山楂(Crataegus pinnatifida Bge.)根系黄酮代谢特征及调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山楂属植物的黄酮代谢物种类丰富多样,某些黄酮代谢物具有医疗或保健作用,为人类提供丰富的药物,对人类的生活具有重要作用。鉴于根系是植物体内黄酮代谢的启动部位,因此本研究以山楂(Crataegus pinnatifida Bge.)为试材,对不同生育期山楂根系黄酮成分及与黄酮合成代谢相关物质(可溶性糖和蛋白质)以及相关酶活性的变化规律进行研究;同时,研究了不同小分子有机物(谷氨酸、葡萄糖、甘露醇、草酸、L-苯丙氨酸和L-精氨酸)、缺素(氮、磷、钾、钙、镁、锌、铁)、生长调节剂(ABA、GA_3)、盐胁迫以及根系浸提液等对山楂根系黄酮代谢的调控。主要结果如下:
     1.山楂不同器官产生的黄酮化合物的种类和数量均不同。根系中总黄酮含量高于根系分泌液。山楂根系和根系分泌液中的黄酮成分差异较大,根系中的黄酮成分的保留时间大多集中在30 min~40 min,以亲脂性黄酮成分为主,多为游离的苷元;而根系分泌液中黄酮成分保留时间大多集中在5 min~30 min,以亲水性黄酮成分为主,多为苷类。
     2.不同生育期山楂各器官的黄酮成分与含量不同,新梢停长期根系分泌液中黄酮成分与含量最高,并检测到3种已知黄酮成分,分别为牡荆素鼠李糖苷、金丝桃苷和槲皮素。展叶期与新梢迅速生长期根系分泌液中检测到2种已知黄酮成分,分别为牡荆素鼠李糖苷和槲皮素;而落叶期检测到2种,分别为芦丁和金丝桃苷。各生育期山楂根系中均检测到金丝桃苷。
     3.葡萄糖、谷氨酸、L-精氨酸、L-苯丙氨酸处理山楂根系及根系分泌液中黄酮成分与含量高于对照,且谷氨酸处理黄酮成分最丰富。HPLC分析表明,400 mg·L~(-1)谷氨酸处理根系分泌液中黄酮成分最大峰面积为25号峰,其他处理最大峰面积黄酮成分均为1号峰牡荆素鼠李糖苷或9号峰(为一未知峰);小分子有机物处理根系分泌液中均检测到牡荆素鼠李糖苷,草酸处理除外。各处理根系最大峰面积黄酮成分为12号或45号峰,均为未知峰。
     4.缺氮、缺磷处理山楂根系中的总黄酮含量高于缺镁、缺锌、缺铁处理及对照,而根系分泌液中总黄酮含量则与之相反。缺镁、缺锌与缺铁处理山楂根系分泌液中黄酮成分多于对照,且均检测出牡荆素鼠李糖苷,芦丁,牡荆素,金丝桃苷和槲皮素,其中缺锌处理黄酮成分最丰富。各缺素处理山楂根系分泌液中最大峰面积黄酮成分均与对照不同,对照为10号峰,缺氮处理为12号峰,缺磷处理为25号峰,缺钾处理为16号峰,缺钙处理为26号峰,缺镁处理为20号峰,缺锌处理为15号峰,均为未知峰,而缺铁处理为3号峰牡荆素的峰面积最大。各处理根系最大峰面积黄酮成分为45号或12号或43号峰,均为未知峰。
     5.ABA处理山楂根系中的总黄酮含量高于GA_3处理和对照,而根系分泌液中的总黄酮含量低于GA_3处理和对照,呈负相关。GA_3处理根系分泌液中检测出已知黄酮成分为芦丁、金丝桃苷和槲皮素,ABA处理为牡荆素鼠李糖苷与金丝桃苷,而对照为牡荆素鼠李糖苷。GA_3和ABA处理根系分泌液中最大峰面积黄酮成分均为10号,而对照为9号峰。GA_3、ABA及对照处理根系中最大峰面积黄酮成分均为12号峰。
     6.山楂根系分泌液中总黄酮含量以0.1%盐胁迫处理最高,而根系中总黄酮含量则与之相反,以0.3%盐胁迫处理最高。各浓度盐处理根系分泌液中均检测到牡荆素鼠李糖苷和牡荆素,而对照只检测到牡荆素鼠李糖苷。0.1%与0.5%盐处理根系分泌液中最大峰面积黄酮成分均为1号峰牡荆素鼠李糖苷,而CK和0.3%盐处理最大峰面积黄酮成分均为9号峰,为一未知峰。各处理与对照根系中最大峰面积黄酮成分均为12号峰。
     7.根系浸提液处理提高了山楂根系分泌液中总黄酮的含量,而降低了根系中总黄酮含量。对照与10 g·L~(-1)根系浸提液处理山楂根系分泌液中均只检测出牡荆素鼠李糖苷,而100 g·L~(-1)根系浸提液处理检测到牡荆素鼠李糖苷、芦丁、牡荆素和金丝桃苷。对照与10 g·L~(-1)根系浸提液处理根系分泌液中最大峰面积黄酮成分均为9号峰,而100 g·L~(-1)根系浸提液处理为14号峰,均为未知峰。对照、10 g·L~(-1)与100 g·L~(-1)根系浸提液处理根系最大峰面积黄酮成分均为12号峰。100 g·L~(-1)系浸提液处理山楂根际微生物种群结构变化较剧烈,且与CK和10 g·L~(-1)根系浸提液处理相反。
     8.可溶性糖等光合作用初级产物变化规律与总黄酮相似;黄酮合成代谢关键酶PAL活性与黄酮的积累变化规律相似,呈现出一定的正相关性;而PPO活性与黄酮积累变化趋势相反,随着山楂黄酮含量的增加而降低。不同处理山楂根系呼吸途径不同,但大多以TCA循环为主。
Crataegus spp.contains many kinds of flavonoids which have medical or healthy effects and play an important role in human life.In this study,the flavonoids,flavonoids metabolic-related substances(soluble sugar and protein)and enzyme activities were studied at different growth periods using hawthorn(Crataegus pinnatifida Bge.)as materials.At the same time,the effects of different organic matters(glutamic acid,glucose,mannine,oxalic acid,L-phenylalanine and L-arginine),mineral nutrition(nitrogen,phosphorus,potassium, calcium,magnesium,zinc,iron),growth regulators(ABA,GA_3),salt stress as well as water extracts of hawthorn roots on fiavonoids metabolites were studied.The main results are as follows:
     1.The types and quantities of fiavonoids generated from roots and root exudates of hawthorn are different.The total fiavonoids content of roots is higher than root exudates.The fiavonoids contained in roots and root exudates have a significant difference.The retention time of flavonoids in roots is concentrated in 30~40 min and the main flavonoids are lipophilic,and most of them are free aglycone.The retention time of flavonoids in root exudates is concentrated in 5~30 min and the main fiavonoids are hydrophilic,and most of them are glycosides.
     2.The flavonoids and content in different growth periods of hawthorn were different. The total fiavonoids content of root exudates was the highest in withholding growing periods of shoot,and three fiavonoids were detected,which were rhamnosylvitexin,hyperoside and quercetin.Two flavonoids were detected in leaf-expansion period and fast growing period of shoot,which were rhamnosylvitexin and quercetin.Two flavonoids were detected in defoliation period,which were rutin and hyperoside.Hyperoside was detected in roots in each growth periods.
     3.The flavonoids and total flavonoids content of roots and root exudates were higher than control in exogenous glucose,glutamic acid,L-arginine and L-phenylalanine treatments in hawthorn.The maximum peak area of fiavonoids is peak 25 in 400 mg·L~(-1)glutamic acid treatment,while other treatments was peak 1(rhamnosylvitexin)or peak 9(unknown peak). Rhamnosylvitexin was detected in root exudates of each organic matters treatment,except for the oxalic acid treatment.The flavonoid of maximum peak area of roots in each treatment is peak 12 or peak 45,which was unknown peak.
     4.The total flavonoids content of roots in nitrogen deficiency and phosphorus deficiency treatments were higher than magnesium deficiency,zinc deficiency,iron deficiency treatments and control in hawthorn,while the flavonoids content of root exudates was lower. The flavonoids of magnesium deficiency,zinc deficiency and iron deficiency treatments were higher than control,and consisted of rhamnosylvitexin,rutin,vitexin,hyperoside and quercetin.The flavonoids were more riches in zinc deficiency treatment.The flavonoids of maximum peak area in mineral deficient treatments were different compared to control,and control was peak 10,and nitrogen deficiency treatment,phosphorus deficiency treatment, potassium deficiency treatment,calcium deficiency treatment,magnesium deficiency treatment,and zinc deficiency treatment were peak 12,25,16,26,20,and 15,separately,and all of these peaks were unknown peak,while iron deficiency treatment was peak 3 that was vitexin.The flavonoids of maximum peak area in roots were peak 45,12 or 43 that was unknown peak.
     5.The total flavonoids content of roots in ABA treatment was higher than GA3 treatment and control,while that of in root exudates was lower than GA_3 treatment and control and showing negative correlation.Rutin,hyperoside and quercetin were detected in root exudates of GA_3 treatment,while that of in ABA treatment was rhamnosylvitexin and hyperoside,and control only had rhamnosylvitexin.The flavonoids of maximum peak area in ABA and GA_3 treatments were peak 10,while that of in control was peak 9.The flavonoid of maximum peak area of roots in all growth regulator treatments and control was peak 12.
     6.The total flavonoids content of root exudates was the highest in 0.1%salt stress treatment,while that of in root was different compared to 0.1%salt stress treatment,and 0.3% salt stress treatment was the most.The rhamnosylvitexin and vitexin were detected in all salt stress treatments,while the control only consisted of rhamnosylvitexin.The flavonoids of maximum peak area of root exudates in 0.1%and 0.5%salt stress treatments was peak 1 (rhamnosylvitexin),while in CK and 0.3%salt stress treatments was peak 9 that was unknown peak.The flavonoid of maximum peak area of roots in all salt stress treatments and control was peak 12.
     7.The total flavonoids content of root exudates was higher in water extract of hawthorn roots treatment compared to control,while the total flavonoids content of root was lower.10 g·L~(-1)water extract of hawthorn roots treatment and control consisted of rhamnosylvitexin, while 100 g·L~(-1)water extract of hawthorn roots treatment consisted of rhamnosylvitexin,rutin, vitexin and hyperoside.The maximum peak area flavonoids of root exudates in 10 g·L~(-1)water extract of hawthorn roots treatment and control was peak 9,while in 100 g·L~(-1)water extract of hawthorn roots treatment was peak 14 that was unknown peak.The flavonoid of maximum peak area of roots in all treatments and control was peak 12.The quantity of rhizosphere microbes in 100 g·L~(-1)water extract of hawthorn roots treatment changed more severe and contrary to the 10 g·L~(-1)water extract of hawthorn roots treatment and control.
     8.The flavonoids are secondary metabolites,whose formation is based on photosynthesis,and the changes of primary metabolites of photosynthesis such as soluble sugar and protein was similar to flavonoids.The changes of PAL activity were similar to the accumulation of flavonoids showing a positive correlation,while the PPO activity decreased with the increasing of flavonoids content showing a negative correlation.The root respiration pathways in all treatments were different and TCA was the main root respiration pathways in most of treatments.
引文
1.陈龙池,廖利平,汪思龙.2003.香草醛对杉木幼苗养分吸收的影响.植物生态学报,27(1):41-46.
    2.陈晓亚,叶和春.1998.植物次生代谢及其调控.见:李承森编.植物科学进展(第1卷).北京:高等教育出版社,293-304.
    3.程水源,陈昆松,刘卫红,等.2003.植物苯丙氨酸解氨酶基因的表达调控与研究展望.果树学报,20(5):351.
    4.程水源,王燕,李俊凯,等.2002.银杏叶黄酮类化合物合成代谢规律的研究.林业科学,38(5):60-63.
    5.程水源,王燕,费永俊,等.2004.提高银杏叶黄酮含量的措施及其调控机理的研究.果树学报,21(2):116-119.
    6.崔秀明,杨双兰.2000.土壤环境条件对三七皂甙含量的影响.人参研究,12(3):18-21
    7.戴绍军,王洋,阎秀峰,等.滤光膜对喜树幼苗叶片生长和喜树碱含量的影响.生态学报,2004,24:869-875.
    8.杜丽娜,张存莉,朱玮,等.2005.植物次生代谢合成途径及生物学意义.西北林学院学报,20(3):150.
    9.段传人,王伯初,徐世荣.2003.环境应力对植物次生代谢产物形成的作用.重庆大学学报,26(10):67-71.
    10.房建军,阙国宁,韩一凡.2006.银杏细胞培养中影响黄酮积累量的几个因素.林业科学研究,19(1):51-53.
    11.符云鹏,刘国顺,刘学芝,等.烤烟叶片发育过程中氨基酸含量变化的研究.中国烟草学报,1998,4(1):15-18.
    12.哈成勇.2004.天然产物化学与应用.北京:化学工业出版社,338.
    13.韩峰锦.2003.烟草栽培生理.北京:中国农业出版社,208-222.
    14.韩峰锦,刘国顺,韩富根.1992.氮素用量、形态和种类对烤烟生长发育及产量品质的研究.中国烟草学报,1(1):16-23.
    15.江昌俊,余有本.2001.苯丙氨酸解氨酶的研究进展.安徽农业大学学报,28(4):425-430.
    16.鞠志国,原永兵,刘成连.1992.苹果果皮中酚类物质合成规律的研究.莱阳农学院学报,9(3):222-225.
    17.康云艳,张春兰,张雷,等.2005.不同施肥处理对出口青花菜产量与品质的影响.华北农学报,20(6):63 67
    18.孔垂华,徐涛,胡飞,等.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报,20(5):849-854.
    19.李贵海,孙敬勇,张希林.2002.山楂降血脂有效成分的实验研究.中草药,33(1):50-52.
    20.李继泉,金幼菊.环境因子对植物他感化合物的影响.河北林果研究,1999,14:285-292.
    21.李莉,孙欣,马君兰,等.2007.异黄酮合成代谢调控关键酶、的特性与研究前景.大豆科学,26(5):762-765.
    22.李伟,杜桂森,黄勤妮.2005.狭叶红景天愈伤组织中红景天甙含量及相关代谢酶活力的研究.西北植物学报,25(8):1645-1648.
    23.李霞,阎秀峰,刘剑锋.2005.氮素形态对黄檗幼苗三种生物碱含量的影响.生态学报,25:2159-2164
    24.廖建雄,王根轩.2003.苷草酸在苷草适应荒漠生境中的可能作用.植物生理学通讯,39:367-370
    25.刘更另.中国有机肥料.北京:中国农业出版社,1991.
    26.刘国顺,朱凯,武雪萍,等.2004.施用有机酸和氨基酸对烤烟生长及氮素吸收的影响.华北农学报,19(4):51-54.
    27.刘金福,李晓雁,孟蕊.2006.苦荞发芽过程中促进黄酮合成的因素初探.食品工业科技,27(10):106-108
    28.刘敬业,李天福,冉邦定,等.1996.烤烟氨基酸含量变化规律研究.中国烟草学报,3(1):36-42.
    29.刘卫红,程水源.2003.光照及机械损伤对银杏叶苯丙氨酸解氨酶活性的影响.湖北农学科学,(3):73-74.
    30.鲁巍巍.2008.中国山楂属(Crataegus spp.)植物叶黄酮多样性及其代谢生理研究.博士学位论文.
    31.毛志泉,王丽琴,沈向,等.2004.有机物料对平邑甜茶实生苗根系呼吸强度的影响.植物营养与肥料学报,10(2):171-175.
    32.年进兴,董俊兴.2005.抗HIV活性天然黄酮类化合物研究进展.中国药学杂志,40(8):571-573.
    33.聂荣邦,周建平.1995.烤烟叶片成熟度与a-氨基酸含量的关系.湖南烟草,(4):24-27.
    34.欧阳光察,薛应龙.1988.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,24(3):9-16.
    35.欧阳光察,应初衍,沃绍根,等.1985.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性.植物生理学报,11(2):204-214.
    36.钱琼秋,魏国强,朱祝军,等.2004.不同品种黄瓜幼苗光合机构对盐胁迫的响应.科技通报,20(5):459-463.
    37.阮海华,沈文飚,叶茂炳,等.2001.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,46(23):1993-1997
    38.荣瑞芬,郭堃,厉重先,等.2007.紫外照射诱导采后番茄苯丙氨酸解氨酶的分离纯化.北方园艺,(12):1-4.
    39.尚辛亥,王洋,阎秀峰.2003.土壤水分对高山红景天生长和红景天苷含量的影响.植物生理学通讯,39:335-336.
    40.邵岩,雷永和,晋艳.1995.烤烟水培镁临界值研究.中国烟草学报,2(4):52-56.
    41.师素云,练兴明.1999.增香灵(ZXL)对薄荷生长及出油率的影响.江苏农业科学,19(3):38-39.
    42.石碧,狄莹.2000.植物多酚.北京科学出版社.
    43.史宏志,刘国顺.1998.烟草香味学.北京:中国农业出版社.
    44.司徒琳莉,张永乐.2001.代谢途径、分类、作用及生产(Ⅱ).牡丹江师范学院学报(自然科学版),(4):16-18.
    45.苏文华,陆洁,张光飞,等.2001.短葶飞蓬总黄酮含量的生态生物学分析.中草药,32(12):1119-1121.
    46.苏文华,张光飞,李秀华,等.2005.植物药材次生代谢产物的积累与环境的关系.中草药,36(9):1415.
    47.唐建军,项田夫,等.1998.植物次生谢代下、离体培养条次件生代谢物积累及调其控研究展进.中国野生植资物源,17(4):1-6.
    48.唐宇,赵钢.1992.荞麦中苯丙氨酸解氨酶活力与黄酮含量关系.植物生理学通讯,28(6):419-420.
    49.唐宇.1998.荞麦中苯丙氨酸解氨酶活力与黄酮含量的关系.绵阳经济技术高等专科学校学报,15(1):9-12.
    50.藤华容,贺学礼.2005.不同AM真菌和施肥量对柴胡黄酮含量的影响.陕西农业科学,4:53-54.
    51.田向军,邱宗波,刘晓,等.2007.增强UV-B辐射对小麦叶片黄酮类化合物日变化的影响.环境科学学报,27(3):516-521.
    52.佟继铭,刘玉玲,周崇坦.2002.黄芩茎叶总黄酮抗心律失常作用研究.中草药,33(8):731-732.
    53.王冬梅,李琰,王敏茹,等.2005.山楂叶总黄酮生长积累动态及提取工艺研究.西北植物学报,25(10):2083-2087.
    54.汪良驹,王中华,李志强,等.2006.L-谷氨酸促进富士苹果花青素积累的效应.果树学报,23(2):157-160.
    55.王爱华,王松峰,宫长荣.2005.氮素用量对烤烟上部叶片多酚物质积累动态的影响.西北农林科技大学学报,33(3):57-60.
    56.王莉,史玲玲,刘玉军.2007.不同光质对长鞭红景天悬浮细胞生长及苯丙氨酸解氨酶PAL的影响.林业科学,43(6):49-51.
    57.王伟,钟英长.1999.紫杉醇生物合成的研究.植物学通报,16(2):138-149.
    58.王文杰,张京都.1989.环境条件对伊贝母生物碱含量的影响.中药材,12(2):3-5
    59.王燕,刘卫红,杜何为,等.2004.底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响.果树学报,21(5):443-336.
    60.王洋,戴绍军,阎秀峰.2003a.光强对喜树幼苗叶片生长和喜树碱含量的影响.植物生理与分子生物学学报,29:357-359.
    61.王洋,戴绍军,阎秀峰.2004.光强对喜树幼苗叶片次生代谢产物喜树碱的影响.生态学报,24:1118-1122.
    62.王洋,尚辛亥,阎秀峰.2003b.氮素营养水平对高山红景天生长和红景天苷含量的影响.植物生理与分子生物学学报,29:357-359.
    63.王月刚,陈素云.2000.山楂对心血管系统的药理作用研究.医药信息,17(6):29-30.
    64.卫扬保.1989.微生物生理学.北京:高等教育出版社,299-324.
    65.吴良欢.1996.水稻有机氮营养效应及其机理研究.博士毕业论文.杭州:浙江农业大学.
    66.薛慧君,岳明.2004.UV-B辐射增强对陆地植物次生代谢的影响.西北植物学报,24:1131-1137.
    67.薛应龙,欧阳光察,澳绍根,等.1983.植物苯丙氨酸酶的研究Ⅳ.水稻幼苗中PAL活性的动态变化.植物生理学报,9(3):301-306.
    68.阎秀峰,王洋,李一蒙.2007.植物次生代谢及其与环境的关系.生态学报,27(6):2555-2562
    69.阎秀峰,王洋,尚辛亥,等.2004.光强和光质对野外栽培高山红景天生物量和红景天苷含量的影响.生态学报,24:674-679.
    70.杨铁钊,李钦奎,李伟.2005.植物次生代谢与烟草香味物质.中国烟草科学,(4):23-26.
    71.杨玉爱.1996.我国有机肥料研究及展望.土壤学报,33(4):414-421.
    72.姚银安,祖艳群,李元.2003.紫外线B辐射与植物体内酚类次生代谢的关系.植物生理学通讯,39:179-184.
    73.尹立军.1999.氨基酸混合物对烤烟产质影响的研究初报.中国烟草科学,(4):34-36.
    74.余叔文,汤章成.1998.植物生理与分子生物学.第2版,北京:科学出版社.
    75.余让才,潘瑞炽.1996.蓝光对水稻幼苗呼吸代谢的影响.中国水稻科学,10(3):159-162.
    76.臧小云,刘丽萍,蔡庆生.2006.不同供氮水平对荞麦茎叶中黄酮含量的影响.南京农业大学学报,29(3):28-32.
    77.曾永三,王振中.1999.苯丙氨酸解氨酶在植物抗病反映中的作用.仲恺农业技术学院学报,12(3):56-65.
    78.张夫道,孙羲.1984.氨基酸对水稻营养作用的研究.中国农业科学,18(5):61-66.
    79.张福锁.1993.植物营养生态生理学和遗传学.北京:中国科学技术出版社.
    80.张静兰,崔澄,闫龙飞.1964.氮素营养对水稻生长、产量和碳素代谢的影响.植物学报,12(1):75-81.
    81.张静兰,郭本森,闫龙飞,等.1965.氮素营养对水稻器官间物质运输的影响.植物生理学报,2(4):323-329.
    82.赵昕,阎秀峰.2006.丛枝菌根真菌对植物次生代谢的影响.植物生态学报,30:514-521.
    83.周凯,郭维明,徐迎春.2004.菊科植物化感作用研究进展.生态学报,24:1780-1788.
    84.邹凤莲,寿森炎,芦钢.2004.类黄酮化合物在植物胁迫反应中作用的研究进展.26(1):39-44.
    85.周倩耘,丁家宜,刘俊,等.2003.植物激素对人参毛状根成生长和皂苷含量的影响.植物资源与环境学报,12(1):26-28.
    86.Ali MB,Hahn EJ,Paek KY.2005.CO_2-induced total phenolics in suspension cultures of Panax ginseng C.A.Mayer roots:role of antioxidants and enzymes.Plant physiology and Biochemistry,43:449-457.
    87.Alsaadawi IS,AI-Hedithy SM,Arif MB.1986.Effects of three phenolic acids on chlorophyll content and ion uptake in cowpea seedling.Journal of Chemical Ecology,12:221-227.
    88. Anaya AL, Waller GR, Owuor PO, et al. 2002. The role of caffeine in the production decline due to autotoxicity in coffee and tea plantations. In: Reigosa M J, Pedrol N eds. Allelopathy: From Molecules to Ecosystems. New Hampshire: Science Publishers, 71-79.
    89. Anna RB, Federico E, Maria CB, et al. 2007. Evaluation of the content and stability of the constituents of mother tinctures and tinctures: The case of Crataegus oxyacantha L. and Hieracium pilosella L. Journal of Pharmaceutical and Biomedical Analysis, 44: 70-78.
    90. Anton PW, Flavia IP, Ulrike M. 2006. Silencing the flavonoid pathway in medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell, 18(7): 1617-1692
    91. Appenroth K J, Stockel J, Srivastava A, et al. (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 115: 49-64.
    92. Arimura G, Ozawa R, Shimoda T, et al. 2000. Herbivory-induced volatiles elicit defense gene in lima bean leaves. Nature, 406: 512-515.
    93. Arthur JM. 1936. Radiation and anthocyanin pigments in Biological Effects of Radiation. Duggan BMed. New york: McCraw Hill, 1109-1118.
    94. Bahorun T, Aumjaud E, Ramphul H, et al. 2003. Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Nahrung, 47:191-198.
    95. Baldwin IT, Zhang ZP, Diab N, et al. 1997. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201: 397-404.
    96. Birgitte LC, Per M, Zhao Y. 1995. Traditional Chinese medicine in treatment of hyperlipidaemia. Journal of Ethnopharmacology, 46: 125-129.
    97. Boddu J, Svabek C, Sekhon R, et al. 2004. Expression of putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins. Physiological and Molecular Plant Pathology, 65: 101 -113.
    98. Bones AM, Rossiter JT. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiologia Plantarum, 97: 194-208.
    99. Bongue-Bartelsman M, Phillips DA. 1995. Nitrogen stress regulated gene expression of enzymes in the flavonoid biosythesis pathway of tomato plant. Physiology and Biochemistry Paris, 33: 539-546
    100. Brammer EC, Nickell AD, Wilcox JR, et al. Mapping the Fan locus controlling linolenic acid content in soybean oil. Journal of Heredity, 1995, 86: 245-247.
    101. Bravo L, Manas E, Saura-Calixto F. 1993. Dietar non-extractable condensed Iannins as indiges-tible compounds: Effect on faecal weight and protein and fat excretion. Journal of the Science of Food and Agriculture, 63: 63-68.
    102. Brown GE. 1991. Changes in phenylalanine ammonia-lyase, soluble phenolics and lignin in injured orange exocarp (A). Proceedings of the annual meeting of the Florida state horticulture society, 103: 234-237.
    103. Brown MS, Molyneux RJ. Effects of water and mineral nutrient deficiencies on pyrrolizidine alkaloid content of Senecio vulgaris flowers. Journal of the Science of Food and Agriculture, 1996, 70: 209-211.
    104. Burbulis I E, Winkel-Shireley B. 1999. Interactions among enzymes of the A rabidopsis flavonoid biosynthestic pathway. Proceedings of the National Academy of Sciences USA, 96, 12929-12934.
    105. Cameron RK, Paiva NL, Lamb CJ, et al. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiological and Molecular Plant Pathology, 55: 121-130.
    106. Camm EL, Towers GHN. 1973. Review article: phenylanine ammonia lyase. Phytochemisty, (12): 961-973.
    107. Chew FS. 1988. Biological effects of glucosinolates. In: Cutler HG ed/Biologically Active Natural Products Protential Use in Agriculture. Washington: American Chemical Society Press, 155-181.
    108. Cho DS, Hong SH, Nam, HG, et al. 2003. FIN5 positively regulates far-red light responses in Arabidopsis thaliana. Plant Cell Physiology, 44(6): 565-572.
    109. Cipollini ML, Paulk E, Cipollini DF. 2002. Effect of nitrogen and water treatment on leaf chemistry in horsenettle {Solarium carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (Manduca Sexta). Journal of Chemical Ecology, 28: 2377-2398.
    110. Davey MP, Bryant DN, Cummins I, et al. 2004. Effects of elevated CO_2 on the vasculature and phenolic secondary metabolism of Plantago maritime. Phytochemistry, 65: 2197-2204.
    111.Diallinas G, Kanellis AK. 1994. A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Molecular Biology, 26(l):473-479.
    112. Dicke M, Ludeking D, Posthumus MA, Gols R. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. Journal of Chemical Ecology, 25: 1970-1922.
    113. Dong XY, Braun EL, Grotewold E. 2001. Functional conservation of plant secondary metabolic enzymes revealed by comp lamentation of A rabidopsis flavonoid mutants with maize genes. Plant Physiology, 127: 46-57.
    114. Durbin ML, Learn GHJ, Huttley GA, et al. 1995. Evolution of the chalcone synthase gene family in the genus Ipomoea. Proceedings of the National Academy of Sciences USA, 92 (8): 3338-3342.
    115. Einhellig FA. 1986. Mechanism and mode of action of allelochemicals. Putnam AR, Tang CS. The Science of Allelopathy. New York: John Wiley and Sons.
    116. Elke L, Annette T, Wolfgang S, et al. 2000. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Plant Biology, 97(4): 1903-1907.
    117. Ferrario MS, Suzuki A, Kunz C, et al. 2000. Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant and Soil, 221 (1): 67-79.
    118. Graham TL. 1991. Flavonoid and isoflavonoid distribution in developing soybean seeding tissuesandin seed and root exudates. Plant Physiol, 95: 594-603.
    119. Grayer RJ, Harborne JB. 1994. A survey of antifungal compounds from higher plants 1982-1993 . Phytochemistry, 37: 19-42.
    120. Grotewold E, Peterson T. 1994. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Molecular and Genetica, 242(1): 1-8.
    121. Guo HZ, Chang ZZ, Yang RJ, et al. 1998. Anthraquinones from hairy root cultures of Cassia obtusifolia. Phytochemistry, 49(6): 1623-1625.
    122. Haegele BF, Rowell-Rahier M. 1999. Genetic and environmental-based variability in secondary metabolite leaf content of Adenostyles alliariae and A. alpine (Asteraceae), A test of the resource availability hypothesis. Oikos, 85: 234-246.
    123. Hakulinen J, Julkunen-Tiitto R, Tahvanainen J. 1995. Does nitrogen fertilization have an impact on the trade-off between willow growth and defensive secondray metabolism? Trees, 9: 235-240.
    124. Hamihon JG, Zangerl AR, De-Lucia EH, el al. 2001. The carbon nutrient balance hypothesis: its rise and fall. Ecology Letters, 4: 86-95.
    125. He XZ, Dixon RA. 2001. Genetic manipulation of isoflvone 7-O-methyl transferase enhances biosynthesis of 4'- O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell, 12: 1689-1702.
    126. Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or to defend. The Quarterly Review of Biology, 67: 283-335.
    127. Heyworth CJ, Lason GR, Temperton V, et al. 1998. The effect of elevated CO_2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia, 115: 344-350.
    128. Himejima M, Hobson KR, Otsuka T, et al. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defence mechanism against microbial invasion. Journal of Chemical Ecology, 18: 1809-1818.
    129. Hirasuka S, Onodera H, Kawai Y, et al. 2001. Enzyme activity changes during anthocyanin synthesis of 'Olympia' grape berries. Scientia Horticulturae, 90: 255-264.
    130. Honkanen T, Haukioja E, Kitunen V. 1999. Responses of Pinus sylvestris branches to stimulated herbivore are modified by tree sink/source dynamics and by external resources. Functional Ecology, 13: 126-140
    131. Inderjit, Stephen OD. 2003. Ecophysiological aspects of allelopathy. Planta, 217: 529-539.
    132. Inderjit. 1996. Plant phenolies in allelopathy. Botanical Review, 62: 186-202.
    133. Janas KM, Cvikrova M, Palagiewicz A, et al. 2002. Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Science, 163: 369-373.
    134. Jende SB. 1991. Gene-enzyme relations in the pathway of flavonoid biosynthesis in barley. Theoretical and Applied Genetics, 81: 5668-5674.
    135. Jiang M, Zhang J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence and oxidative damage in leaves of maize seedling. Plant Cell Physiology, 42 (11): 1265-1273
    136. Jones H. 1984. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry, 23: 1349-1359.
    137. Julkunen-Tiitto R. 1996. Defensive efforts of Salix myrsinifolia plantlets in photomixotrophic culture conditions: the effect of sucrose, nitrogen and pH on the phytomass and secondary phenolic accumulation. Ecoscience 3: 297-303.
    138. Kaneko M, Itoh H, Inukai Y. 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants. The Plant Journal, 35: 104.
    139. Karban R, Myers JH. 1989. Induced plant responses to herbivory. Annual Review of Ecology Systematics, 20:331-348.
    140. Keski-Saari S, Julkunen-Tiitto R. 2003. Resource allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth. Physiologia Plantarum, 118: 114-126.
    141.Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291: 2141-2144.
    142. Kinney KK, Lindroth RL, Jung SM, et al. 1997. Effects of CO_2 and NO_3 availability on deciduous trees: phytochemistry and insect performance. Ecology, 78: 215-230.
    143. Kirakosyan A, Kaufman P, Warber S, et al. 2004. Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiologia Plantarum, 121: 182-186.
    144. Kondorosi A, Ratet P, Coronado C, et al. 1995. Alfalfa root flavonoid production is nitrogen regulated. Plant Physiology, 108:533-542.
    145. Kouki M, Manetas Y. 2002. Resource availability affects differentially the levels of gallotannins and condensed tannins in Ceratonia siliqua. Biochemical Systematics and Ecology, 30: 631-639.
    146. Koukol J. Conn EE. 1961. The metabolism of aromatic compounds in high plant. IV. Purification and properties of the phenylalanine deaminase of Herdeum vulagare. Journal of Biology and Chemistry, 236: 2692-2698.
    147. Krause J, Reznik H. 1976. Investigation on flavol accumulation in Fagopyrum esculorrtum moench as influenced by pand N deficiency I. Pllan Zon Physiology, 79: 392-400.
    148. Kuiters AT. 1986. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology and Biochemistry, 18(5): 475-480.
    149. Kuiters AT. Pillinger JM. 1993. Role of phenolic compound in the antalgal activity of barley straw. Journal of Chemical Ecology, 20: 1557-1569.
    150. Kumar A, Ellis BE. 2001. The phenylalanine ammonia-lyase gene family in raspberry. Tructure, expression, and evolution. Plant Physiology, 127(1): 230-239.
    151.Laanest L. 1990. Protein degradation as a source of precursors for flavonoid biosynthesis in buckwheat cotyledons. Biollogia, 39: 3219-3226.
    152. Langenheim JH. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. Journal of Chemical Ecology, 20: 1223-1280.
    153. Laura J, Kaisu M, Anna, M P, et al. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology, 130:729-739.
    154. Lavola A, Julkunen-Tiitto R. 1994. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth.). Oecologia, 99: 315-321.
    155. Lavola A. 1998. Soluble carbohydrates and secondary phytochemicals in Betula as affected by SO_2-pollution .Water Air and Soil Pollution, 107: 25-34.
    156. Lawtin MA. 1980. Elicitor modulation of phenylalanine in phaseolus vulgaris. Biochemistry and Biophysiology Acta, 633: 162-169.
    157. Leffingwell JC. 1976. Nitrogen components of leaf and their relationship to smoking quality and aroma. Recent Advances in Tobaco Science (2): 21-31.
    158. Leser C, Treutter D. 2005. Effect of nitrogen supp ly on growth, contents of phenolic compounds and pathgen (scab) resistance of apple trees. Physiologia Plantarum, 123: 49-56.
    159. Leyva A, Jarillo JA, Salinas J, et al. 1995. Low temperature induces the accumulation of phenylalanine ammonis-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiology, 108: 39-46.
    160. Liu CF, Zhu JY, Liu ZL, et al. 2002. Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata (Willd.) Ohwi. Plant Growth Regulation, 38(1): 37-43.
    161. Liu ZJ, Viator HP, Constantin RJ, et al. 1999. Influence of soil fertilization, plant spacing, and coppicing on growth, stomatal conductance, abscisic aci, and camptothecin levels in Camptotheca acuminata seedlings. Physiologia Plantarum, 105: 402-408.
    162. Ljubuncic P, Portnaya I, Cogan U, et al. 2005. Antioxidant activity of Crataegus aronia aqueous extract used in tranditional Arab medicine in Israel. Journal of Ethnopharmacology, 101:1-3.
    163. Lo SC, Verdier KD, Nicholson RL. 1999. Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiological and Molecular Plant Pathology, 55: 263-273.
    164. Lois R. 1994. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. 1. Mechanisms of UV-resistance in arabidopsis. Planta, 194: 498.
    165. Loponen J, Koricheva J, Haukioja E, et al. 1997. Low molecular mass phenolics in foliage of Betula pubescens Ehrh. in relation to aerial pollution. Chemosphere, 34: 687-697.
    166. Margna U, Margna E, Vainjarv T. 1989. Influence of nitrogen nutrition on the utilization of L-Phenylalanine for building flavonoid in buckwheat seedling tissues. Journal of Plant Physiology, 134:697-702.
    167. Martens SF. 2000. Flavonoid biosynthesis in Gerbera hybrids: genetics and enzymology of flavones. Acta horticulturae, 1(521): 67.
    168. Matt P, Schurr U, Klelin D, et al. 1998. Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity and inhibition of amino acid synthesis. Planta, 207(1): 27-41.
    169. Mayr U, Michalek S, Treutter D, Feucht W. 1997. Phenolic Compounds of Apple and their Relationship to Scab Resistance. Journal of Phytopathology. 145(2-3): 69-75.
    170. Mayr U, Treutter D, Santos-Buelga C, et al. 1995. Developmental changes in the phenolic concentrations of "Golden Delicious" apple fruits and leaves. Phytochemistry, 38, 1151- 1155.
    171. Memelink J, Verpoorte R, Kijne JW. 2001. ORC Anization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6: 212-219.
    172. Miller B, Madilao LL, Ralph S, et al. 2005. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, denovo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiology, 137: 369-382.
    173. Moghaieb REA, Saneoka H, Fujita K. 2004. Effect of salinity on osmotic adjustment, glycinebetanie accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Science, 166: 1345-1349.
    174. Montero T. 1998. Effects of gibberellic acid (GA_3) on strawberry PAL (phenylalanine ammonia-Iyase) and TAL (tyrosine ammonia-lyase) enzyme activities. Journal of the Science of Food and Agriculture, 77(2): 230-234.
    175. Moore BD, Wallis IR, Wood J TH, el al. 2004. Foliar nutrition, site quality, and temperature influence foliar chemistry of Tallowwood (Eucalyptus microerys). Ecological Monographs, 74(4): 553-568.
    176. Moreno-Valenzuela OA, Monforte-Gonzalez M, Munoz-Sanchez JA, et al. 1999. Effect of macerozyme on secondary metabolism plant product production and phospholipase C activity in Catharanthus roseus hairy roots. Journal of plant physiology, 155(4/5): 447-452.
    177. Nitao JK, Zangerl AR, Berenbaum MR. 2002. CNB: requiescat in pace. Oikos, 98: 540-546.
    178. Ohnmeiss TE, Baldwin IT. 2000. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology, 81: 1765-1783.
    179. Orr SP, Rudgers JA, Clay K. 2005. Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecology, 181 (2): 153-165.
    180. Park H, Lee MK. 1987. Relationship between ginsenosides and mineral contents in Panax ginseng grown with nutrient solution. Nanguk Nonghwa Hakhoechi, 30(2): 186.
    181. Picinelli A, Dapena E, Mangas JJ. 1997. Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. Journal of Agricultural and Food Chemistry 43, 2273-2278.
    182. Pietrini F, lannelli MA, Massacci A. 2002. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photoinhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell and Environment, 25: 1250-1260.
    183. Pillinger JM, Cooper JA. 1994. Role of phenolic compounds in the antialgal activity of barley straw. J Chem Ecol, 20 (70) : 1557-1569.
    184. Rasmussen S, Dixon RA. 1999. Transgene-mediated and elicitor-induced perturbation ofmetabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell, 11: 1537-1551.
    185. Reichling J. 1999. Plant-microbe interactions and secondary metabolites with antiviral, antibacterial and antifungal properties. In: Wink M ed. Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology. Sheffield: Sheffield Academic Press, 187-273.
    186. Rice EL, Pancholy SK. 1974. Inhibition of nitrification by climax ecosystems Ⅲ. Inhibitors other than tannins. Americal Journal of Botany, 61:1095-1103.
    187. Robert JN, Els VN, Danny EVH et al. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal Clinical Nutrition, 74: 418-425.
    188. Rodman JE. 1991. A taxonomic analysis of glucosinolate producing plants, part 1: Systematic Botany, 16: 598-618.
    189. Ruhmann S, Leser C, Bannert M, et al. 2002. Relationship between growth, secondary metabolism, and resistance of apple. Plant Biology, 4: 137-193.
    190. Scheible WR, Agustin GF, Lauerer M, et al. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell, 9(5): 783-798.
    191. Santiago LJM, Louro R, Oliveira DD. 2000. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Annals of Botany, 86(5): 1023.
    192. Seigler DS. 1991. Cyanide and cyanogenic glycosides. In: Rosenthal G A, Berenbaum M R eds. Herbivores: Their Interaction with Secondary Plant Metabolites, Vol. 1 The Chemical Participants. San Diego: Academic Press, 35-77.
    193.Shahat AA, Cos P, Bruyne T, et al. 2002. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Medica, 68 (6): 539-541.
    194. Singh HP, Batish DR, Kohli RK. 1999. Autotoxicity: Concept, organisms, and ecological significance. Critical Reviews in Plant Sciences, 18: 757-772.
    195. Soon HK, Keon WK, Kye WK, et al. 2000. Procyanidins in Crataegus extract evoke endothelium-dependent vasorelaxation in rat aorta. Life Sciences, 67: 121-131.
    196. Stepka W, Winters AD. 1973. A survey of the genus Crataegus for hypotensive activity. Lloydia, 36: 4436.
    197. Stewart AJ, Chapman W, Jenkins GL, et al. 2001. The effect of nitrogen and phosphorus deficiency on flavonoid accumulation in plant tissues. Plant, Cell and Environment, 24: 1189-1197.
    198. Strasser BJ. 1997. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients. Photosynthesis Research, 52: 147-155.
    199. Strissel T. 2005. Growth promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves. Plant Biology, 7: 677-685.
    200. Subramaniam R, Reinold S, Molitor EK, et al. 1993. Structure, inheritance, and expression of hybird poplar (Populus trichocarpa×Populus deltoids) phenylalanine ammonia-lyase genes. Plant Physiology, (102): 71-83.
    201.Takaya M, Masayuk K, Shin H, et al. 2003. Molecular approach to citrus flavonoid and limonoid biosynthesis. Food, Agriculture and Environment, 1(1): 22-25.
    202. Tan SC. 1980. Phenylalanine ammonia-lyase and the phenylalanine ammonia-lyase inactivating system: effects of light, temperature and mineral deficiencies. Australian Journal of Plant Physiology, 7, 159-167.
    203. Thain SC, Murtas G, Lynn JR, et al. 2002. The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiology, 130(1): 102-110.
    204. Tunen AJV, Koes RE, Mol JNM et al. 1988. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrid: coordinate, light-regulated and differential expression of flavonoid genes. Embo Journal, 7: 1257-1263.
    205. Van-Heerden PDR, Strasser RJ, Kr(?)ger GHJ. 2004. Reduction of dark chilling stress in N-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 121: 239-249.
    206. Vaughan D, Ord BG. 1991. Excretion of potential allelochemicals and their effects on root morphology and nutrient contents. In: Atkinson D ed. Plant Root Growth: An Ecological Perspective. Oxford: Blackwell, 399-421.
    207. Verhoeyen ME, Bovy A, Collins G, et al. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 53(377): 2099-2106.
    208. Wallance W. 1977. Regulation of enzyme synthesis and activity in higher plants. London: Academic Press, 198.
    209. Waller GR, Einhellig FA. 1999. Overview of allelopathy in agriculture, forestry, and ecology. In: Chou C H, Waller G R, Reinhardt C ed. Biodiversity and Allelopathy: Form Organisms to Ecosystems in the Pacific. Taipei: Academia Sinica, 221-245.
    210. Wanner LA, Li G, Ware D, et al. 1995. The phenylalanine ammonialyase gene family in Arabidopsis thaliana. Plant Molecular Biology, 27 (2): 327-38.
    211. Wink M. 1999. Introduction: biochemistry, role and biotechnology of secondary metabolites. In: Wink M ed. Biochemistry of Plant Secondary Metabolism. Sheffield: Sheffield Academic press, 1-16.
    212. Wink M. 1983. Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves. Zeitsch Naturforsch, 38, 905-909.
    213. Winkel-Shirley B. 2001. Flavonoids biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126: 485 - 493.
    214. Yan XF, Wu SX, Wang Y, et al. 2004. Soil nutrient factors related to salidroside production of Rhodiola sachalinensis distributed in Chang Bai Mountain. Environmental and Experimental Botsny, 52: 267-276.
    215. Yu JQ, Matsui Y. 1996. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedling. Journal of Chemical Ecology, 23: 817-827.
    216. Zhang ZS, Walter KK, Huang HY, et al. 2002. Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7a-hydroxylase and acyl CoA: cholesterol acyltransferase. Food Research International, 35: 885-891.
    217. Zhao J, Hu Q, Zhu W. 2001. Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regulation, 33:43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700