石力学与工程学报.1998,17(6):687~691.
    17. Endo, T., Tsuruta, T. The ehffect of tree roots upon the shearing strength of siol. Annual report of the Hokkaido Branch, Tokyo Forest Experinment Station, Tokyo, Japan. 1969,(18): 168~179
    18. Manbeian, T. The influence of soilmoisture suction, cyclic wetting and drying, and plant roots on the shear strength of a cohesive siol. University of California, at Berkeley, Calif.. 1973
    19. Ziemer, R. R. Roots and stability of forested slopes. Publication No. 132, Int. Assoc. Of Hydrologic Sciences. 1981: 343~361
    20. Wu, T. H., Beal, P. E., Lan, C. In-situ test of soil-root systems. J. of Geotech. Engrg., ASCE. 1988, 114(12): 1376~1394
    21. Waldron, L. J., Dakessian, S. Soil reinforcement by roots, calcutation of increased soil shear resistance from root properties. Soil Science. 1981: 132, 427~435
    22. Gray D H, Ohashi, H. Mechanics of fiber reinforcements in sand. J. Geotech. Engrg.. 1983, 109(3): 335~353
    23. Barker, D. H. Enhancement of slope stability by vegetation. Ground Engineering. 1986, 19(3): 11~15
    24. Shewbridge, S. The influence of fiber properties on the deformation characteristics of a reinforced sand. Univ. of Calif., Berkeley, Calif. 1987
    25. Waldron, L. J. The shear resistance of root-permeated homogeneous and stratified soil. J. Soil Science Soc. Amer.. 1977: 41, 843~849
    26. Wu, T. H., McOmber, R. M., Erb, R, T., etc. Study of soil-root interaction. J. of Geotech. Engrg., ASCE, 1988, 114(12): 1351~1375
    27.阿比一时,岩本胜.树木根系在防止滑坡中的土力学作用(续).中国水土保持,1989,(12):35~40
    28. Coutts MP. 1987. Developmental process in tree root systems. Canadian Journal of Forest Research 17: 761~767.
    29. Goodman, A. M., Crook, M. J. & Ennos, A. R.(2001) Anchorage mechanics of the tap root system of winter-sown oilseed rape(Brassica napus L.). Annals of Botany 87, 397~404.
    30. Nicoll BC, Ray D(1996) Adaptive growth of tree root systems inresponse to wind action and site conditions. Tree Physiol 16: 891~898
    31.解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式.水土保持学报.1990,4(1):17~23.
    32.解明曙.树木根系固坡土力学机制研究.水土保持学报,1990,4(3):7~11
    33.赵廷宁,王玉杰,阿部和时.吉县黄土的抗剪强度及油松刺槐人工林的固坡作用.全国首届水土保持青年学术讨论会论文集.北京:中国林业出版社.1993:113~117
    34.杨严川,吴永京,王芝芳.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究.中国农业大学学报,1996,1(2):31-38
    35.周跃,徐强,骆华松,等.乔木侧根对土体的斜向牵引效应—原理和数学模型.山地学报.1999,17(1):4~9
    36.周跃,骆华松,徐强,等.乔木的斜向支撑效能及其坡面稳定意义.山地学报.2000,18(4):306~312
    37.郝彤琦,谢小妍,洪添肚.滩涂土壤与植物根系复合体抗剪强度的试验研究.华南农业大学学报,2000,21(4):78~80
    38.李鹏,赵忠,李占斌.植被根系与生态环境相互作用机制研究进展.西北林学院学报,2002,17(2):26~32
    39. Simpson, B.(1989). Effective estblishment of vegetation for erosion control. In Symposium Proceedings of Soil Erosion and it's control, Geneva, Switzerland, 1989, 47~54
    40. Rogers, R. D., Schumm, S. A. Effect of sparse vegetative cover on erosion and sediment yield. J. Hydrol., 1991, 123(1~2): 19~24
    41. Kaighn Jr., Yu, S. L. Testing of roadside vegetation for highway runoff pollutant removal. Transp. Res. Rec., 1996,(1523): 116~123
    42. Castillo, V. M., Martinez-Mena, M. Runoff and siol loss response to vegetation removal in a semiarid environment. J. Soil Science Soc. Amer., 1997, 61(4): 1116~1121
    43. Sotir, R. B., Difini, J. T. Partnering geosynthetics & vegetation for erosion control. Geotechnical Special Publication, 1998,(76): 92~102
    44.雷瑞德.华山松林冠层对降雨动能的影响.水土保持学报,1988,(2):67~73
    45.余新晓.森林植被减弱降雨能量的数理分析.水土保持学报,1988,(3):34~39
    46.刘向东.森林植被乖直截留作用与水土保持.水土保持研究,1994,6(2):22~25
    47.赵鸿雁,吴钦孝.油松人工林林冠层的水文作用.中国水土保持,1993,(2):43~49
    48.张光辉,梁一民.黄土丘陵区沙打旺草地截留试验研究.水土保持通报,1995,15(3):28~31
    49.郭忠升.水土保持植被建设中的三个盖度:潜势盖度、临界盖度和有效盖度.中国水土保持,2000.(4):30~34
    50.李勇,吴钦孝,朱显谟.黄土高原植物根系提高土壤抗冲性能的研究Ⅰ.油松人工林根系对土壤抗冲性的增强效应.水土保持学报,1990,4(1):1~5
    51.吴钦孝,李勇,黄土高原植物根系提高土壤抗冲性能的研究Ⅱ.草本植物根系提高表层土壤抗冲刷力的试验分析.水土保持学报,1990,4(1):12~15
    52.李勇,徐晓琴,朱显谟.黄土高原植物根系提高土壤抗冲性机制初步研究.中国科学(B辑),1992(3):254~259
    53.吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究—以张家口试验区为例.干旱区资源与环境,1999,13(3):35-43
    54.张金池,臧廷亮.岩质海岩防护林树木根系对土壤抗冲性的强化效应.南京林业大学学报,2001,25(1):9-12
    55.刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究.水土保持学报,2003,17(3):34-37
    56. Kimmins, J. P. Forest Ecology. Macmillan, New York, 1987
    57. Clements FE. Plant Succession:An analysis of the development of vegetation. Carnegie inst. Wash. Pub. 1916, 242: 1~512
    58. Clements FE. 1928. Plant Succession and Indicators:Adefinitive edition of plant succession and plant indicators. 453pp. Wilson, New York
    59. Clements FE. 1936. Nature and structure of the climax. J. Eool. 24:252 — 284
    60. Tansley AG. 1920. The classification of vegetation and the concept of development. F. Ecol. 8:118—149
    61. Tansley AG. 1935. The use and abuse of vegetational concepts and ters. Ecology, 16:284-307
    62. Whittaker RH. 1953. A consideratin of the climax theory:The climax as apopulation and pattern. Ecol. Monogr. 23:41-78
    63. Poschlod, P., Bakker, J. Bonn, S. Fischer, S. 1996. Dispersal of plants in fragmented landscapes-changes of dispersal processes in the actual and historical man-made landscape. In: set tele, J. , Margules, C. , Poschlod, P. , Henle, K. (Eds), Species Survival in Framented Landscapes. Kluwer, Dordrecht, 123—127
    64. Chapin, F. S. III. , Walker, L. R., Fastie, C. L. et al. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, aLaska. Ecological Monographs, 64, 149 — 175
    65. Ari Jumppone, James M. Trappe,Efren CaZARES. 2002. Occurrence of ectomycorrhizal fungi on the fore front of re treating Lyman Glacier (Washington, USA)in relation to time since deglaciation . Mycorrhiza, 12:43—49
    66. Masahiro Haruki. , Shio Tsuyuzaki. 2001. Woody plant establishment during the early stages of volcanic succession on Mount Usu,Northern japan. Ecological Research, 16,451—457
    67. Pietsch, W., 1998. Natueschtzgebiete zum Studium der Sukzession der Vegetation in der Bergbaufolgelandschaft. In:Pflug,W. (Ed.), Braunkohlentagebau und Pekultivierung. Landschaftsokologic-Folgenutzung-Naturschutz. Springer,Berlin,pp. 677-686
    68. Laura Gough, Daius R. Sgaver, Jenny Carroll, et al. 2000, Vascular plant species richness in Alaskan arctic tundra :the importance of soil pH. Journal of Ecology, 88:54
    69. 李裕元,邵明安. 黄土高原气候变迁、植被演替与土壤干层形成. 干旱区研究. 2001, 15(1) :72-77.
    70. Aber, J. D. &W. Jordan. An environmental middle ground.BioScience.Restoration ecology, 1985, 35(7):399
    71. Chapman,G. P. Desertified Grassland. London:Academic Press. 1992.
    72. Cairns, J. Jr. Encyclopedia of Environmental Biology. Restoration ecology. 1995, 3:223—235
    73. Daily, G. C. Restoring value to the worlds degraded lands. Science, 1995,269:350— 354
    74. Dobson, A. D., A. D. Bradshaw & A. J. M. Baker. Hopes for the future: restoration ecology and conservation biology. Science,1997, 277:515—522
    75.任海,彭少麟.退化生态系统的恢复与重建.青年地理,1998,3(3):7~11
    76. Jordan, W. R. Ⅲ., M. E. Gilpin & J. D. Aber. Restoration ecology: A Synthetic Approach to Ecological Research. Cambridge: Cambridge University Press, 1987: 1~342
    77.任海,彭少麟.恢复生态学导论.科学出版社,2002:3~8
    78. Jordan, W. R. Ⅲ. "Sunflower Forest": ecological restoration as the basis for a new environmental paradigm. [n: A. D. J. Baldwin, ed. Beyond Preservation: Restoring and inventing Landscape. Minneapolis: University of Minnesota Press, 1995: 17~34
    79. Diamond, J. Reflections on goals and on the relationship between theory and practice. In: W. R. Ⅲ. Jordon, N. Gilpin and J. Aber eds. Restoration ecology: A Synthetic Approach to Ecological Research. Cambridge: Cambridge University Press, 1987: 329~336
    80. Harper, I. L. Self-effacing Art: Restoration as Imitation of Nature. In: W. R. Ⅲ. Jordon, N. Gilpin and J. Aber eds. Restoration ecology: A Synthetic Approach to Ecological Research. Cambridge: Cambridge University Press, 1987: 35~45
    81. Jackson, L. L., D. Lopoukine & D. Hillyard. Ecological restoration: a definition and comments. Restoration ecology, 1995, 3(2): 71~75
    82. Mitsch, W. J. &S. E. Jorgensen. New York: John Wiley & Sons. Ecological Engineering, 1989
    83. Hobbs, R. J. &D. A. Norton. Towards a conceptual framework for restoration ecology. Restoration Ecology, 1996, 4(2): 93~110
    84. Cairns, J. Jr. ed. Recovery and Restoration of Damaged Ecosystem services: Benefits supplied to human societies by natural, 1997, 387: 253~259
    85. Margaren, F. Disneyland or native ecosystem: genetics and the restorationist. Restoration and Management Notes, 1997, 14(2): 148~150
    86. Van der Valk. Succession theory and wetland restoration. Proceedings of INTECOL'S V International Wetlands Conference, Perth, Australia, 1999
    87. Middleton, B. Wetland restoration: Flood Pulsing and Disturbance Dynamics. New York: John Wiley & Sons, Inc, 1999
    88. Forman, R. T. T. Land Mosaics. Cambridge: Cambrige University Press, 1995
    99.山村和也.面安定对策.土木技衍[J],1994,49(2):45~50
    90.竹内雅彦.连续纖維複合補强土工法用长大面树林化施工.土木施工.1996,37(12):17~22
    91. Gray, D., leiser, A. T., White, C. A. Combined vegetative-structural slope stabilization. Civ. Engrg., ASCE, 1980, 50(1): 82~85
    92. Sotir, R. B., McCaffrey, M. A. Stabilization of high soil and rock cut slope by soil bioengineering and conventional engineering. Transp. Res. Rec., 1997,(1589)
    93. Sotir, R. B. Soil bioengineering takes root. Civ. Engrg., ASCE, 1998, 568(7): 50~53
    84. Roert, C. S. Plastic matting for erosion control and revegetation. EP0259166, 1988-03-09
    94. 58 Shields, Jr., F. D. and Gray, D. H. Effects of Woody Vegetation on Sandy Levee Integrity. Water Resources Bulletin, 1993, 28(5): 917~931
    95. Sotir, R. B. Designing soil bioengineering streambank protection for multiple objectives[A]. In proceeding of Conference on Management of Landscape Disturbed by Channel incision Stabilization Rehabilitation Restoration[C], Oxford, HS, May 1997: 325~350
    96. Sotir, R. B. Criteria for woody vegetation placement in streambank protection[A]. In International Erosion Control Association Proceedings[C], Chicago, IL, 1998
    97. Goldsmith, W. Soil reinforcement by river plants: progress results[A]. In proceedings of the Conference on Wetlands Engineering and River Restoration[C], ASCE, 1998
    98. Polster, D. F. Soil bioengineering for steep/unstable slopes and riparian restoration. Watershed Restoration Technical Bulletin, 1999, 4(4): 1~8
    99.仓田益二郎.绿化工程技术.顾宝衡译.成都:成都科技大学出版社.1983,20~23
    100.交保昭.周庆桐泽.坡面绿化施工法.北京:人民交通出版社.1988,46~57,134~142,106~109
    101.吉田博宣.法面斜面绿化修景.基礎工.1999,27(5):4~8
    102.桃井信行,飯塚康雄,田中隆.面绿化技术变迁.土木技术资料.1996,38(11):44~49
    103.星子隆.土木绿化新课题.土基礎.1996,44(6):1~4
    104.堀江直树,山尾和弘.绿化工法环境维持·形成.基础工.1999,27(5):66~68
    105.山田守,菊地洋司,堀江直树.斜面绿地绿化工法.基础工.2000,28(5):22~25
    106.笹原则之,田口睦.高次团粒SF绿化法面施工事例.基础工.1999,27(5):46~49
    107.堀家茂一,高安朝之,片山功三.连续长纖维補强土擁壁设计·施工工法.土木技衍.1990,45(2):118~124
    108.横塚享,濑川造.新面绿化工法·工法绿化.土木技衍.1994,49(2):83~88
    109.佐丸雄治,中野裕司.新面绿化工法一主纤维補强.土木技术.1996,51(2):56~64
    110.菊地洋司,山田守,堀江直树.景观配虑最近斜面对策工.土基础.1996,44(6):21~24
    111.青木正雄,安部征雄.强酸性土法面绿化.土基础.1996,44(6):28~30
    112.奥園诚之.面安定工法最近倾向.土木技术.1994,49(2):31~38
    113.横田漠,松浦弘,矢部秀美,等.老朽化吹付法面绿化.土基础.1996,44(6):37~39
    114.小澤辙三,堀内博之.绿一高速堆肥化技术确立.土木技术.1996,51(5):90~95
    115.内田昭.建设副产物绿化基监材再利用开发自然林再生试.基础工.1999,27(5):58~60
    116.淹野忠衞.吹付现场打框工法.土木技术.1982,37(2):138~151
    117.安保昭.吹付框工—连续框工选定手顺设计例.土木技术.1984,39(2):58~65
    118.古贺省三.长大斜面取今後环境对策.土木施工.1996,37(12):11~16
    119.村田浩三.特性用途.无机.1998,5(1):60~66
    120.竹内憲正,亲林和生.植生型实施例.工学.1998,36(3):32~36
    121.罔本享久,安田登.增井直树,等.制造·物性·试验方法.工学.1998,36(3):52~56
    122.前堀幸彦.植生面保护.土木技术.1984,39(2)85~93
    123.山寺喜成,安保昭.面绿化工指针.土木技术.1994,49(2):45~50
    124.罔崎治羲.斜面上新施工技术动向.土木施工.1991,35(12):18~24
    125.半田真理子,藤崎健一朗,飯塚康雄.木本植物面绿化工关研究.土木技衍资料.1992,34(5):62~67
    126.菊地富父.斜面树林化工法施工事例.基础工.1999,27(5):61~63
    127.山寺喜成.21世纪向绿化技术.基础工.1999,27(5):1
    128.外狩麻子.坡面绿化的研究现状和展望.张玉玲译.水土保持科技情报.1999,(2):29~31
    129. Lee, Lvan W. Y. A review of vegetative slope stabilization. Hong kong Engineering. 1985, 13(7): 19~21
    130.邹战国.水力喷草技术在防治水土流失中的应用.水土保持通报.1993,13(4):51~55
    131.杨维西,罗品,魏天兴等.黄土高原坡面喷涂绿化技术试验研究[A].水土保持科学研究与发展.北京:中国林业出版社.1993:231~236
    132.陈锡民.植草技术在路基边坡防护中的应用.路基工程.1999,(1):17~19
    133.李和平,张瑞强,张文秀等.水力喷播技术引进及试验研究.水土保持通报.1999,19(2):27~30
    134.吴长文,章梦涛,付奇峰.斜坡喷播绿化技术研究.中国水土保持.2000,(4):24~26
    135.李燕君,陈明德.土工网植草护坡在边坡防护工程中的应用.铁道勘测与设计.1998,(4):49~51
    136.王连新.新型护坡方法—土工网复合植被护坡.水利水电快报.1998,19(15):30~32
    137.包承纲.堤防工程土工合成材料应用技术.北京:中国水利水电出版社.1999:137~140
    138.陈振胜.泥岩边坡植生技术研究.水土保持研究.1995,2(3):68~75
    139.黄尊景,陈孟达.台湾特殊地质区水土保持工法之运用.水土保持研究.1995,2(3):76~82
    140.章梦涛,付奇峰,吴长文.岩质坡面喷混快速绿化新技术浅析.水土保持研 究.2000,7(3):65~66
    141.张俊云,周德培,李绍才.岩石边坡生态种植试验研究.岩石力学与工程学报,2001,20(2):239~242
    142.周颖,曹映泓,廖晓谨等.喷混植生技术在高速公路岩石边坡和绿化中的应用.岩土力学,2001,22(3):353~356
    143. Orvar, B. L., Sangwan, V., Omann, F. & Dhindsa. R(2000) Early steps in cold sensing by plant cells: the role ofactin cytoskeleton and membrane uidity. Plant J. 23, 785-794.
    144. Murata N(1983) Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol. 24: 81-86.
    145. Wolter, K., 1992: Sitting out erroneous observations in COADS—The trimming problem. Proc. Int. COADS Workshop, H. F. Diaz, K. Wolter, and S. D. Woodruff; Eds., Boulder, CO, NOAA Environmental Research Laboratories, 91-101.
    146. Wu J, Browse J(1995) Elevated levels of high-melting-point phosphatidylglycerols do not induce chilling sensitivity in a mutant of Arabidopsis. Plant Cell 7: 17-27
    147. Somerville C(1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobactcria. Proc Natl Acad Sci USA 92: 6215-6218
    148. Nishida I, Murata N(1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541-568
    149. Moon BY, Higashi S-I, Gombos Z, Murata N(1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219-6223
    150. Wu J, Lightner J, Warwick N, Browse J(1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2℃. Plant Physiol 113: 347-356
    151. Hugly S, Somerville C(1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99: 197-202
    152. Vijayan P, Routaboul J-M, Browse J(1997)A trienoic fatty acid deficient mutant of Arabidopsis defective in recovery from photoinhibition at low temperatures. In JP Williams, MU Khan, NW Lem, eds, Physiology, Biochemistry and Molecular Biology of Plant Lipids. Kluwer Academic Press, Dordrecht, The Netherlands, pp 203-205
    153. Routaboul J-M, Fischer S, Browse J(2000) Trienoic fatty acids are required for photosynthesis at low temperatures. Plant Physiol 124: 1697-1705
    154. Kodama, R. and Eguchi, G.(1994) Gene regulation and differentiation in vertebrate ocular tissues. Curr. Opin. Genetics Dev. 4, 703-308.
    155. Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., lwamatsu, A., Fujita, A., Watanabe, N., Saito, Y., Kakizuka, A., Morii, N. & Narumiya, S.(1996) The small GTP-binding protein Rho binds to and activates a 160 kDa ser/thr protein kinase homologous to myotonic dystrophy kinase, EMBO J. 15, 1885-1893.
    156. Boyer P D. The ATP synthase-a splendid molecular machine. Annu Rev Biochem, 1997, 66 (6):717~749
    157.倪张林,魏家绵.ATP合酶的结构与催化机理.植物生理与分子生物学学报,2003,29(5):367~3743
    158.陈亚华.沈振国,刘友良.低温、高pH胁迫对水稻幼苗根系质膜、液泡膜ATP酶活性的影响.植物生理学报,2000,26(5):407~412
    159. Arora R, Palta J P. A loss in plasma membrane ATPase activity and its recovery coincides with incipient freeze thaw injury and post thaw recovery in onion bulb scale tissue. Plant Physiol, 1991, 95(5): 846~852
    160. Yoshida S. Low temperature-induced cytoplasmic acidosis in cultured mung bean(Vigna radiata(L) Wilczek) cells. Plant Physiol, 1994, 104(6): 1131~11384
    161.费文标,黄涛,舒念红等.植物抗寒冻得分子遗传与基因工程.生物工程进展,1996,16(1)::15~265
    162. Kurkela S, Borg F M. Structure and expression of kinz one of two cold and ABA-induced genes of Arabidosis thaana. Plant Mol Biol, 1992, 19: 689~692
    163. Nordink H, Holland F, White T, et al. Differential exp ressiopn of two related low-temperature induced genes in Arabidopsis thaiana. Plant Mol Biol, 1993, 21: 641~653
    164. Baker S S, Wilhelm K S, Thomashow M E The 5'-region ofArabidopsis thaiana corl 5a has cisqacting etements that confer cold drought and ABA-regulated gene expression. Plant Mol Biol, 1994, 6: 251~2648
    165.何若韫.1995.植物低温逆境生理.北京:中国农业出版社
    166. Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinch. Proc Natl Acad Sci USA, 1985, 82: 3673~3677
    167. Thomashow M F. Plant cold acclimation freezing tolerance genes and regulatory mechanisms. A nnu Rev Plant Phvsiol Plant mol Biol. 1999, 50: 571~599
    168. Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. J Exp Bot. 1996, 47: 291~305
    169. Artus N N, Uemura M, Thomashow M F. Constitutive expression of the cole-regulated Arabidopsis thaliana CORI 5a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 1996, 93: 13404~13409
    170. Jaglo O K R, Gilmour S J, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Sience, 1998, 280: 104~106
    171. Liu Q, Kasuga M, KasumaY, et al. Two transcription factors DREBI and DREB2 with an EREBP/AP2 DBA binding domain separate two cellular signal transduction pathways in drought and low-temperature responsive gene expression respectively in Arbidopsis. Plant Cell, 1998, 10: 1390~1406
    172.王瑞云,贺润喜,岳文斌,任有蛇.植物抗寒性基因工程研究进展.中国生态农业学报,2004,12(1):26~29
    173.丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究进展.中国农业学通报,2003,19(6):33~3923
    174. Mao X X, Zhuang C X, Peng X X. AtpH is a chilling repressed gene in rice. Acta Botan Sin, 2003, 45(4): 484~48720
    175.蔡晓明.生态系统生态学.北京:科学出版社.2000:20~25
    176.钦佩,安树青,颜京松.生态工程学.南京:南京大学出版社,2002:10~11
    177.刘吕明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展.水科学进展,1999,10(3):251~259.
    178.蔡美峰,何满潮,刘东燕.岩石力学与工程.北京:科学出版社,2002,68~72.
    179.刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究.土壤侵蚀与水土保持学报,1996,2(3):21~28
    180.张俊云,周德培,李绍才.厚层基材喷射护坡试验研究.水土保持通报,2001.21(4):45~48.
    181.袁聚云.土工试验与原理.上海:同济大学出版社,2003,99~103.
    182.周跃,Warts.欧美坡面生态工程原理及应用的发展现状.土壤侵蚀与水土保持学报.1999,5(1):80~84.
    183. Horton R E. Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology, Geol Soc Amer Ball, 1945, 56(3): 43~48.
    184. Rennet F G. Conditions influencing erosion of the Boise river watershed. New York. Dept. Agric Tech. Bull, 528, 1936
    185.陈法扬.不同坡度对土壤冲刷量影响试验.中国水土保持,1995(2):34~9.
    186.曹文洪.土壤侵蚀的坡度界限研究.水土保持通报,1993,13(4):1~5.
    187.桑卫国,苏宏新,陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究.植物生态学报,2002,26(增刊):88~92.
    188.唐建维,张建候,宋启示,等.西双版纳热带人工雨林生物量及净第一性生产力的研究.应用生态学报,2003,14(1):1~6.
    189.方精云,柯金虎,唐志尧.生物生产力的“4P”概念、估算及其相应关系.植物生态报,2001,25(4):414~419.
    190.刘广全,土小宁,赵士洞.秦岭松栎林带生物量及营养元素的生物循环特征研究.林业科学,2001,37(1):28~36.
    191.黄建辉,陈灵芝,韩兴国.辽尔栎枝条分解过程中几种主要营养元素的变化.植物生态学报,1998,22(5):398~402.
    192.杨玉盛,林鹏,郭剑芬.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解.生态学报,2003,23(7):1278~1289.
    193.陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展.水科学进展,2003,14(4):513~518.
    194.陈灵芝.中国的生物多样性.北京:科学出版社,1993,112~156.
    195.董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997,3~23.
    196.张金屯,植被数量生态学方法.北京:中国科学技术出版社,1995,58~67,91.
    197. Tilman D and Doeing J A. Biodiversity and stability in grasslands. Natu re, 1994, 367: 363~365.
    198. Bask in Y. Eco system function of biodiversity. Biolog ical Science, 1995, 44: 657~660.
    199.张季如,朱瑞庚,夏银飞等.ZZLS绿色生态护坡材料的强度试验研究.岩石力学与工程学报.2003,22(9):1533~1537.
    200.张俊云.周德培.厚层基材喷射植被护坡基材混合物的收缩恢复性研究.岩石力学与工程学报,2004,23(7):1203~1208.
    201.雷廷武,唐泽军,张晴雯等.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究Ⅱ.侵蚀.土壤学报,2003,40(3):401—405.
    202.黄占斌,张国祯,李秧秧等.SAP特性测定及其在农业中的应用.农业工程学报,2002,(18)1:21~25.
    203.刘孔杰,刘龙,周有秀.生物多样性在路域植被恢复中的应用.交通环保,2002,23(4).
    204.陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物样落的形成与演替.生态学报,2001,21(8):1347-1353.
    205.郭晋平,薛俊杰,李世广,王俊田.庞泉沟自然保护区华北落叶松土壤种子库的研究.武汉植物学研究.1998.16(2):131~136
    206.赵丽娅,李锋瑞.沙漠化过程土壤种子库特征的研究[J].干旱区研究.2003.20(4):317~321
    207.黄昌勇.土壤学.北京,中国农业出版社,2002.164~171.
    208. Lentz R D, Shainberg I, Sojka R E, ea al. Preventing irrigation furrow erosion with small applications of polymers. Soil Sci. Soc. Am. J., 1992, 56: 1926-1932
    209. Kristian Aase J, Bjorneherg D L, Sojka R E. Sprinkler irrigation runoff and erosion control with polyacrylamide-laboratory tests. Soil Sci. Soc. Am. J., 1998, 62: 1681-1687
    210.王红,简令成,张举仁.低温逆境中水稻幼苗膜ATP酶和5′—核苷酸酶活性的变化.电子显微学报,1994.3:190~195
    211.王红,孙德兰,简令成.小麦幼苗质膜Mg~(2+)-ATP酶活性与低温损伤及恢复的关系.电子显微学报,1999,18(2):157~164
    212.赵利辉,刘友良.冷胁迫对水稻幼苗根系液泡膜质子泵的伤害及钙的调节作用.南京农业大学学报,2000,23(3):5~8
    213.夏朝晖,李晓微,余和芬等.盐利干旱胁迫对燕子掌叶片液泡膜H~+-ATPase活性的影响.植物生理学报,2000,26(5):433~436
    214. Rose B G, Erin L P, Jennie L, et al. ATP sensitive K~+ Channels in Cardiac Muscle from Cold Acclimated Goldfish: Characterization and Altered Response to ATP. Comp Biochem Physiol, 119(1): 395~401
    215. Millner P A. Are guanine nucleotide-binding proteins involved in regulation of thylakoid protein kinase activity? FEBS Lett, 1987, 226: 155~160
    216. Romero L C, Biswal B, Song P S. Protein phosphory lation in isolated nuclei from etiolated Avena seedlings: Effects of red/farred light and cholera toxin. FEBS Lett, 1991, 282: 347~350
    217. Monroy A F, Castongguay Y, Laberge S, et al. A new cold-induced Alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol., 1993, 102: 873~879.
    218. Monroy A E Sangwan V. Dhindsa R S. Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J, 1998, 13: 653~660.
    219. Suzuki I, Los D A, Kanesaki Y. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J, 2000, 19(6): 1327~1334
    220. Martin A F, Busconi L, A rice menbrane-bound Calcium-dependent protein kinasc is activated in response to low temperature. 2001, Plant Physiol, 125: 1442-1449
    221. Lüttge U. Plant cell membranes and salinity: structural, biochmical and biophsical changes. R Bras Fisiol Veg, 1993, 5(2): 217~224
    222.陈香波,张爱平,姚泉洪.植物抗寒基因工程研究进展.生物技术通讯,2001,12(4):318~323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700