有限覆盖Kriging插值无网格法及其在岩体断裂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是经过漫长的时间而形成的,是经历过变形、遭受过破坏的复杂地质体。岩体在形成过程中会在内部产生大量的节理和裂隙,这些节理和裂隙对岩体的性质有着极大的影响,在外载荷的作用下还会发生扩展,从而导致岩体的力学性质发生改变,甚至会引起岩体的破坏以及结构的失稳。岩体的非连续性与非均匀性越来越受到工程界与学术界的重视,因此研究岩体中裂纹的扩展规律具有非常重要的理论与实际意义。
     岩体问题的研究方法主要分为三类,即:理论分析方法、试验方法及数值模拟方法。理论分析法计算结果准,计算效率高,但适用范围窄。试验方法能提供大量有用的数据,但受时间和空间的限制,应用极不方便,且要耗费大量的人力、财力。数值计算方法能很方便、快速地进行岩体的模拟分析,因此这种方法发展很快。本文就采用无网格法对岩体中的一些问题进行模拟分析计算,对岩体中裂纹的起裂、扩展、变形与破坏规律进行了研究。
     岩石在变形、破坏过程中的非连续变形行为计算与数值模拟是岩体力学与工程领域中一个比较热门的前沿课题。流形方法解决了材料连续与非连续性的数学统一表述的问题,使得连续变形分析与非连续变形分析的统一成为可能。但流形方法的双重网格可谓一把双刃剑,一方面它构成了流形方法本身的一大特色,另一方面却不可避免地带来了前处理上的麻烦与裂纹开裂扩展模拟方面的困难。无网格主要是以解决前处理的问题而发展起来的一种方法,该法在岩土力学中的非连续变形问题具有相当的局限性。为了模拟岩体中不连续的扩展情况,克服数值流形方法在裂纹扩展过程中物理覆盖重构的缺点,本文在数值流形方法和Kriging插值技术的基础上,提出了有限覆盖Kriging插值无网格法,其最大特点是构造的位移试函数具有插值特性,简化了位移边界条件的处理。有限覆盖Kriging插值无网格法在无网格类方法中引入了有限覆盖技术,避免了无网格法在构造插值函数时由于不连续引起试函数构造所带来的困难,不连续附近节点的布置更加自由,因而特别适合模拟裂纹扩展等非连续问题,是一种可以在统一数学逼近空间形式下处理连续与非连续问题的无网格法。
     岩体由岩块和结构面共同组成的结构体,其破坏往往从岩体中原有结构面开始,所以岩体的稳定性很大程度上取决于不连续面的特性。岩体断裂力学从岩体结构特点出发,利用断裂力学理论来诠释岩体力学特性,它将岩体中的节理、裂隙模拟成裂纹。因此,岩体不再是一种连续均质体,而是一种含有众多裂纹的裂纹体。应用岩体断裂力学方法,结合数值计算方法,能够追踪岩体中裂纹的起裂、扩展到相互贯通使岩体局部失稳破坏的过程。
     本文简要介绍了静态断裂力学的基本观点和基本理论,应力强度因子的求解方法、裂纹开裂的判断准则等,并将有限覆盖Kriging插值无网格法应用于裂纹的稳定性判别、裂纹扩展路径的预测、多裂纹贯通以及裂纹从单向载荷作用到双向载荷作用变化过程中裂纹扩展路径变化规律,得出一些有益的结论,很好地再现了裂纹尖端的奇异应力场,数值模拟结果与试验结果吻合较好,对控制裂纹的扩展具有重要的意义。数值算例充分表明了有限覆盖Kriging插值无网格法在裂纹稳定性判别以及扩展模拟方面的优越性。
     混凝土是一种非均质各向异性人工合成材料,本文在断裂力学和损伤力学的基础上,假设混凝土、岩石类材料物理参数服从Weibull分布,实现了无网格框架下模拟分析岩石混凝土等非均质、非连续材料的裂纹扩展数值模拟,通过对比试验结果及以往数值模拟结果,证明本文结果良好,为该类材料的数值模拟计算提供了一条新的途径。
     裂纹尖端附近应力场是奇异的,为了捕捉裂纹尖端应力场的奇异特性,更好的模拟裂纹扩展问题,本文对基函数进行了适当的扩展,提出了强化的有限覆盖Kriging插值无网格法,增强了本文方法求解裂纹等非连续问题的能力,同时也提高了求解裂纹问题的精度,最后通过数值算例证明本方法的正确性和有效性。
     本文对有限覆盖Kriging插值无网格法进行了一个全面的介绍,并应用该法对裂纹的扩展进行了分析计算,讨论了有限覆盖Kriging插值无网格法在模拟裂纹扩展中的应用,无网格类方法的进一步应用于研究裂纹扩展规律都具有积极的作用和意义。最后,对研究工作进行了全面总结,并对有待进一步研究的问题进行了讨论。
As a type of geomaterials naturally formed, rock mass is usually composed of manynatural joints and cracks or other types of intact discontinuities due to long-term deformationand damage. When loaded, cracks will be initiated and expand in the rock mass and the thenmechanical properties of rock mass will change. The actual deformation and failure process ofgeo-materials and geo-structures is a complex progressive evolution involving initially elasticdeformation, crack propagation, large-scale displacement and even movement of a discretesystem. The study on the crack expansion is very important for the evaluation of damage andstability of rock masses.
     At present, the main techniques applied to investigating rock mass problems areexperimental method and numerical analysis method. Through numerical analyses, a largenumber of usable data can be obtained. Howerer, restricting because of time and space, it isnot convenience to apply this method, and it needs much manpower and financial resources.Numerical analyses can analyze problems of rock mass quickly. In this paper, crack expansionof rock mass is analyzed and computed with Kriging interpolation meshless based on finitecovers technique.
     Discontinuous deformation calculating and numerical modelling of the process for rockdeforming and failure are blue topic in rock mass mechanics and engineering region. Byvirtue of the finite cover technique of manifold, manifold method integrates conventionalfinite element methods, discontinuous deformation analysis and analytical methods in a unitedmathematical framework and can deal with both continuous and discontinuous deformationproblems such as contact and multi-body interaction. Howerer, the action of dual-mesh inMM is both sides. On the one hand, it is the feature of MM, on the other hand, it bringstroubles in pre-process and difficulties in simulating crack growth. Meshless method based onmoving least square method is very effective in simulating crack propagation which is a keyissue in modeling failure or/and damage behavior of structures or materials without meshingas required in MM. The kernel of manifold method is finite cover technique while the mainfeature of meshless/mesh-free approximation is that only nodes are need in interpolation anddoes not need to join nodes into any element. Manifold method and meshless method haveown advantages in handling discontinuous deformation problems.
     To simulatet the discontinuous grwth in the fractured rockmass, Kriging interpolationmeshless method base on finite covers technique and Kriging interpolaton method is presented. The method can conquer the disadvantages of the remeshtechnique treating withthe discontinuous growth problems in the manifold method. The finite cover technology isapplied in the proposed method. And some difficulites in the meshless methods, such as thetrial function due to the discontinuity in the displacement, are avoided and nodal arrangementis morefree near the discontinuous. The Kriging interpolation meshless method is well suitedto problems involving crack propagation due to the absence of any predefined manifoldelement connectivity. The main purpose of the paper is to explore the possibility to work out anew numerical method by combining the finite-cover technique and meshless concepttogether. Presented method is a meshless method, which can treat with continuous anddiscontinuous problems in a uniform mathematic approach space.
     Rock mass is composed of rock piece and structure face, and its failure always begins atthe discontinuous surface, so the stability of rock mass depends on the characters of structuresurface in the rock. Fracture mechanics of rock mass explain the mechanical characteristicnby the theory of fracture mechanics, and the joint and slit in rock are simplified crack. Hence,rock mass is discontinuous and anisotropy. The crack initiation, propagation and cuttingthrough until the local failure of rock can be simulated by fracture mechanics of rock massand numerical method.
     The fundamental principle of static fracture mechanics is stated and stress intensityfactor (SIF) is calculated and the criterion of crack growth is presented. The method isnumerically implemented and numerical analyses for a number of benchmark problems aremade. The Kriging interpolation meshiess method is demonstrated comprehensively in thisthesis. Then, the possibilities of applying the Kriging interpolation meshless method tonumerical analyses of fracture behavior and crack expansion of rock masses are discussed.The treatments for the related special issues are given. The static fracture mechanics is usedfor analysis, in which the growth rule of crack is mainly taken into account by staticequilibrium condition: The simulated results by the proposed method have a good aggrementwith the test and other numerical method. Concrete is a kind of heterogeneous, anisotropic artificial composite material. Based onfracture mechanics and damage mechanics, and supposing that physics parameter of rock andconcrete complying Weibull distribution. Numerical simulation of crack propagation isimplemented under meshless frame for heterogeneous and discontinuous material, such asrock or concrete. By comparing with experimental results and other numerical results, theresults have a good agreement with known solution. A new approach for analyzing suchmaterial is offered in this thesis.
     The stress field in vicinity of Crack is singularity field. To capture the singularity of crackand make the crack problems can be simulated better, the base function is proper extendedwith special functions and enriched Kriging interpolation meshless method based on finitecover technique is proposed, the capability to solve discontinuous problem is enhanced andthe precision of exploring crack problem is increased. The validity and accuracy of this method are illustrated by numerical examples.
     In summary, a numerical method with a computer code based on the proposed methodand fracture theory is developed for assessing the fracture behavior and predicting initiation,development and arresting of crack in rock masses. Finally, a comprehensive summary isgiven and some issues for further studies are discussed.
引文
[1] 孙广忠著.岩体结构力学[M].北京:科学出版社,1988.
    [2] 陶振宇.试论岩石力学的最新进展[J].力学进展,1992,22(2):161-172.
    [3] 常士骠.我国岩土工程回顾与展望[J].水文地质工程地质,1993,20(1):23-26.
    [4] 哈秋聆.三峡工程中的若干力学问题[J].力学进展,1994,24(4):433-439.
    [5] 杨志法.关于岩石力学当前发展战略的一些看法[J].岩土工程学报,1994,16(1):112-113.
    [6] 孙钧.岩石力学的若干进展[A].面向21世纪的岩石力学与工程—中国岩石力学与工程学会第四次学术大会论文集[C],北京:中国科学技术出版社,1996.
    [7] 谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考[J].岩土工程学报,1996,18(4):98-102.
    [8] 傅冰骏.国际岩石力学发展动向[J].岩石力学与工程学报,1997,16(2):195-196.
    [9] 顾宝和.岩土工程勘察技术现状及发展问题述评[J].工程勘察,1998,(4):3-8.
    [10] 郭书泰.工程地质勘察与岩土工程技术发展现状与展望[J].探矿工程,1999,(1):8-11.
    [11] 王芝银.岩土工程发展动向[J].西安矿业学院学报,1999,19(增刊):1-4.
    [12] 杨更社.我国岩石力学的研究现状及其进展[J].西安矿业学院学报,1999,19(增刊):5-11.
    [13] 李荣强,陈善雄.岩土工程勘察的现状和趋势[J].岩土工程界,1999,(9):13-18.
    [14] 腾伟福.岩土工程数值模拟新方法[J].地质科技情报,1998,17(增刊2):41-48.
    [15] 唐春安.岩石破坏裂过程数值模拟方法发展的若干问题[A].中国CSRM软岩工程专业委员会第二届学术大会论文集[C].10-16.
    [16] 刘怀恒.岩土力学数值方法的应用及发展[J].岩土力学1989,10(2):14-21.
    [17] 周维垣.岩体力学数值计算方法的现状与展望[J].岩石力学与工程学报,1993,12(1):84-88.
    [18] 王泳嘉,冯夏庭.关于计算岩石力学发展的几点思考[J].岩土工程学报,1996,8(4):103-104.
    [19] 李宁,Swoboda G.当前岩石力学数值方法的几点思考[J].岩石力学与工程学报,1997,16(5):502-505.
    [20] 栾茂田,Keizo Ugai.岩土工程研究中若干基本力学问题的思考[J].大连理工大学学报,1999,39(2):309-317.
    [21] Zienkiewicz O C. The finite element method [M]. London: McGraw-Hill, 1977.
    [22] 王泳嘉.边界元法在岩石力学中的应用[J].岩石力学与工程学报,1986,5(2):205-222.
    [23] 应隆安著.无限元方法[M].北京:北京大学出版社,1992.
    [24] 王泳嘉.拉格朗日元法及其在岩土力学中的应用[A].第二届全国青年岩土力学与工程学术会议论文集《岩土力学与工程》[C],大连:大连理工大学出版,大连,1995,22-33.
    [25] Kawai T. New discrete structural models and generalization of the method of limit analysis. Finite Elements in Nonlinear Mechanics[J], NIT, Tronheim, 1977, 885-909.
    [26] Kawai T and Toi Y. A new element in discrete analysis of plane strain problem. Seisan Kenkyu, 1977, 29(4): 208-210.
    [27] Kawai T. New discrete model and their applications to seismic response analysis of structures. Nuclear Engineering and Design, 1978, 48: 207-229.
    [28] Cundall P A. A computer model for simulating progressive, large-scale movements in blocky rock systems [A]. In: Proceeding of the International Symposium on Rock Fracture[C], Nancy, France, 1971.
    [29] Shi G H. Discontinuous deformation analysis: A new numerical model for the static and dynamics of block systems. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, Berkeley: University of California, 1988.
    [30] Shi G H. Numerical manifold method[A]. In: Proceedings of the First International Conference on Analysis of Discontinuous Deformation (ICADD-1) (Edited by Li J C, Wang C-Y and Sheng J)[C], Chungli, Taiwan, 1995:187-222.
    [31] Belystchko T, Liu Y, Gu L. Element free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    [32] Margulies M. Combination of the boundary element and finite element methods[A]. Proceeding in Boundary Element Method, 1981, 1: 258-288.
    [33] Chang C C. Computational simulation of progressive fracture in fibre composites[J]. Journal of Composite Materials, 1987, 21: 834-855.
    [34] Cundall P A, Board M P. A microcomputer program for modeling large-strain plasticity problems[A]. Proceeding of the 6th International Conference on Numerical Methods in Geomechanics[C], Innsbruck, 1988.
    [35] 王泳嘉,邢纪波.离散单元法同拉格朗日法元法及其在岩土工程中的应用[J].岩土力学,1995,16(2):1-14.
    [36] 盛谦,任放.连续介质快速拉格朗日分析及其在岩土工程中的应用[A].第一届全国大坝岩体力学研讨会暨第三届岩石力学与工程岩体物理数值模拟研讨会论文集[C].成都:成都科技出版社,1993.
    [37] 王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社,1997.
    [38] Brebbia C A, Walker S. Boundary Element Techniques in Engineering[M]. Butterworth & Co., 1980.
    [39] Crouch S L. Analysis of stress and displacements around underground excavation: an application of the displacement discontinuity method. University of Minnesota, 1976.
    [40] Cheng Y K. Finite strip method in structural analysis[M]. Pergamon Press, 1976.
    [41] Bettess P. Infinite elements[J]. International Journal for Numerical Methods In Engineering, 1977, 11(1): 53-64.
    [42] Ngo D and Scordelis A C. Finite element analysis of reinforced beam[J]. ACI Journal, 1967, 64.
    [43] Goodman R E, Taylor R L and Brekke T L. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division[J], ASCE, 1968, 94, SM3: 637-659.
    [44] Desai C S, Zaman M M, Lightner J G and Siriwardane H J. Thin-layer element for interface and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
    [45] 雷晓燕,Swobada G,杜庆华.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,19(3):23-32.
    [46] Hiroaki Kitoh, Norio Takeuchi and Masatoshi Ueda et al. Size effect analysis of plain concrete beams by using RBSM[A]. Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation[C], Kyoto, Japan, 1997, 366-373.
    [47] Norio Takeuchi and Tadahiko Kawai. Development of discrete limit analysis and its application to the solid mechanics[A]. Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation[C], Kyoto, Japan, 1997, 383-390.
    [48] 钱令希,张雄.结构分析中的刚性有限元法.计算结构力学及其应用,1991,8(1):1-14.
    [49] 钱令希,张雄.刚性有限元的参变量变分原理及有限元参数二次规划解[J].计算结构力学及其应用,1992,9(2):117-123.
    [50] 张雄.刚性有限元的数学理论基础及其在岩土工程中的应用[博士学位论文][D].大连:大连理工大学.1992.
    [51] 卓家寿,赵宁.不连续介质静、动力分析的刚体.弹簧元法[J].河海大学学报,1993,21(5):34-43.
    [52] 赵宁,卓家寿.动力分析的刚体-界面元与有限元耦合法[J].河海大学学报,1994,22(6):8-15
    [53] Wang B L and Garga V K. A numerical method for modeling large displacement of jointed rocks Ⅰ[J]. Fundamentals. Canadian Geotechnical Journal, 1993, 30, 96-108.
    [54] Garga V K and Wand B L. A numerical method for modeling large displacements of jointed rocks ⅡJ]. Modeling of rock bolts and groundwater and applications. Canadian Geotechnical Journal, 1993, 30, 109-123.
    [55] 魏群.离散单元法的基本原理、数值方法及程序[M].北京:科学出版社,1991.
    [56] Cundall P A. Formulation of a three-dimensioinal dictinct element model. Part Ⅰ. A scheme to detect and represent contacts in system composed of many polyhedral blocks[J]. International Journal Rock Mechanics, 1988, 25(3): 107-116.
    [57] 焦玉勇.三维离散单元法及其应用[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,1998.
    [58] 焦玉勇,葛修润.三维离散元法中的数据结构[J].岩土力学,1998,19(2):74-79.
    [59] 焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报,1999,18(1):6-11.
    [60] 罗海宁,焦玉勇.对三维离散单元法中块体接触判断算法的改进[J].岩土力学,1999,20(6):37-45.
    [61] 王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):201-210.
    [62] Shi G H. Discontinuous deformation analysis: A new numerical model for the static and dynamics of block systems[D]. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, Berkeley: University of California, 1988.
    [63] 石根华著,裴觉民译.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [64] 王水林,葛修润.流形元法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [65] 王水林.数值流形方法与裂纹扩展模拟[博士学位论文][D].武汉,中国科学院武汉岩土力学研究所,1998.
    [66] 张大林,栾茂田,杨庆等.数值流形方法的网格自动剖分技术及其数值方法[J].岩石力学与工程学报,2004,23(11):1836-1840.
    [67] 张大林.流形方法在岩体断裂特性与裂纹发展过程数值分析中的应用研究[博士学位论文][D].大连:大连理工大学,2003.
    [68] 孙钧.岩石力学的若干进展[A].面向21世纪的岩石力学与工程—中国岩石力学与工程学会第四次学术大会论文集[C],北京:中国科学技术出版社,1996.
    [69] 张梅英,袁建新,尚嘉兰等.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工程学报,1998,17(1):1-8.
    [70] 许江,李贺.对单轴应力状态下砂岩微观断裂全过程的实验研究[J].力学与实践,1986,4:16-21.
    [71] 唐春安.岩石破坏裂过程数值模拟方法发展的若干问题[A].中国CSRM软岩工程专业委员会第二届学术大会论文集[C].10-16
    [72] Tan S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials, 1991, 25: 556-577.
    [73] Liu Z, Myer L R and Cook N G W. Numerical simulation of the effect of heterogeneities on macro-behavior of granular materials[A]. Siriwardane and Zaman (eds). Computer methods and advances in geomechanics[C]. Balkema, Rotterdam, 1994, 611-616.
    [74] Kim Kunsoo and Yao Cunying. Effects of micromechanical property variation on fracture processes in simple tension. Daemen & Schultx. Rock mechanics. Balkema, Rotterdam, 1995, 471-476.
    [75] 崔维成.复合材料结构破坏过程的计算机模拟[J].复合材料学报,1996,13(4):102.111.
    [76] Fairhurst C. Geomaterials and recent development in micro-mechanical numerical models[J]. News Journal, 1997, 4(2): 11-14.
    [77] 唐春安,赵文.岩石破裂过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507-508.
    [78] 唐春安,刘红元,秦四清,杨志法.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1):116-121.
    [79] 陈忠辉,唐春安,付宇方.岩石微破坏损伤演化诱致突变的数值模拟[J].岩土工程学报,1998,20(6):9-15.
    [80] 付宇方.岩石破裂过程的数值模拟研究[硕士学位论文][D].沈阳:东北大学,1997.
    [81] 寇晓东,周维垣等.无单元法在小湾拱坝开裂计算中的应用[J].云南水力发电,2000,16(1):71-76
    [82] Onate E, Cervere M, Zienkiewicz O C. A finite volume format for structural mechanics[J]. International journal for Numerical Methods in Engineering, 1994, 37: 181-201.
    [83] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 3-47.
    [84] 盂闻远,卓家寿.无网格的崛起与进展一种新兴的数值方法评述[J].河海大学学报,1999,27(力学专辑):51-58.
    [85] Perrone N and Kao R. A general finite difference method for arbitrary meshes[J]. Computers and Structures, 1975, 5: 45-58.
    [86] Liszka T and Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers and Structures, 1980, 11: 83-95.
    [87] Liszka T. An interpolation method for an irregular set of nodes[J]. Intemational Journal of Numerical Methods in Engineering, 1984, 20: 1594-1612.
    [88] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12): 1013-1024.
    [89] Gingold R A and Monaghan J J. Kernel estimates as a basis for general particles methods in hydrodynamics[J]. Journal of Computational Physics, 1982, 46: 429-453.
    [90] Moraghan J J. An introduction to SPH[J]. Computational Physics Communications, 1988, 48: 89-96.
    [91] Swegle J W, Hicks D L and Attaway S W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics, 1995, 116: 123-134.
    [92] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981,37: 141-158.
    [93] Nayroles B, Touzot G and Villon P. Generalizing the FEM: Diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992,10: 307-318.
    [94] Belytschko T, Liu Y and Gu L. Element free Galerkin methods. International Journal of Numerical Methods in Engineering, 1994, 37: 229-256.
    [95] Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element-free Galerkin methods[J]. M odelling and inSimulation M aterial Science and Engineering, 1994, 2: 519-534.
    [96] Belytschko T, Lu Y Y , Gu L,Tabbara M . Element-free Galerkin methods for static and dynamic fracture[J]. International Journal for Solids Structures, 1995, 32(17): 2547-2550.
    [97] Amaratunga K, Williams J R. W avelet-Galerkin solutions for one-dimensional partial diferential equations[J]. International journal for Numerical Methods in Engineering, 1994, 37(16): 2703-2716.
    [98] Liu W K, Jun S, Adee J, Belytschko T. Reproducing kernel particle methods[J]. International journal for Numerical Methods in Engineering, 1995, 38(10): 1655-1679.
    [99] Liu W K, Chen Y J. W avelet and multiple scale reproducing kernel methods[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10): 901-931.
    [100] Liu W K, Li S, Belytschko T. Moving least-square reproducing kernel method. Part I: Methodology and convergence [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 143(4): 422-433.
    [101] Duarte C A M, Oden J T. An hp adaptive method using clouds[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139: 237-262.
    [102] Oden J T, Duarte C A and Zienkie O C A new cloud-based hp finite element method[J]. Computational Methods in Applied Mechanics and Engineering, 1998, 153: 117-126.
    [103] Liszka T J, Duarte C A M, T'vorzydlo W W .Hp-meshless clouds method[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139(3): 263-288.
    [104] Babuska I and Melenk J M. Partition of unity method[J]. International Journal for Numerical Methods in Engineering, 1997,40: 727-758.
    [105] Onate E, Idelsohn S, Zienkiewicz O C, Talor R L. A finite point method in computational mechanics applicationto convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3839-3866.
    [106] Modaressi H, Aubert P. A difuse element finite element technique for transient coupled analysis [J], International Journal for Numerical Methods in Engineering, 1996,39(22): 3809-3838.
    [107] Yagawa G. Yamada T. Free mesh method: a new meshless finite element method[J]. Computational Mechanics, 1996, 18(5): 383-386.
    [108] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method[J]. Computational Mechanics, 1997, 19(4): 264-270.
    [109] Mukherjee Y X, Mukherjee S. The boundary node method for potential problems[J]. International Journal for Numerical Methods in Engineering, 1997, 40(6): 797-815.
    
    [110] Oden J T, Duarte C A M, Zienkiewicz O C A new cloud-based hp finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1998,153: 117-126. - 130-
    [111] Arluri S N, Zhu T. A new meshless local Pretrov-Galerkin approach in computational mechanics[J]. Computational Mechanics, 1998, 22(2): 117-127.
    [112] Zhu T, Zhang J and Arluri S N. A meshless local boundary integral equation(LBIE) method for solving nonlinear problems. Computational Mechanics, 1998, 22: 174-186.
    [113] Belytschko T, Krongauz Y, Dolbow J, Gedach C. On the com pleteness of meshfre particle methods[J]. International Joumal for Numerical Methods in Engineering, 1998, 43(5): 785-819.
    [114] Dolbow J, Belytschko T. Volumetric locking in the element free Galerkin method[J]. International Journal for Numerical Method in Engineering, 1999, 46(6): 925-942.
    [115] Krysl P, Belytschko T. The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks[J]. International Journal for Numerical Method in Engineering, 1999, 44(6): 767-800.
    [116] Belytschko T, Organ D, Gerlach. Element-free Galerkin methods for dynamic fracture in concrete[J]. Computer methods in Applied Mechanics and Engineering, 2000, 187(3): 385-399.
    [117] Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Mehtods in Engineering, 1998, 43(5): 839-887.
    [118] Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete. Computer methods in Applied Mechanics and Engineering, 2000, 187(3): 385-399.
    [119] Venini P, Morana P. An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model: 1Dproblem[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(42): 5619-5638.
    [120] Gu Y T, Liu G R. A coupled element free Galerkin/boundary element methods for stress analysis of two dimensional solids[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(34): 4405-4419.
    [121] Liu G R, Gu Y T. A Point interpolation method for two-dimensional silids[J]. International Journal for Numerical methods in Engineering, 2001, 50: 937-951.
    [122] Liu G R, Gu Y T. A matrix triangulafization algorithm for point interpolation method[A]. Proceedings of the Asia-pacific Vibration conference[C], Hangzhou, China, Edited by Wen Bangchun. Nov. 18-31, 2001.
    [123] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions[J]. International Journal for Numerical Methods in Mechanics and Engineering, 2001, 54: 1623-1648.
    [124] 寇晓东,周维垣.应用无单元法追踪裂纹扩展[J].岩石力学与工程学报,2000,19(1):18-23.
    [125] 寇晓东,周维垣.应用无单法近似计算拱坝开裂[J].水利学报,2000,10:28-35.
    [126] 周维垣.寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202.
    [127] 宋康祖,陆明万.无网格法综述[A].见:清华大学工程力学、数学、热物理学术会议论文集[C],北京:清华大学出版社,1998,340-345.
    [128] 张雄,宋康祖,陆明万.紧支试函数加权残量法[J].强度与环境,2000,增刊:58-63.
    [129] Zhang X, Liu X F, Song K Z, Lu M W. Leasr-square collocation meshless method[J]. International Journal for numerical methods in Mechanics and Engineering. 2001, 51 (9): 1089-1100.
    [130] Zhang X, Song K Z, Lu M W, Liu X. Meshless methods based on collocation with radial basis functions[J]. Computational Mechanics, 2000, 26(4): 333-343.
    [131] 张雄,厚胡炜,潘小飞等.加权最小二乘无网格法[A].工程与科学中的计算力学,中国计算力学大会2001论文集[C],北京:北京大学出版,2001,333-338.
    [132] 宋康祖.紧支函数无网格法研究[博士论文][D].北京:清华大学,2000.
    [133] Zhang X, Liu X, Lu M W, Chen Y. Imposition of essential boundary conditions by displacement constraint equations in meshless methods[J]. Commuications in Numerical Methods in Engineering, 2001, 17(3): 165-178.
    [134] Zhang X, Song K Z, Lu M W. Hermite type collocation with radial functions[A]. Proceedings of international conference on computational enginering & science[C], Los Angeles, 2000.
    [135] 刘欣.无网格数值方法研究[博士论文][D].南京:南京航空航天大学,1998.
    [136] 刘欣,朱德懋,陆明万等.基于流形覆盖思想的无网格法的研究[J].计算力学学报,2001,18(1):21-27.
    [137] 秦荣.样条无网格法[A].见:袁明武,孙树立编.工程与科学中的计算力学,中国计算力学大会2001论文集[C],北京:北京大学出版社,2001,339-343.
    [138] 周忠瑞,周小平,缪冰.具有自适应影响半径的无单元法[J].工程力学,2001,18(6):94-99.
    [139] 庞作会,葛惨润,王水林.无网格伽辽金法在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    [140] 庞作会,葛修润,郑宏等.一种新的数值计算方法无网格伽辽金法[J].计算力学学报,1999,16(3):320-329.
    [141] 庞作会,葛修润,王水林等.对无网格伽辽金法(EFGM)的两点补充[J].岩石力学与工程学报,1999,18(5):581-584.
    [142] 李卧东,王元汉,陈晓波.模拟裂纹传播的新方法—无网格伽辽金法[J].岩土力学,2001,22(4):33-36.
    [143] 方电新,李卧东,王元汉.用无网格法计算平板弯曲问题[J].岩土力学,2001,22(3):347-349.
    [144] 李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用[J].固体力学学,2001,22(4):361-366.
    [145] 何沛祥,李子然,吴长春.无网格法与有限元的耦合及其对功能梯度材料断裂计算的应用[J].中国科学技术大学学报,2001,31(6):673-680.
    [146] 龙述尧.弹性力学问题的局部petrov-Galerkin方法[J].力学学报,2001,33(4):508-517.
    [147] 陈建,吴林志,杜善义.采用无单元法计算含沿裂纹功能梯度材料板的应力强度因子[J].工程力学,2000,17(5):139-144.
    [148] 张伟星,庞辉.无单元法分析弹性地基板[J].力学与实践,2000,22(3):38-41.
    [149] 张建辉,邓安福.无单元法在筏板基础计算中的应用[J].岩土工程学报,1999,21(6):691-695.
    [150] 张建辉,邓安福.无单元法在弹性地基板计算中的应用[J].重庆建筑大学学报,1999,21(2):84-88.
    [151] 朱合华,缪圆兵,蔡永昌.无网格自然邻接点法在弹塑性大变形问题中的应用[A].第二届全球华人岩土工程学术论坛论文集[C],南京,2005.
    [152] MT Luan, R Tian, Q Yang, et al. Meshfree finite-cover method-A meshfree manifold method for discontinuous deformation analyses[A].Minisymposia session of the WCCM IV in conjection with APCOM'04.Beijing, China, 2004.
    [153] 栾茂田,杨新辉,田荣等.有限覆盖无单元法在多裂纹岩体断裂特性数值分析中的应用[J].岩石力学与工程学报,2005,24(24):4403-4408.
    [154] 李树忱,程玉民.裂纹扩展分析的无网格流形方法[J].岩石力学与工程学报,2005,24(7):1187-1195.
    [155] 李树忱,程玉民,李术才.扩展的无网格流形方法[J].岩石力学与工程学报,2005,24(12):2066-2072
    [156] 李树忱,程玉民.基于单位分解法的无网格流形方法[J].力学学报,2004,36(4):496-500.
    [157] Liu G R. Mesh Free Methods[M]. Florida: CRC Press, 2003.
    [158] Sacks J, Susannah S B, Welch W J. Design for computer experiments[J]. Technometrics, 1989, 31: 41-47.
    [159] Lophaven S N, Nielsen H B, Jacob Sφndergaard. DACE: A MATLAB Kriging Toolbox (Version 2.0)[R]. Technical Report IMM-TR-2002-12, Informatics and Mathematical Modelling, Technical University of Denmark, Denmark: Technical University of Denmark, 2002.
    [160] 王卫东,赵国群,栾贻国.无网格法中本质边界条件的处理[J].力学季刊,2002,23(4):521-527.
    [161] 徐秉业.弹性力学与塑性力学解题指导及习题集[M].北京:高等教育出版社,1985.
    [162] 庞作会.基于节理网络模型的岩体REV数值估算与无网格伽辽金法(EFGM)[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,1998.
    [163] 陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [164] 于晓中,谯常忻,周群力.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1989.
    [165] 杨桂通.弹性力学[M].北京:高等教育出版社,1998.
    [166] Griffith A A. The phenomena of rupture and flow in solids[J]. Phil. Trans., Ser. A, 1920, 221: 163-198.
    [167] Irwin G R. Analysis of stresses and strains near the end of a crack transversing a plate[J]. Journal of Applied Mechanics, 1957, 24: 361-364.
    [168] Wells A A. Application of fracture mechanics at and beyond general yielding[J]. British Welding J. 1963, 10: 563-570.
    [169] Tada H, Paris P C, and Irwin G R. The stress analysis of cracks handbook. Del Research Corp., Hellertown, Pa, 1973.
    [170] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35: 379-386.
    [171] Matheron G. Principles ofgeostatistics[J]. Economic Geology. 1963, 58:1246-1266.
    [172] Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4: 409-435.
    [173] Sacks J, Susannah S B, Welch W J. Design for computer experiments[J]. Technometfics, 1989, 31: 41-47.
    [174] Stein M L. Interpolation of Spatial Data: Some Theory for Kriging[M]. New York: Springer, 1999.
    [175] 何庆芝,郦正能.工程断裂力学[M].北京:北京航空航天大学出版社,1993.
    [176] 洪其麟译.高等断裂力学[M].北京:北京航空学出版社,1987.
    [177] 匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社,2002.
    [178] 杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法[J].计算结构力学及其应用,1996,13(1):84-89.
    [179] Meguid S A. Engineering Fracture Mechanics[M]. Elsevier Applied Science, London, England, 1989.
    [180] 蔡永昌,朱合华.基于矩形覆盖的流形方法及其在模拟裂纹扩展中的应用[A].栾茂田编.第七届全国岩土力学数值分析与解析方法研讨会会议论文集[C].大连:大连理工大学出版社,2001,464-468.
    [181] 李义军,Zimmermann T H.混合型裂纹在应变软化材料中扩展的数值模拟[A].中国青年学者 岩土工程力学及其应用讨论会会议论文集[C].1994,710-717.
    [182] 卢海星.弹性体裂纹演化破坏过程数值模拟[硕士学位论文][D].上海:上海交通大学,2000.
    [183] ISSA M A. Size effects in concrete fracture, Part Ⅰ: experimental setup and observations[J]. International Journal of Fracture, 2000, 102(1): 1-24.
    [184] 简政,黄松梅,涂传林等.碾压混凝土层面断裂试验研究[J].西安理工大学学报,1997,13(2) 129-134.
    [185] 简政,张浩博,黄松梅.碾压混凝土断裂性能研究[J].西安理工大学学报,1998,14(2):152-156.
    [186] 黄志强.碾压混凝土诱导裂缝与层面断裂性能的试验和数值模拟研究[博士学位论文][D].大连:大连理工大学出版社.2006.
    [187] 高洪波,徐世娘,吴智敏,等.混凝土断裂韧度k2c的试验研究[J].水利发电学报,2006,25(5):68-73.
    [188] 张小刚,宋玉普,王承强等.碾压混凝土拱坝诱导缝的半解析有限元计算[J].混凝土,2005,6:13-17.
    [189] 徐世娘,赵国潘.混凝土断裂力学研究.大连:大连理工大学,1991.
    [190] Bernard Anadei, Chihsen Lin and Jerry Dwyer. Recent extension to the DDA method. Proceeding of the first International Conference on Discontinuous Deformation Analysis(DDA) and Simulation of Discontinuous Media, June, 1996, Berkeley, California, USA, 1-30.
    [191] Koo C Y and Chem J C. Modeling of progressive fracture in jointed rock by DDA method. Proceeding of the second International Conference on Analysis of Discontinuous Deformation, July, 1997, Kyoto, Japan, 186-200.
    [192] 朱万成,黄志平,唐春安等.含预制裂纹巴西盘试样破裂模式的数值模拟[J].岩土力学,2004,25(10):1609-1612.
    [193] Jia Z, Castro-Montero A, Shah S P. Observation of mixed mode fracture with center notched disk specimens[J]. Cement and Concrete Research, 1996, 26(1): 125-137.
    [194] B. N. Rao, S. Rahrnan. An efficient meshless method for fracture analysis of crack[J]. Comuptational Method, 2000, 26: 398-408.
    [195] Williams M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957, 24: 109-114.
    [196] Fleming M, Chu Y A, Moran B, et al. Enriched element-free Galerkin methods for crack tip fields[J]. International Journal for Numerical Methods in Engineering, 1997, 40: 1483-1504.
    [197] Y. Sumi. Computational crack path prediction[J]. Theoretical and Applied Fracture Mechanics, 1985, 4(2): 149-156.
    [198] 范明,戎涛,刘红岩.拉伸载荷作用下裂纹扩展及应力强度因子计算[J].矿业,2006,15(2):40-43.
    [199] 郭瑞,陈章华,班怀国.受拉圆孔两侧裂纹扩展的EFG动态模拟[J].辽宁工程技术大学学报,2006,25(增刊):120-122.
    [200] 王国庆.岩体水力劈裂试验及裂纹扩展的无单元法计算[D].南京:河海大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700