棉花转基因体系的优化和抗黄萎病基因的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病是棉花生长过程中一种最具破坏力的真菌病害,在世界范围内流行。该病害不仅严重影响棉纤维产量,降低幅度达20-60%,而且能大幅度降低棉纤维的品质。棉花黄萎病已经成为世界上棉花生产的主要障碍。利用遗传工程技术改良棉花品种可以提高棉花的抗病性。农杆菌介导法是目前应用最广泛、转化机理最清楚的基因转化方法。然而,农杆菌介导的棉花基因转化存在很多问题,如棉花组织培养的基因型依赖性、转化效率低、转基因植株基因表达沉默等等,这些问题已经成为棉花基因工程研究领域的障碍和瓶颈。本研究主要以陆地棉品系5983为材料,优化了组织培养体系和基因转化体系,将从苜蓿种子中克隆的苜蓿抗菌肽基因导入到棉花中,经检测获得了抗黄萎病的转基因棉花。
     棉花纤维的生长发育是依赖于一系列基因的调控。但由于棉花基因遗传转化需要大量的人力和物力,转化和生长周期长,大规模进行棉纤维基因功能分析非常困难,基因是如何调控棉纤维的生长发育还不是很清楚。因此,有必要建立一套快速简单的棉纤维基因功能鉴定的瞬时表达方法。本研究以GUS为报告基因,采用棉花胚珠离体培养技术,基因枪转化、子房注射法,建立了两套外源基因转化棉纤维的瞬时表达体系。
     将取得的研究成果归纳如下:
     1.棉花组织培养体系的优化
     以5-7日苗龄无菌苗下胚轴切段为外植体,在以LS和MSB培养基为基本培养基,共15种不同激素配比培养基上诱导愈伤组织。结果表明,不同培养基类型和激素组合对愈伤组织的诱导都有重要的影响。同样激素处理条件下,LS培养基上诱导出的愈伤组织要好于MSB培养基,愈伤组织大都为黄绿色,具有分化为胚性愈伤组织的潜力。在所有的激素组合中,在含0.1mg/L KT和0.2mg/L2,4-D的LS培养基中诱导的愈伤组织最好,颜色为黄绿色,质地松软。而其他组合的培养基上诱导的愈伤组织则呈白色硬块或褐色稀泥状,分化为胚性愈伤组织的潜力小。将获得的愈伤组织继代到四种不同的培养基上,在MSB培养基上增殖的愈伤组织的色泽和质地要好于LS培养基上的愈伤组织。在MSB培养基上增殖的大部分愈伤组织为淡绿色或粉红色,而LS培养基上增殖的愈伤组织则是白色硬块愈伤。ZT或活性炭的加入降低了愈伤组织的增殖速度。将在MSB培养基上增殖的愈伤组织转移到6种含不同激素种类及配比的MSB培养基上。结果表明,0.3mg/L KT和0.5mg/L IBA组合的效果优于其他组合,在这个培养基上产生的子叶胚数和总胚数最多。获得的胚状体放在含0.5 mg/L NAA的1/2MSB培养基上诱导绿苗形成。5μmol/LNi~(2+)和Zn~(2+)能促进胚性愈伤组织的分化和绿苗的萌发。待幼苗长到5-8cm时,采用直接移栽和嫁接移栽的方法将苗移到温室。
     2.棉花转基因体系的优化
     以含质粒pCAMBIA1301的农杆菌介导棉花下胚轴切段,50mg/L的潮霉素加入到培养基中筛选抗性愈伤组织,优化了农杆菌介导的棉花遗传转化的影响因子。研究结果表明:不同农杆菌菌种对棉花的浸染能力不同,在三种农杆菌菌种中,农杆菌LBA4404的浸染能力最强。农杆菌菌液浓度OD_(600)值在O.5-0.7时,培养基中加200μmol/L乙酰丁香酮,浸染10-15min,在50mg/L潮霉素培养基筛选后,愈伤组织转化率最高。共培养温度和时间对愈伤组织转化率也有明显的影响。研究表明在共培养温度21℃下,共培养60 h,转化效果最好。
     3.植物表达载体的构建与转基因棉花的筛选
     从苜蓿种子中克隆了已知基因苜蓿抗菌肽基因(alfAFP),并将其连接到质粒pCAMBIA1301中。基因的表达由CaMV35S启动子驱动。用已经优化的基因转化体系进行目的基因转化,待再生苗5-8 cm高时,将其直接移栽到温室,最后共得到15颗再生植株。经潮霉素涂抹,发现有3株是假阳性植株。对其余12个转基因植株进行分子检测,PCR结果表明在12个转基因植株的基因组DNA中都有目的基因存在,而在对照植株的基因组DNA中检测不到目的基因的存在。随后,为检测外源基因在棉花基因组中的整合,对这12个转化植株进行Southern检测。结果表明,在12个转化植株中都能检测到Southern杂交信号,有6株是单拷贝整合,另外6株是双拷贝整合。提取12个转基因植株根部的RNA,Northem检测都有杂交信号,说明外源DNA在转基因植株根部都有转录。
     4.转基因棉花的抗病性鉴定、生理特性表现和农艺性状表现
     离体抗病检测结果表明,转化植株叶片粗提液的处理产生的菌落数显著(P<0.01)少于对照,大丽轮枝菌的生长被抑制46.2-86.8%,表明外源抗菌肽在转基因棉叶中含量较高。
     为鉴定转基因植株的抗病性,用50ml大丽轮枝菌孢子悬浮液接种转基因植株和对照植株的根部。在成熟期调查黄萎病的发病级别。结果表明,12个转基因植株中,有5株是黄萎病免疫株,有3株为1级发病,3株是2级发病,有1株发病严重,是3级。离体抗病检测和转基因植株接菌检测结果都表明,alfAFP基因的导入不同程度的提高了棉花对黄萎病的抗性。
     抗病鉴定的同时,我们测定了四个与抗病相关的酶在接菌后的活性变化。四个酶活性的变化趋势相同。对照植株接菌后酶活性有一个快速升高和快速降低的过程。转基因植株中,部分抗性植株酶活性变化也有一个升高和降低的过程,但变化幅度较小,而黄萎病免疫植株的酶活性变化则相当平缓,没有明显的峰值。
     外源基因的导入对棉花农艺性状也有较大的影响。转基因植株株高普遍降低,果枝数、果节数和铃数显著减少,铃重大大降低,但对衣分的影响不大。在纤维品质性状中,纤维比强度下降,马克隆值有不同程度的增加,纤维长度的变化不一致,有的增长,有的变短。
     5.棉纤维基因转化的瞬时表达体系的建立
     1DPA胚珠预培养1 d后,用基因枪轰击。在轰击压力1100psi,射程9 cm,真空度28英寸汞柱,质粒用量为2μg/枪的条件下,GUS染色瞬时表达效果最好。轰击后GUS染色表明,该基因可以在纤维发育的第3-22天持续表达,即该转化体系可以检测纤维发育第3-22天内相关基因的表达。
     子房注射法转化外源基因,质粒浓度为0.04-0.07μg/μl之间时转化效果最好。注射开花后1DPA子房,胚珠GUS染色表明,注射后第3天的GUS表达率最高,外源基因可以在纤维中持续表达9天。即该转化体系可以检测纤维发育第2-10天内相关基因的表达。
Verticillium wilt,caused by Verticillium dahliae(V.dahliae),is one of fungal diseasedecreasing not only fiber yield by 20-60% but also fiber quality,and it exist widely inworldwide cotton planting area.Now,it has been one of major limiting factors in cottonproduction.Results from previous researchers showed that cotton varieties could be improvedin resistance of disease,pest and herbicide and fiber quality etc by using gene engineering.Inrecent years,the gene transformation via Agrobacterium-mediated system was used widelyand its mechanism of transformation is very clear.However,many problems still exist incotton gene transformation.The main reasons are a higher degree of genotype dependence inplant regeneration of cotton tissue culture,lower efficiency in gene transformation of cottonand foreign gene silence in transgenic plant.In this paper,an optimized system wasestablished for cotton tissue culture and gene transformation.An Alfalfa antifungal peptide(AlfAFP)gene,cloned from seeds ofMedicago sative,was introduced into cotton genome andtransgenic plants of enhanced resistance to V.dahliae were obtained.
     Development of cotton fiber was regulated by many genes.However,because of longduration and a lot of work in cotton gene transformation,large-scale analysis of gene functionin fiber development is very difficult by using cotton stable transformation system.Therefore,it is not clear that which and how genes regulate fiber development.It is very necessary toestablish a gene transient expression system to evaluate gene function in fiber cell by asimpler and quicker test method.In this paper,two transient gene expression systems in fibercell were established by particle bombarding ovules and injecting ovaries through pollen tubepathway.
     The main results are listed below:
     1.Optimization of effect factors in cotton tissue culture
     Cotton hypocotyl pieces(3-5 mm)from 5 to 7 days-old sterile seedlings were culturedon 15 kinds of callus induction media,which included different kinds of hormones in LS orMSB basic media.Results indicated that calli growth on LS media were better than these onMSB media when hormones and hormone concentrations were same.Most of calli on LSmedia were yellow-green and had capacity to differentiate into embryonic calli.In all hormone treats,calli growth on LS medium with 0.1 mg/L KT and 0.2 mg/L 2,4-D were thebest,and the calli were yellow-green and loose.Calli on the other media were white and hardor brown and very soft,which were not impossible to differentiate into embryonic calli.Yellow-green calli were placed on 4 proliferation media and showed a better proliferation onMSB medium than on LS medium.Proliferation efficiencies were decreased when ZT oractive carbon were added in MSB medium.When calli on MSB medium were transferred on6 kinds of media with different hormones,the MSB medium with 0.3mg/L KT and 0.5 mg/LIBA was the best and could produced the highest number of embryo and cotyledon embryo inall treats.If somatic embryos were developed into plantlets on 1/2MSB medium with 0.5mg/LNAA,differentiation efficiency of embryogenic calli and plantlet regeneration was increasedwhen 5μmol/L Zn~(2+)and Ni~(2+)were added in medium.It was suggested that plantlets withroots should be transplanted into greenhouse when plants heights were about 5-8 cm andSeedlings without roots were grafted on rootstock in greenhouse.
     2.Optimization of effect factors in cotton gene transformation
     Effect factors of transformation processes were examined in efforts to improve theproduction efficiency of transgenic cotton.The result showed that strain LBA4404 wassignificantly better than EHα101 and EHα105.The efficiency of transformation could beimproved when bacterium density was 0.5-0.7 at OD_(600).15 minutes is the most appropriatetime for cotton hypocotyl pieces to be dipped into Agrobacterium suspension.Relative lowco-cultivation temperature(21℃)and long co-cultivation duration(60h)were optimal fordeveloping a highly efficient method of cotton transformation.Concentration ofacetosyringone at 200μmol/L during co-cultivation significantly increased transformationeffiency.
     3.Construction of plant expression vector and development of transgenie plants
     An alfalfa antifungal peptide gene(alfAFP),which was cloned from seeds of Medicagosative,was ligated in pCAMBIA1301 to form a recombinant pCAMBIA1301-alf.The alfAFPgene expression was under the CaMV35S promoter control in recombinant binary vector.Gene alfAFP was delivered into an upland cotton line 5983 via Agrobacterium-mediatedhypocotyl system.It took about 8-10 months that 15 plants were regenerated by cultivatingthe transformed cotton tissues.Transgenic plants were transplanted in greenhouse when their roots were about 5cm in length.50mg/L hygromycin solution.was spread onto the yongleaves oftransgenic plants.7-10 days later,results showed that there were 3 negetive plants in15 transgenic plants.PCR products confirmed the integration of the alfAFP gene in thegenome of 12 transformants.Southern blot analysis showed that 6 transformants were onecopy and another 6 transformants were two copies of the alfAFP gene.RNA from roots oftransformants was used for Northern blot and gene transcripts were present in all 12transgenic plants.
     4.Resistance to V.dahliae,changes of related enzymes and agronomy characters oftransformants
     In vitro assays showed that crude leaf protein extracts from transforrnants was able tosignificantly(p<0.01)inhibit the growth and proliferation of V.dahliae by 46.2-86.8%compared to extracts from control plants.In vivo assays with fungal pathogen showed thattransformants displayed a significant reduction in disease symptom compared to controlplants.At harvest stage,evaluation of disease degree demonstrated that 5 plants of 12transformants were immune to verticillium wilt,3 plants each showed the disease grade of 1,another 3 plants were scored 2,respectively.1 plant showed severe disease symptom with thedisease grade of 3.Results from assays in vitro and in vivo suggested that the alfAFP genewas able to express in the upland cotton and its product of gene expression was active to thegrowth inhibition of V.dahliae.
     Activities of four related enzymes in control and transgenic cottons were measured afterinoculated by V.dahliae suspension.Results showed that activity trends of four relatedenzymes were similar.After inoculated,enzyme activities of control plants dramaticallyincreased,and then decreased rapidly.There were peaks at 3 or 5 d after inoculation.Intransgenic plants,changes of enzyme activity of transgenic plants with part verticillium wiltsymptom were similar to that of control plants,but had lower peaks.However,the enzymeactivity of immune-verticillium wilt cotton was maintained at low level and did not show anyobvious peak.
     Agronomy characters of transgenic cotton plants were influenced by the alfAFPintroduction.Results showed that transgenic plants were reduced in height,fruiting branchesand nodes,bolls and boll weight,but was not affected in fiber lint percentage.In characters of fiber quality,transgenic plants showed lower fiber strength and higher micronaire value,buthad significantly unstable change in fiber length,some became longer and others becameshorter than control plants.
     5.Establishment of transient expression system of foreign gene in cotton fiber cell
     1DPA ovules were cultivated for 1 d on BT medium,and then they were used for thebolistic transformation.The optimal parameters were as follows:Helium pressure at 1100psi,target distance at 9 cm,the vaccum pressure at 28 inches Hg,vector concentration at 2μg perbombardment.Foreign gene expression could be continually detected in fiber cells onculturing ovules from 2 to 20 d after bombardment.After 20 d,gene expression disappeared.It is indicated that function analysis of genes lelated with the fiber developmet may beavailable by the bolistic transformation system when ovules were cultured in the period from3 to 22d in fiber development.
     Vector concentration of 0.4-0.7μg/μl was the optimum for gene transformation for 1DPA ovules by the method of ovary-injection in vivo.GUS gene in fiber cells on ovules couldcontinually express within 9 days after transformation,and its expression efficiency was themost high at 3 d after injection.Therefore,the duration from 2 to 10 d may be the best timefor function evaluation of genes related with fiber development by the ovary-injection system.
引文
Adair AS. Screening for tolerance to Verticilliwn wilt in cotton. MS Thesis. Lubbock, TX, Texas Tech University, 1996: 62-65.
    Allen GC, Spiker S, Thompson WF. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology, 2000, 43(3): 361-376.
    Bajaj YP. In vitro introduction of genetic variability cotton. Theoretical and Applied Genetics, 1985, 70(4):363-368 .
    Basra AS, Malik CP. Dark metabolism of CO_2 during fiber elongation of two cottons differing in fiber lengths. Journal of Experiment Biology, 1983,24(1): 1-9.
    Basra AS, Malik CP. Development of the cotton fibre. International Review of Cytology-a survey of Cell Biology, 1984, 89(1): 65-113.
    Beasley CA. Hormone regulation of growth in unfertilized cotton ovules. Science, 1973, 179(9):1003-1005.
    Bayley CA, Trolinder NL, Ray C. Engineering 2, 4-D resistance into cotton. Theoretical and Applied Genetics, 1992, 83(5): 645-649.
    Beasley CA, Ting IP. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. American Journal of Botany, 1973, 60 (2): 130-139.
    Beasley CA. Cotton ovules culture: a review of progress and a preview of potentiality. In: Street HE. Tissure Culture and Plant Science.London: Academic Press. 1974, 169-172.
    Beasley CA. Developmental morphology of cotton flowers and seed as seen with scanning electron microscope. American Journal of Botany, 1975, 62 (6):584-592.
    Beasley CA. Ovules culture: fundamental and pragmatic research for the cotton industry. In J Reinert and YPS Bajaj. Plant Pollen Tissue and Organ Culture. New York. 1977,160-178.
    Beasley CA. Culture of cotton ovules. In : Vasil IK.Cell Culture and Somatic Cell Genetics of Plants.New York: Academic Press, 1984, 232-240.
    Beasley CA, Ting IP. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. American Journal of Botany, 1974,61 (2): 188-194.
    Bell AA. Verticillium wilt. In R.J. Hillocks (Ed.), cotton disease CAB International, Wallingford, UK. 1992, 87-126.
    Berlin JD. The outer epidermis of cotton seed .In:Mauney Jr and Stewart JM. Cotton Physiology. Memphis:The cotton Foundation. 1978, 375-413.
    Berlin JD. The outer epidermis of the cottonseed. Eds: Mauney JR and Stewart JM. Memphis, TN: The cotton foundation, 1986: 375-414
    Bidney D, Scelonge C, Martich J, Burru SM, Sims L, Huffman G. Microproectile bombardment of plant tissues increases transformation frequency by A g robacterium turn ef aciens. Plant Molecular Biology, 1992, 18(3): 301-313.
    Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and inplanta. Plant Science, 2000, 154(2): 171-181.
    Chappel EJ. Culture of the apical meristem of G hirsutum L in vitro. Phytocoenologia, 1976, 24 (1): 93-100.
    Chen SC, Liu AR, Zou ZR. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Russian Journal of Plant Physiology, 2006, 53 (5):671-677.
    Cheng HM, Jia SR. Research of disease resistant transgenic cotton. In: Sh. R. Jia, S. D. Guo, and D. Ch. An (eds), Transgenic Cotton, Science Press, Beijing, 2001,42-65.
    Chlan CA, Lin JM, Cary JW. A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Molecular Biology Reporter, 1995,13 (1): 31-37.
    Colson-Hanks ES, Deverall BJ. Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathology, 2000, 49 (2): 171-178.
    Daniell H. Genetic engineering of cotton to increase fiber strength, water absorption fragment length polymorphisms (RDLPs). American Journal of Botany, 1994, 81 (11): 1309-1326.
    Davidonis GA. Comparison of cotton ovule and cotton cell suspension cultures: Response to gibberellic and 2-chloroethyl-phosphosphonic acid. Journal of Plant Physiology, 1993, 141 (4): 505-507.
    Davidonis GH, Hamilton RH. Plant Regeneration from Callus Tissue of G. hirsutum L. Plant Science Letters, 1983, 32(1): 89-93.
    Davidonis GH, Hinojosa O. Influence of seed location on cotton fiber development in planta and in vitro. Plant Science, 1994, 103 (1): 110-113.
    Delanghe EA. Lint development in cotton physiololgy, Eds: Mauney JR and Stewart JM Memphis TN, TN:105 The cotton foundation, 1986, 325-350.
    Delmer DP, Amor Y. Cellulose biosynthesis. The Plant Cell, 1995, 7(7): 987-1000.
    Denic V, Weissman JS. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell, 2007,130 (4): 663-677.
    Dhindsa RS, Beasley CA, Ting IP. Effect of abscisic acid on in vitro growth of cotton fiber. Planta, 1976, 130(2): 197-201.
    Dillen W, DeClercq J, Kapila J, Zambre M, VanMontagu M, Angenent G. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant Journal, 1997, 12 (6):1459-1463.
    Dhindsa RS, Beasley CA, Ting IP. Effect of abscisic acid on in vitro growth of cotton fiber. Planta, 1976, 130(2): 197-201.
    Dubery IA, Slater V. Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae . Phytochemistry, 1997,44(8): 1429-1434
    Dugger WM, Palmer RL. Effect of boron on the incorporation of glucose by cotton fiber grown in vitro. Journal of Plant Nutrition, 1985, 8 (4): 311-325.
    Essenberg M, Grover PB, Cover EC. Accumulation of antibacterial sesquiterpenoids in acterially inoculated Gossypium leaves and cotyledons, Phytochemistry, 1990, 29 (10): 3107-3113.
    Fillatti JA, McAlla C, Comai L. Genetic engineering of cotton for herbicide and insect resistance. Proceeding Beltwide Cotton Production Research Conference, 1989 (1): 17-19.
    Finer J J, Smith R H. Initition of callus and somatic embryos form explants of mature cotton ( G. klotzschil anum Anderss). Plant Cell Reports, 1984, 3(1): 41-43.
    Finer JJ, MeMullen MD. Transformation of cotton ( Gossypi urn hi rsutum L.) via particle bombardment. Plant Cell Reports, 1990, 8 (10): 586-589.
    Firoozabady E, DeBoer, DL. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirautum L). In vitro cellular & Development Biology-plant, 1993, 29(4): 166-173.
    Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE. Transformation of cotton (Gossypium hirautum L) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Molecular Biology, 1987,10(2): 105-116.
    Fullner KJ, Nester EW. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. Journal of Bacteriology, 1996, 178(12): 1498-1504.
    Fullner KJ, Lara JC, Nester EW. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 1996, 273(5279): 1107-1109. Gao AG, Hakimi SM, Mittanck CA, Wu YB, Woemer M, Stark DM, Shah DM, Liang J, Rommens MT. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 2000, 18 (12): 1307-1310.
    Gawel NJ, Robacker CD. Somatic embryogenesis in two Gossypium hirsutum genotypes on semi- solid versus liquid proliferation media. Plant Cell Tissure Organ Culture, 1990, 23 (3): 201-204.
    Giannopotics CN, Ries SK. Superoxide dismutase. I . Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314.
    Goell A, Goel AK, Sheoran IS. Changes in oxidative stress enzymes during artificial ageing in cotton {Gossypium hirsutum L.) seeds. Journal of Plant Physiology, 2003, 160(9): 1093-1100.
    Godwin I, Todd G, Ford-Lloyd B, Newbury HJ. The effects of acetosyringone and pH on Agrobacterium mediated transformation vary according to plant species. Plant Cell Reports, 1991, 9(12): 671-675.
    Gokani SJ, Kumar R, Thaker VS. Potential role of abscisic acid in cotton fiber and ovule development. Journal of Plant Growth Regulation, 1998,17(1): 1-5.
    Gotz, T, Boger P. The very-long-chain fatty acid synthase is inhibited by chloroacetamides. Zeitschrift fur Naturforschung. 2004, 59c (8): 549-553.
    Graves DA, Stewart JM.. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta, 1988, 175(2): 254-258.
    Gong WK, Wu JH, Yao CB, Liu F, Yu SX, Chen ZX, Liu ZH, Li YE . Establishment of effective transformation system for glucose oxidase gene in Gossypium hirsutum L - regeneration of plants with transgenes. Cotton Science, 2002, 14 (2): 76 - 79.
    Gould JH, Dugger WM. Events surrounding fiber initiation in G. hirsutum var. Acala SJ-2. Proceedings Beltwide Cotton Conferences, 1986, (1): 81-82.
    Gould J, BanisterS. Regeneration of Gossypium from shoot apex tissues for transformation. Plant Cell Reports, 1991, 10(1): 12-16.
    Guo HN, Wu JH, Chen XY. Cotton plants transformed with the activated chimeric CrylAc and API-B genes. Acta Botanica Sinica, 2003,45(1): 108-113.
    Haigler CH, Rao NR, Robers EM. Cultured ovules as models for cotton fiber development under low temperatures. Plant Physiology, 1991, 95(1): 88-96.
    Hamilton CM, Frary A, Lewis C, Tanksley SD. Stable transfer of intact high molecular weight DNA into plant chromosome. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9975-9979.
    Hansen G, Chiton MD. "Agrolistic" transformation of plant cells integration of T-strands generated in planta. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14978-14983.
    Harmer SE, Orford SJ, Timmis JN. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Molecular Ggenetics and Genomics, 2002, 268(1): 1-9.
    Hayashi T, Delmer DP. Xyloglucan in the cell walls of cotton fiber. Carbohydrate Research, 1988, 181(0):273-277.
    Hsu CY, Creech RG, Jenkins JN, Ma DP. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Science, 1999,143(1): 63-70.
    Jasdanwala RT, Singh YD, Chinoy JJ. Auxin metabolism in developing cotton hairs. Journal of Experimental Botany, 1977,28(106): 1111-1116.
    Jin, H L, Hemphill JK, Wang JT, Gould J. A rapid and high yielding DNA miniprep for cotton (Gossypium spp.). Plant Molecular Biology Reporter, 2001,19(2):183a-183e.
    Jin SX, Zhang XL, Hang SG, Nie YC, Guo XP, Huang C. Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 2005, 81(2): 229-237.
    John M E. Characterization of a cotton (Gossypium hirsutum L.) fiber mRNA(Fb-B6). Plant Physiology, 1995, 107(4): 1477-1478.
    John ME, Crow LJ. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89 ( 13 ) :5769-5773.
    John ME, Keller G. Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells, Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 12768-127773.
    Joost O, Bianchini G, Bell AA, Benedict CR, Differential induction of 3- hydroxyl -3 - methylglu-taryl CoA reductase in two cotton species following inoculation with Verticilliiana, Mot. Plant Microbe Interact, 1995, 8(6): 880-885
    Joshi PC, Wadhwani AM, Johri BM. Morphological and embryological studies of Gossypium L. Proceedings of the National Academy of Sciences of the United States of America, 1967, 33(1): 37-39.
    Kanniah R, Cary JW, Jaynes JM. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnology Journal, 2005, 3(6): 545-554.
    Kaur K, Nayyar H, Basra AS, Malik CP. Stimulation of enzymes of non-photosynthetic C4 metabolism in cultured cotton ovules by fluridone. Acta Physiologiae Plantarum, 1990, 12(1): 3-6.
    Keller G, SpatolaL, McCable D. Transgenic cotton resistant to herbicide bialaphos. Transgenic Research, 1997, 6(6): 385-392.
    Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Molecular Biology Reporter, 2000, 18(1): 33-39.
    Kim HJ, Triplett BA. Cotton fiber growth inplanta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiology, 2001, 127(4): 1361-1366.
    Kim HJ, Williams MY, Triplett B A. A novel expression assay system for fiber-specific promoters in developing cotton fibers. Plant Molecular Biology Reporter, 2002,20(1): 7-18.
    Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S. High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum L) through metabolic stress. Plant cell reports, 2003,21(7): 635-639.
    Levee V, Garin E, Klimaszewska K, Seguin A. Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Molecualr Breeding, 1999, 5(5): 429-440.
    Libreros-Minotta CA, Tipton PA. A colorimetric assay for cytokinin oxidase. Analytical Biochemistry, 1995, 231(2): 339-341.
    Liu DH, Jiang WS, Wang CL. Effects of Ni~(+2)and Cu~(+2) on root growth and Nucleoli of broadbean. Acta Botanica Boreali-Occidentalia Sinica, 1995, 5(4): 270-275.
    Liu HC, Creech RG, Jenkins JN, Ma DP. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Biochimica et Biophysica Acta, 2000, 148(7): 106-111.
    Luo JH, Gould JH. In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell, Tissue and Organ Culture, 1999, 57(3): 211-213.
    Lyon BR, Cousins YL, Llewellyn DL. Genetic engineering of cotton for resistance to herbicide. Fifth Australian Cotton Conference, 1989: 27-29.
    Ma DP, Hsu CY, Greech RG. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plant. Plant Science, 1999,143(1): 63-70.
    Maltby D, Carpita NC, Montezinos D, Kulow C, Delmer DP.β-1,3-Glucan in developing cotton fibers. Plant Physiology, 1979,63(6): 1158-1164.
    Meinert MC, Delmer DP. Changes in biochemical composition of the cell wall of cotton fiber during development. Plant Physiology, 1977, 59(6): 1088-1097.
    Memphis TN, Mace ME, Stipanovic RD. Relation between sensitivity to terpenoid phytoalexins and virulence to cotton of Verticilliiam dahliae strains. Pesticide Biochemistry and Physiology, 1990, 36(1): 79-82.
    Merkle SA. Strategies for dealing with limitation of somatic embryogenesis in hardwood trees. Plant Tissue Culture Biotechnology, 1995, 1(3): 112-121.
    Meyer P. Understanding and controlling transgene expression. Trends in Biotechnology, 1995, 13(3) 332-337.
    Mishra R, Wang HY, Ysdav NR, Wilkins TA. Development of highly regenerable elite Acala cotton (Gossypium hirsutum cv Maxxa) a step towards genotype-independent regeration. Plant cell tissue organ culture, 2003, 73(1): 21-35.
    Moloney MM, WalkerJM, Sharma KK. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Reports, 1989, 8(4): 238-242.
    Morre JL, Permingeat HR, Romagnoli MV. Multiple shoot induction and plant regeneration from embryonic axes of cotton. Plant Cell Tissue Organ Culture, 1998, 54(3): 131-136.
    Murray F, Llewellyn D, McFadden H, Last D, Den ES, Peacock, WJ. Expression of the Talaromyces flavus glucoseoxidase gene in cotton and tobacco reduces fungal infection, but isalsophy totoxic. Moleular Breeding, 1999, 5(3): 219-232.
    Npbre J, Keith DJ, Dunwell JM. Morphogenensis and regeneration from stomata guard cell complexes of cotton {Gossypium hirsutum L.). Plant cell reports, 2001, 20(1): 8-15.
    Orford SJ, Timmis JN. Abundant mRNAs specific to the developing cotton fiber. Theoretical and Applied Genetics, 1997, 94(7): 909-918.
    Orford SJ, Timmis JN. Specific expression of an expansin gene during elongation of cotton fibers. Biochimica BiophysicaActa, 1998, 1398(3): 342-346.
    Pear JR, Delmer DP, Andrawis A. Genes encoding small GPT-binding proeteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Molecular Genetics and Genomics. 1995, 248(1): 43-51.
    Price HJ, Smith RH. Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Andress. Planta, 1979, 145(3): 305-307.
    Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX. Saturated very long- chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19(11): 3692-3704.
    Rajasekaran K, Hudspeth RL Cary JW, Anderson DM, Cleveland TE. High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Reports, 2000, 19(6): 539-545.
    Ramdey JC, Berin JD. Ultra structural of early stages of cotton fiber differentiation. Botanical Gazette, 1976a, 137(1): 11-39.
    Ramdey J C,Berin JD. Ultra structural of early stages of cotton fiber elongation. American Journal of Botany, 1976b, 63(6): 868-876.
    Renfroe M H, Smith R. Gorton shoot tip culture. Proceedings of the Beltwide Cotton Production Research Conferences. 1986,10: 78-79.
    Rao NR, Naithani SC, Singh YD. Physiological and biochemical changes associated with cotton fiber development.Ⅱ.Auxin oxidizing system. Physiologia Plantarum, 1982, 55(2): 204-208.
    Rinehart JA, Petersen MW, John ME. Tissue-specific and developmental regulation of cotton gene FbL2A. Plant physioliogy, 1996,112(3): 1331-1334.
    Robert EM, Rao NR, Huang JY, Trolinder NL, Haigler CH. Effects of cycling temperature on fiber metabolism in cultured cotton ovules. Pant Physiology, 1992, 100(2): 979-986.
    Ruan YL, Llewellyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell, 2003, 15(4): 952-964.
    Ryser U. Cotton fiber differentiation: occurrence and distribution of coated and smooth vesicles during primary and secondary wall formation. Protoplasma, 1979, 98(3): 223-239.
    Ryser U. Cell wall biosynthesis in differentiating cotton fiber. European Journal of Cell Biology, 1985, 39(1): 236-256.
    Sakhanokho HF, Zipt A, Rajasekaran K, Saha S, Sharma GC. Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.) cottons. Crop Science, 2001, 41(4): 1235-1240.
    Sakhanokho HF, Ozias-Akins P, May OL, Chee PW. Induction of somatic embryogenesis and plant regeneration in select Georgia and Pee Dee cotton line, Crop Science, 2004, 44(6): 2199-2205.
    Schubert AM, Benedict CR, Berlin JD, Kohel RJ. Cotton fiber development of the lint fibers of Pima S-4 cotton. Crop Science, 1976,16(4): 539-543
    Sharma KD, Singh BM, Malik CP, Bajaj KL. Effect of a plant growth retardant (E)-1-(4-chlorophenyl)-4,4- dimethy1- 2- (1,2,4-triazol-1-Y1)-penten-3-01(S-3307) on the fiber initiation and enzymes activities of cotton(G. arboreum). Phytomorphology, 1995, 45(1): 79-86.
    Shen W.-H., Escudero J., Schlappi M., Ramos C, Hohn B. and Koukolikova-Nicola Z. 1993. T-DNA transfer to maize cells: histochemical investigation of P-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA 90: 1488-1492.
    Shimizu Y, Aotsuk S, Hasegawa O, Kawada T, Sakuno, T, Sakai F, Hayashi, T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiology. 1997, 38(3): 375-378.
    Shi YH, Zhu SW, Mao XZ, Fu JX, Qin YM, Zhu YX. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 2006, 18(3): 651-664.
    Singh B, Sharm P, Malik CP, Lalsi PS, Sanju PS. Effect if guaianolide derivative I on fiber initiation and elongation in Gossypium arboretum L. in relation to adverse effects of cool temperature. Plant Growth Regulation, 1995, 17(2): 101-107.
    Smith R, Price HJ, Thaxton JR. Defined conditions for the initiation and growth of cotton callus in vitro. I. Gossypium arboretum. In Vitro Cellular & Developmental Biology-Plant, 1977, 13(5): 329-334.
    Smith RH, Zapata C, Park SH, Wilson T, EI-Zik K, Thaxton P. Transformation of Texas cultivars. Proceedings of the Beltwide Cotton Production Research Conferences, 1997: 457-468.
    Stewart JM. Integrated events in the flower and fruit. In J R Mauney and J M Stewart, ed, Cotton Physiology. The Cotton Foundation, Memphis, TN, 1986, 261-297.
    Stewart J, Mc D. Fiber initiation on the cotton ovule (Gossypium hirsutum L). American Journal of Botany, 1975, 82 (7): 723-730.
    Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species, Plant Cell Reports, 2006, 25(4): 289-296.
    Sunilkumar G., Vijayachandra K. and Veluthambi K. Preincubation of cut tobacco leaf explants promotes Agrobacterium- mediated transformation by increasing vir gene induction. Plant Science, 1999, 141(1): 51-58.
    Sunilkumar G, Rathore K.S. Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Molecular breeding, 2001, 8(1): 37-52.
    Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiology, 2005, 46(8):1384-1391.
    Thanker VS, Saroop S, Singh YD. Physiological and biochemical changes associated with cotton fiber development. IV. Glycosidases and β-1, 3-glucanase activities. Annals of Botany, 1987, 60(5):579-585.
    Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Reports, 1995, 14(12):758-762.
    Timpa JD, Triplett BA. Analysis of cell-wall polymers during cotton fiber development. Planta, 1993,189(1): 101-108.
    Tohidfar M, Mohammadi M, Ghareyazie B. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell, Tissue and Organ Culture, 2005, 83 (1): 83-96.
    Toke DA, Martin CE. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271(31): 18413-18422.
    Travella S, Ross S M, Harden J, Everett C, Snape JW, Harwood WA. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediaied techniques. Plant Cell Reports, 2005, 23 (12): 780-789.
    Triplett BA. Stage-specific inhibition of cotton fiber development by adding a-amanitin to ovule cultures. In Vitro Cellular & Developmental Biology-Plant, 1989, 34(1): 27-33.
    Trolinder NL, Berlin JD, Goodin JR. Somatic embryogenesis and plant regeneration in Gossypium hirsutum L. Plant Cell Reports, 1987, 6(3): 231-234.
    Trolinder NL, Goodin JR, Somatic embryogenesis in cotton I. Effect of source of explant and hormone regime. Plant Cell Tissue and Organ Culture, 1988a, 12(1): 31-42.
    Trolinder NL, Goodin JR, Somatic embryogenesis in cottonⅡ. Requirements for embryo development and plant regeneration. Plant Cell Tissue and Organ Culture, 1988b, 12(1): 43-53.
    Trolinder NL, Shang X. In vitro selection and regeneration of cotton resistant to high temperatures tress. Plant Cell Reports, 1991, 10(9): 448-452.
    Trolinder NL, Xhixian C. Genotype specially of the somatic embryogenesis response in cotton. Plant Cell Reports, 1989, 8(3): 133-136.
    Wan CY, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from Cotton (Gossypium hirsutum L.). Analytical Biochemistry, 1994, 223(1): 7-12.
    Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY. Control of Plant Prichome Development by a cotton Fiber MYB Gene. The Plant Cell, 2004, 16(9): 2323 - 2334.
    Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR. Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding, 2004, 123(5): 454-459.
    Wen YC, Tim MI. Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proceedings of The National Academy of Sciences of the United States of America, 2000, 97(1): 377-382.
    Westafer JM, Brown RM. Electron microscopy of the cotton fibre: new observations on cell wall formation. Cytobios, 1976,15(1): 111-138.
    Wiese MV, Devay J E. Growth Regulator Changes in cotton associated with defoliation caused by Verticillium albo-atrum. Plant Physiology, 1970,45(3): 304-309.
    Wilkins TA, Vacuolar H+-ATPase 69 KD catalytic subunit cDNA from developing cotton ovules. Plant Physiology, 1993, 102(2): 679-680.
    Wu AM, Liu JY. Isolation of the promoter of a cotton P-galactosidase gene (GhGall) and its expression in transgenic tobacco plants. Science in China: Series C Life Sciences, 2006, 49(2): 105-114.
    Wu J, Luo X, Guo H, Xiao J, Tian Y. Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breeding, 2006, 125(4): 390-394.
    Wu JH, Zhang XL, Nie YC, Jin SX, Liang SG. Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genetypes of Chinese cotton. In Vitro Cellular & Developmental Biology-Plant, 2004, 40(4): 371-375.
    Wu XX, Chen G, Zhang B, Cui YH, Huai HY. Advances of material browning in plant tissue culture. Hebei Journal of Forestry Orchard Resport, 2002, 17(3): 284-288.
    Wu Y, Machado AC, White RG, Llewelly DJ, Dennis ES. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiology, 2006, 47(1): 107-127.
    Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annual Reviews of Plant Physiology, 1984, 35: 155-189.
    Yang WY, Bai YY, Xu ZH. Stimulation of shoot regeneration in leaf tissue culture of solanum tubersum by silver nitrate. Acta Phytophysiologica Sinica, 1998, 24(1): 86-90.
    YANG YM,Xu CN,Jia Jia.A System of ovule subculture for cotton (Gossypium hirsutum L)fiber deveIopment.Acta Agronomica Sinica,2001,27(6):694-703.
    Zapata C,Park SH,El-Zik KM,Smith,RH.Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex.Theoretical and Applied Genetics,1999,98(2):252-256.
    Zhou GY,Weng J,Zeng Y.Introduction of exogenous DNA into cotton embryos,Methods in Enzymology,1983,101(1):433-481.
    蔡应繁,裴炎.抗真菌基因导入棉花创造高抗黄萎病材料.西南农业学报,2000,13(4):45-49.
    蔡应繁,叶鹏盛,江怀仲.抗真菌基因导入棉花创造高抗黄萎病材料研究.西南农业学报,2000, 13(4):45-49.
    程超华,王学德,姚艳玲.IAA和GA3对棉花短纤维突变体纤维长度的离体诱导作用.作物学报,2005,31(2):229-233.
    陈大军,简桂良,李仁敬.转天麻抗真菌蛋白基因彩色棉新品系抗枯黄萎病研究.分子植物育种,2003,1(6):673-676.
    陈妹幼,张献龙,聂以春,吴家和.陆地棉体细胞再生植株技术的改进研究.棉花学报,2002,14(6):344-347.
    陈旭升,陈永萱.棉花黄萎病菌致萎峰蛋白氨基酸组分及其有关生化特性分析.江苏农业学报,2000,16(1):10—14.
    陈志贤,Djlliewell YN,范云六.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株.中国农业科学,1994,27(2):31-37.
    陈志贤,李淑君,Frolinder NL.棉花细胞悬浮培养的胚胎发生和植株再生的某些特性的研究.中国农业科学,1987,20(5):6-11.
    陈志贤,佘建明.从棉花胚性细胞原生质体培养获得植株再生.植物学报,1989,31(12):966-969.
    程红梅,简桂良,倪万潮.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性.中国农业科学,2005,38(6):1160-1166.
    迟吉娜.陆地棉体细胞胚胎发生及植株再生体系优化.硕士学位论文,河北农业大学,2004
    迟吉娜,马峙英,张桂寅.中国棉花体细胞植株再生的基因型分析.分子植物育种,2005,3(1):75-82.
    迟吉娜,马峙英,韩改英,李喜焕,王彦霞.陆地棉组织培养体细胞胚胎发生技术改进,棉花学报,2005,17(4):195-200.
    崔堂兵,张长远.植物组织培养中褐变现象的产生机理及克服方法.广东农业科学,2001,(3):16-18.
    丁世萍.激素对陆地棉和海岛棉茎尖培养的影响.浙江大学学报(农业与生命科学版),2001,27(5): 508-512.
    邓德旺,郭三堆.棉花花粉管通道法转基因的分子细胞学机理研究.中国农业科学,1999,32(6):113-114.
    董合忠.棉花体细胞胚发生和植株再生.植物生理学通讯,1990, (2):8-12.
    董合忠.不同基因型棉花下胚轴离体培养胚状体发生的研究.莱阳农学院学报,1991,8(2):97-101.
    董合忠,陈志贤.棉花细胞组织培养的调控研究.菜阳农学院学报,1990,7(1):28-33.
    丰嵘,王清连,张宝红.棉花组织培养植株再生的基因型分析.西北农业学报,1997,6(2):27-30.
    高国训.植物组织培养中的褐变问题.植物生理通讯,1999,35(6):501-506.
    高俊凤.植物生理学实验技术.西安:世界图书出版公司,2000,203-204.
    巩万奎,吴家和,姚长兵.葡萄糖氧化酶基因在棉花中的高效转化-转基因再生棉株的获得.棉花学报,2002,14(20):76-79.
    郭余龙,李名杨,裴炎,蔡应繁.棉花川239体胚发生和植株再生.棉花学报,1999,11(5):247-250.
    蒋玉蓉,房卫平,祝水金.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报,2005,31(3):337-341.
    康立娟,刘迎春.Ni~(2+)对水稻生长发育的影响和残留规律的研究.农业环境保护,1997,16(3):135-137.
    贾景日,徐荣旗.三个棉种茎尖培养再生植株培养基的研究.华北农学报,1988,3(4):45-48.
    蒋淑丽,郑泗军,洪彩霞,许馥华.NH4~+浓度对棉花未受精胚珠纤维离体发育的影响.浙江大学学报(农业与生命科学版),1999,25(4):353-356.
    焦改丽,李俊峰,李燕娥,赵俊峡,张换样,刘建卫.利用新的外植体建立棉花高效转化系统的研究.棉花学报,2002,14(1):22-27.
    乐锦华,祝建波,崔百明.利用目的基因转化技术培育棉花抗病新品种.石河子大学学报(自然科学版),2002,6(3):173-178.
    李付广,郭三堆,刘传亮.双价基因抗虫棉的转化与筛选研究.棉花学报,1999,11(2):106-112.
    李官德,肖娟丽,罗晓丽,张安红,吴家和.不同棉花愈伤组织状态与胚胎发生及其植株再生的关系.山西农业科学,2006,34(1):29-31.
    李辉.世界棉花市场的现状、特点与提高中国棉花出口竞争力的对策.世界农业.2006,6(1):7-9.
    李慧英,张献龙.陆地棉体细胞胚胎发生过程中mRNA差异显示分析.棉花学报,2003,15(15):264-268.
    李克勤.陆地拥组织细胞培养的研究.西北植物学报,1991,11(2):144-153.
    李淑英,吴德祥,路羲结.棉花黄萎病致病机理及抗病育种研究进展.安徽农业科学,2001,29(4):477-479.
    刘春明,姚敦义.陆地棉体细胞胚胎发生及其细胞组织学研究,植物学报,1991,33(5):378-384.
    刘方,王红梅,张宝红,刘志红.羧苄西林钠对棉花愈伤组织诱导和生长的影响棉花学报,2000,12(2):109-330.
    刘方,张宝红.棉花组织培养高效植株再生体系的建立.棉花学报,2004,16(2):117-122.
    刘慧君,简桂良,邹亚飞.GO基因导入对棉花农艺性状及抗病性的影响.分子植物育种,2003,1(5):669-672.
    刘继华,杨洪博,曹鸿鸣.棉花纤维的伸长发育.中国棉花,1995,22(7):38-39.
    刘继华,杨洪博,曹鸿鸣.棉纤维发育与产量及品质的关系.中国棉花,1995,22(15):38-41.
    罗琦,王建华,王远亮.金属离子在细胞凋亡中的调控作用.重庆大学学报,2003,26(8):97-101.
    吕金殿,甘莉.棉花黄萎病菌毒素研究Ⅰ---粗毒素与致萎力.棉花病虫害综合防治及研究进展.北京:中国农业科技出版社,1990,354-357.
    吕金殿,甘莉.棉花黄萎病菌毒素的纯化与特性研究[J].植物病理学报,1991 21(2):129-133.
    孟颢光.农杆菌介导的棉花转化体系优化与抗病基因导入.河南农业大学硕士学位论文,2004,33.
    倪万潮,张震林,郭三堆.转基因抗虫棉的培育.中国农业科学,1998,31(2):36-40.
    潘瑞炽.植物生理学(第四版).北京:高等教育出版社,2001:31.
    邱金龙,王隆华,颜季琼.作物学报,1997,23(5):562-566.
    唐桂香,周伟军.AgNO_3对甘蓝型油菜子叶外植体植株再生的影响.中国油料作物学报,2001,23(3):9-12.
    萨基拉,李文彬,孙勇如.植物细胞调亡研究进展.高新技术通,2000(6):95-98.
    师海荣,王清连.陆地棉新品种在体细胞培养中愈伤组织褐化机理研究.河南农业科学,2006,(3):32-36.
    石磊岩.我国棉花黄萎病研究进展.棉花学报,1995,7(4):243-245.
    石磊岩,冯洁,王莉梅.北方棉区棉花黄姜病菌生理分化类型研究.棉花学报,1997,9(5):273-280.
    孙敬三,桂耀林.植物细胞工程实验技术.北京:科学出版社,1995.
    孙严,倪万潮,郭三堆.Bt杀虫蛋白基因导入新疆棉花获得抗虫转基因植株.西北农业学报,1998,7(4):1-3.
    谭晓连,钱迎倩.不同外植体来源和培养条件对拟似棉植株再生的影响.遗传学报,1988,15(2): 81-85.
    汤清秀,赵旌旌,王隆华.棉胚珠愈伤组织诱导成纤维实验系统的研究.作物学报,2000,26(4):496-500.
    王宝山.植物生理学(第一版).北京:科学出版社,2004:40.
    王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,2002,2.
    王清连,刘方,周云.棉花组织培养直接胚胎发生和植株再生.河南职业技术师范学院学报,2000,28(1):47-51.
    王清连,刘方,周云,刘志红,张宝红,许欣然,胡佩实.棉花组织培养直接胚胎发生和植株再生.棉花学报,2002,14(6):340-343.
    王清连,王敏,师海荣.植物激素对棉花体细胞胚胎发生的诱导及调节作用.生物技术通讯,2005,15(6):577-579.
    王省芬,张桂寅,马峙英.陆地棉黄萎病抗性的遗传研究.河北农业大学学报,1999,22(2):10-14.
    王之,李克勤,张大力.陆地棉胚性愈伤组织的变异及高频胚胎发生.植物学报,1994,3(5):331-338.
    王秀丽,杨煜,徐平丽,李爱琴,单雷.植物组织培养的应用及进展.山东农业科学,2005(3):79-80.
    王煜,田廷亮,扶惠华.镍对水稻幼苗生长的作用[J].华中师范大学学报(自然科学版),1999,33(1):104-107.
    王武,张献龙.油菜素内酯对陆地棉体细胞胚胎发生的影响.植物生理学通讯,1992,28(1):15-18.
    魏良民.海岛棉愈伤组织诱导和分化研究.生物技术,1995,5(5):26-29.
    吴家和,罗晓丽,李淑君,李燕娥.pH值对培养基颜色的影响研究.中国棉花,1999,26(11):728-731.
    吴家和,张献龙,罗晓丽.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性.遗传学报,2004,31(2):183-188.
    吴家和,张献龙,聂以春.棉花体细胞增殖和胚胎发生中的细胞程序性死亡.植物生理与分子生物学学报,2003,29(6):515-520.
    吴敬音,佘建明.棉属茎尖腋芽的离体培养,江苏农业学报,1990,6(2):22-26.
    吴慎杰,李飞飞,陈天子,张洁,郭旺珍,张天真.利用农杆菌介导法转化泗棉3号的研究.作物学报,2007,33(4):632-638.
    吴夫安,宋庆奇,贺增勇.陆地棉优良新品系高频率再生细胞系筛选.山东农业科学,1991(5):11-14.
    吴夫安,贺增勇,宗秋玲.棉花基因型在组织培养中的作用.中国棉花,1992,4():13-14.
    吴志刚,朱旭芬.几丁质酶的分子生物学特性及其在转基因植物中的应用.生命科学,2002,14(2):118-121.
    校百才,景忆莲.陆地棉抗黄萎病性状遗传的初步研究.西北农业学报,2000,12(4):169—171.
    谢道昕,范云六,倪万潮.苏云金芽孢杆菌(Bt)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学B辑,1991,(4):367-373.
    谢龙旭,李云锋,徐培林.根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性.植物生理与分子生物学学报,2004,30(2):173-178.
    徐楚年,余炳生,张仪,贾君镇,寿元.棉花四个栽培种纤维发育的比较研究.北京农业大学学报,1988,14(2):113-119.
    徐楚年,张仪,余丙生.棉花四个栽培种纤维发育早期扫描电镜的比较研究.北京农业大学学报,1987,13(3):254-261.
    徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展.生命科学,2002,14(4):223-225.
    许欣然,王清连,姚长兵,巩万奎.棉花优良品种中棉所27直接胚胎发生与植株再生.河南农业科学,2005,7():28-30.
    徐显.棉花抗黄萎病抗性研究的分子进展.植物分子育种,2003,1(1):97-102.
    薛美凤,郭余龙,李名扬,裴炎.长期继带对棉花胚性愈伤组织体胚发生能力及再生植株变异的影响.西南农业学报,2002,15(4):19-21.
    严根土,郑泗军.提高陆地棉体细胞胚胎发生和再生植株率的研究.中国棉花,1994,21(5):12-13.
    杨佑明,贾君镇,徐楚年,李海燕,郭玉海.棉花纤维细胞起始及温度、植物生长物质对其影响.中国农业大学学报,1999,4(3):15-22.
    于娅,刘传亮,马峙英,李付广.适于基因枪转化的棉花茎尖培养及筛选体系初探.棉花学,2003,15(5):274-278.
    岳建雄,张慧军,张炼.以对潮霉素抗性为筛选标记的棉花遗传转化,棉花学报,2002,14(4):195-199.
    张宝红.棉花体细胞胚快速诱导法.科学通报,1994,39(14):1340-1342.
    张宝红,李秀兰.棉花组织培养植株再生技术的研究.西南农业学报,1995,8(4):42-47.
    张宝红,李秀兰,李付广,王 武,李风莲.棉花组织培养中畸形胚的发生和转化.作物学报,1996,22(1):108-111.
    张宝红,李秀兰,李风莲,王武,李付广.棉花组织培养中的表型变异.安徽农业大学学报,1995,22(1): 13-16.
    张宝红,李秀兰,李风莲,李付广.棉花组织培养中异常苗的发生与转化,植物学报,1996,38(11):845-852.
    张宝红,刘 方,刘志红,王红梅,姚长兵.外源激素对棉花体细胞胚胎发生及发育的调控作用.棉花学报,2000,12(1):17-21.
    张宝红,刘 方,刘志红,王红梅,姚长兵.外源激素对棉花体细胞胚胎发生及发育的调控作用.棉花学报,2000,12(1):17-21.
    张宝红,刘方,姚长兵.葡萄糖氧化酶基因转化棉花和抗性愈伤组织的获得.棉花学报,2001,13(2):78-81.
    张宝红,赵宝升.棉花技术及其应用.北京:中国农业出版社,1997.
    张朝军,李付广,王玉芬,武芝侠,李风莲.降低棉花胚性愈伤褐化的研究.棉花学报,2005,17(5):285-288.
    张寒霜,李俊兰,高鹏.低酚陆地棉体细胞胚胎发生和植株再生.河北农业大学学报,1999,22(1):9-12.
    张家明,孙雪飘,郑学勤,张献龙,赵燕,刘金兰,孙济中.陆地棉愈伤诱导及胚胎发生能力的遗传分析.中国农业科学,1997,30(3):36-43.
    张家明,孙济中,刘金兰,张献龙.陆地棉体细胞植株再生及其移栽技术研究.作物学报,1994,20(2):210-216.
    张文胜,张宝红,李秀兰,陈光荣,李凤莲,金玻,李学宝.糖源在棉花愈伤组织诱导/胚胎发生与发育中的作用.江西农业大学学报,1997,19(3):34-39.
    张献龙,林双龙,吕复兵,董新国.陆地棉微茎尖培养影响因素的研究.华中农业大学学报,1996,15(6): 210-214.
    张献龙,孙济中,刘金兰.陆地棉体细胞胚胎发生与植株再生.遗传学报,1991,18(5):461-467.
    张献龙,孙济中,刘金兰.陆地棉品种“珂字201”胚性与非胚性愈伤组织生化代谢产物的比较研究.作物学报,1992,18(3):176-182.
    张献龙,孙玉强,吴家和,金双侠,聂已春,郭小平.棉花细胞工程及新种质创造.棉花学报,2004,16(6):368-373.
    张献龙,张家明,姚明镜,孙济中,刘金兰.棉花体细胞培养及应用基础研究.华中农业大学学报,1993,12(5):421-426.
    章延寿,王建斯,方中达.大丽轮枝菌毒素活性成分的研究.真菌学报,1990,9[1]:69—72.
    赵福永,谢龙旭,田颖川,徐培林.抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株.作物学报,,2005,31(1):108-113.
    赵俊侠,石跃进,桑瑜,齐宏立,郭三堆,焦改丽,陈志贤.农杆菌介导外源基因在棉花中的表达.棉花学报,2001,13(3):146-148.
    郑树松,安成才,李启任,陈章良.离体条件下抗生素对棉花愈伤组织生长的影响.棉花学报,2002,14(5):280-282.
    郑泗军,季道藩,许复华.光质和凝固剂对陆地棉愈伤组织诱导和生长的影响.中国棉花,1995,22(5):829-831.
    郑泗军,蒋淑丽,洪彩霞,季道藩,许馥华.碳源和基因型对棉花未受精胚珠纤维离体发育的影响.棉花学报,1996,8(6):301-304.
    郑泗军,吴吉祥.棉花组织培养中畸形胚产生原因的分析.浙江农业大学学报,1993,19(2):193-197.
    周大云,张宝红,刘芳.一种新型的棉花体细胞胚胎发生的快速诱导法.生命科学研究,2000,(3):237-242.
    祝水金,季道藩.色素腺体和棉酚在陆地棉体细胞培养中的作用.科学通报,2001,46(6):1380-1383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700