蝶蛹金小蜂热激蛋白及其体内共生菌Wolbachia分子分型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热激蛋白(Heat Shock Proteins,Hsps)又称热休克蛋白或应激蛋白(Heat StressProteins,Hsps),是普遍存在于原核和真核生物中的一类遗传上高度保守的蛋白。Hsps的表达和调控系统是生物有机体对多种环境胁迫因子产生应激反应达到自我保护的重要物质基础。Wolbachia是广泛分布于节肢动物体内的一类细胞质遗传共生菌,它参与了多种调控其宿主生殖活动的机制,包括诱导细胞质不亲和(CI)、诱导孤雌生殖(PI)、雄性致死和雌性化。本研究克隆了蝶蛹金小蜂体内6个hsps基因,并对其诱导表达模式及功能进行了深入研究。另外,本研究还通过克隆和分析采自中国13个地理蝶蛹金小蜂体内Wolbachia的wsp、ftsZ和16SRNA基因对其感染的Wolbachia进行了分子分型研究。现将主要结果概括如下:
     1蝶蛹金小蜂hsps基因的克隆及其序列分析
     通过数据库检索、PCR/RT-PCR、RACE和文库筛选等分子手段,共克隆了蝶蛹金小蜂6个热激蛋白成员,涉及了5个热激蛋白家族。
     Pphsp90基因ORF长为2148 bp,推测编码716个氨基酸,预测蛋白分子量为82.2 kDa,编码区内不含内含子。Pphsc70-1基因ORF长为1968 bp,推测编码656个氨基酸,预测蛋白分子量为71.3 kDa,该基因含有3个内含子。Pphsc70-2基因ORF长为1923 bp,推测编码641个氨基酸,预测蛋白分子量为70.9 kDa,编码区内含有1个内含子。Pphsp60基因ORF长为1719 bp,推测编码573个氨基酸,预测蛋白分子量为60.6 kDa,编码区内含有3个内含子。Pphsp40基因ORF长为1095 bp,推测编码365个氨基酸,预测蛋白分子量为39.6 kDa。Pphsp20基因ORF长为573 bp,推测编码191个氨基酸,预测蛋白分子量为21.7 kDa。
     2不同逆境胁迫对蝶蛹金小蜂体内hsps基因表达的影响
     采用TaqMan-MGB探针和特异性引物构建了6个Pphsps基因实时荧光定量RT-PCR检测体系。利用荧光定量RT-PCR方法,检测了蝶蛹金小蜂成虫6个Pphsps基因在高温(30~42℃处理1 h)、低温(3~-15℃处理1 h)、饥饿(0~24 h)及重金属(0.5~5mM Cd~(2+)/Cu~(2+)处理24 h或60 h)等4种逆境胁迫下mRNA的表达情况。
     在高温胁迫下,6个Pphsps基因均能被诱导;其中,Pphsp20、Pphsp60、Pphsc70-2和Pphsp90表达量在36℃达到顶峰,而Pphsp40和Pphsc70-1表达量在39℃才达到最高峰。
     在低温胁迫下,除Pphsp60基因外,其它5个基因均能被低温胁迫所诱导,并且其表达量均在-3℃时达到最高峰。
     在饥饿胁迫下,Pphsp40和Pphsc70-2诱导前后无显著变化;Pphsp20表达量在饥饿6 h时就显著上升,其后随饥饿时间延长,表达量逐渐下降,甚至降至正常水平以下;Pphsp60、Pphsc70-1和Pphsp90表达量均在24 h显著升高。
     在重金属Cd~(2+)胁迫下,处理24 h后,Pphsp40表达量随Cd~(2+)浓度的升高而持续升高,而其它5个基因呈先显著上升,其后,随Cd~(2+)浓度的升高,表达量呈下降趋势;处理60 h后,Pphsp40表达量随处理浓度的升高而升高;Pphsp60表达量在Cd~(2+)浓度为0.5 mM时显著上升,而后随Cd~(2+)浓度升高其表达量恢复至对照水平;Pphsc70-1表达量在Cd~(2+)浓度为50 mM时显著上升;其它Pphsps表达量与对照相比无明显差异或显著低于对照水平。
     在重金属Cu~(2+)胁迫下,处理24 h后,Pphsp40和Pphsc70-2表达量随处理Cu~(2+)浓度的升高而升高,其它4个基因表达量随处理Cu~(2+)浓度的升高呈先上升后下降趋势;处理60 h后,与对照相比,仅0.5 mM的Cu~(2+)能够诱导Pphsp20和Pphsp90表达量分别上升1.32倍和1.30倍,而大多Pphsps表达量接近于或低于对照水平。
     此外,还采用实时定量PCR方法(SYRB Green染料法)检测了蝶蛹金小蜂蛹期Pphsc70-1在40℃热激胁迫0~8 h及恢复1 h或2 h后的表达情况。结果表明,热处理1 h后Pphsc70-1表达量显著上升,然而持续的热激或热激恢复使其诱导的mRNA表达量逐渐降低,甚至显著低于对照水平。
     3蝶蛹金小蜂hsps基因在昆虫细胞和原核细胞中表达
     采用的Bac-to-Bac杆状病毒表达系统成功地将6个Pphsps基因在昆虫细胞中进行了表达。亚细胞定位分析表明6个基因的表达产物均位于细胞核外的细胞质中。
     采用pET28a表达载体将6个Pphsps基因在表达菌株BL21(DE3)中进行原核表达。其中,Pphsp90、Pphsc70-1、Pphsc70-2、Pphsp60和Pphsp20等5个基因在该系统中都得到了不同程度的表达,且它们产生的融合表达蛋白基本上以可溶的形式存在。而Pphsp40基因在该系统中没有表达成功。
     4蝶蛹金小蜂Hsps表达产物的纯化及其功能初探
     为了研究PpHsps的分子伴侣功能,本实验研究了过表达PpHsps对E.coli细胞在高温下的存活率及E.coli细胞内蛋白热稳定性的影响。结果表明,虽然PpHsp90、PpHsc70-1、PpHsc70-2、PpHsp60和PpHsp20融合蛋白对高温下E.coli细胞内蛋白的稳定性具有一定的保护作用,但仅PpHsp20和PpHsp90对E.coli细胞在高温下的存活有保护作用。因此,我们采用Ni-NTA树脂分别对PpHsp20和PpHsp90融合蛋白进行分离纯化,研究了PpHsp20和PpHsp90对荧光素酶的高温保护能力。结果发现PpHsp20可以在一定程度上抑制高温引起的荧光素酶的聚集现象。
     5蝶蛹金小蜂体内Wolbachia wsp、ftsZ和16S RNA基因的克隆及其在不同地理种群中的差异
     13地理种群的蝶蛹金小蜂均感染B-Wolbachia。分析从13个地理种群中获得序列,共发现4条wsp基因差异序列(wPup1、wPup2、wPup3和wPup4)、2条ftsZ基因差异序列(fPup1和fPup2)和2条16S rRNA差异序列(16SPup1和16SPup2);wsp基因在不同Wolbachia株系间存在高度重组。
     此外,本研究还发现一个有趣的现象,在蝶蛹金小蜂南方种群中,除上海种群外,仅发现wsp、ftsZ和16S rRNA序列各一条;而在北方种群中,均存在2条或2条以上的wsp、ftsZ和16S rRNA序列。这一结果提示,南方种群(除上海种群)仅感染1个Wolbachia株,而北方种群感染2个Wolbachia株。
Heat shock proteins (Hsps) are a group of conserved proteins in evolution, whichexist in all eukaryotic and prokaryotic organisms. Hsps are very important fororganisms to survive in the stress. Wolbachia are maternally inherited bacteria thatspread widely in arthropods and can induce cytoplasmic incompatibility (CI),parthenogneesis, male killing and feminization. In this study, 6 heat shock genes inthe Pteromalus puparum were cloned and characterized, and their functions were alsostudied. Moreover, an investigation to determine the diversity of Wolbachia in P.puparum from 13 geographically distributed native populations in both southern andnorthern China were undertaken by comparing the sequences of Wolbachia 16S rRNA,ftsZ and wap genes. The results are summarized as follows:
     1 Cloning and characterization of the hsps in the P. puparum
     Six full-length ORFs coding Hsps involved five Hsp families were cloned by themethods of Blast search, PCR/RT-PCR, RACE and cDNA library screening.
     The full-length ORF of the Pphsp90 gene was 2148 bp which was predicted toencode a 716 amino acid peptide with a deduced molecule weight of 82.2 kDa, and nointron was found. The full-length ORF of the Pphsc70-1 gene was 1968 bp which waspredicted to encode a 656 amino acid peptide with a deduced molecule weight of 71.3kDa, and three introns were found. The full-length ORF of the Pphsc70-2 gene was1923 bp which was predicted to encode a 641 amino acid peptide with a deducedmolecule weight of 70.9 kDa, and one intron was found. The full-length ORF of thePphsp60 gene was 1719 bp which was predicted to encode a 573 amino acid peptidewith a deduced molecule weight of 60.6 kDa, and three introns were found. Thefull-length ORF of the Pphsp40 gene was 1095 bp which was predicted to encode a365 amino acid peptide with a deduced molecule weight of 39.6 kDa. The full-lengthORF of the Pphsp20 gene was 573 bp which was predicted to encode a 191 aminoacid peptide with a deduced molecule weight of 21.7 kDa.
     2 The Pphsps expression in relation to different stressors
     TaqMan-MGB probes and the corresponding primers were designed to constructa system for real-time fluorescence quantitative RT-PCR to detect the changes inexpression levels of the six Pphsps in the adult wasps under the stressors, such as hightemperature (30~42℃for 1h), low temperature (3~15℃for 1h), starvation (0~24h) and heavy metals (0.5~5 mM Cd~(2+)/Cu~(2+) treated 24h or 60h).
     Under the stress of high temperature, the expression of six Pphsps could beinduced. The genes, Pphsp20, Pphsp60, Pphsc70-2 and Pphsp90, had highestexpression levels after heat shock at 36℃for 1 h, while the expressional peakscorresponding to the genes, Pphsp40 and Pphsc70-1 were observed at 39℃.
     Under the stress of low temperature, with the exclusion of the Pphsp60 gene, theexpression of the other five Pphsps could be induced. The highest expressional levelsof the five genes were observed at -3℃.
     Under the stress of starvation, the expressional levels of the Pphsp40 andPphsc70-2 had no significant changes during starvation. The expression levels ofPphsp20 increased significantly at the beginning 6 h of starvation, and then decreasedgradually to the levels that were significantly lower than those of the control. Pphsp60,Pphsc70-1 and Pphsp90 mRNA levels increased significantly after 24 h of starvation.
     Under the stress of Cd~(2+), after 24 h treatment, the Pphsp40 mRNA levels weregradually elevated with the increase of the concentrations. However, the other fivePphsps mRNA levels reached the highest peak at the concentration of 0.5 mM, andthen reduced with the increase of the concentrations. After 60 h treatment, thePphsp40 mRNA levels were also gradually elevated with the increase of theconcentrations. Pphsp60 mRNA levels increased significantly at the concentration of0.5 mM. Pphsc70-1 expression levels increased significantly at the concentration of50 mM. The other three genes mRNA levels had no significant difference compare tothe controls or lower than those of controls.
     Under the stress of Cu~(2+), after 24 h treatment, the Pphsp40 and Pphsc70-2mRNA levels were gradually elevated with the increase of the concentrations.However, the other four genes mRNA levels reached a maximum at the concentrationof 50 mM. After 60 h treatment, only Pphsp20 and Pphsp90 mRNA levels had1.32-fold and 1.30-fold, respectively, greater than that of the control at theconcentration of 0.5 mM. However, the other treatments of Pphsps wereapproximately identical with or lower than those of the controls.
     In addition, the expression of the Pphsc70-1 gene in the pupae during thermalstress (40℃for 0~8 h) and recovery was also quantified using real-time quantitativePCR (SYBR Green dye). A significantly elevation of Pphsc70-1 expression wasobserved following heat treatment, however, continued exposure to heat shock orrecovery caused the expression of induced mRNA to gradually decline to levels that were significantly lower than those of control pupae.
     3 Expression of Pphsps in insect cells and Escherichia coli
     The six Pphsps were successfully expressed in the insect cell line Tn-5B1-4 byusing Bac-to-Bac Baculovirus Expression System. By subcellular localizationanalysis, the expressional products of the six Pphsps located in the cytoplasm of theinsect cells.
     In addition, the six Pphsps were also expressed in the E. coli strain Bl21 (DE3)for the next functional study on the PpHsps. However, only five genes (except ofPphsp40) were successfully expressed. Further analysis showed that the expressionalproducts of the five Pphsps were dissolved.
     4 Purification of PpHsps and their functions under the thermal stress
     The effects of overexpressed fusion PpHsps on the survival of E. coli and thestability of E. coli proteins during high-temperature stress were studied. The resultsshowed that the five expressed fusion proteins (PpHsp90, PpHsc70-1, PpHsc70-2,PpHsp60 and PpHsp20) could partly maintain the stability of E. coli proteins up to80℃. However, in functional bioassays (1 h at 50℃) for recombinant PpHsps, only E.coli cells overexpressing PpHsp20 and PpHsp90 proteins had the significantlyincreased survival rate comparing to those lacking PpHsp. Recombinant PpHsp20 andPpHsp90 were purified by Ni-NTA resin. Measuring the light scattering of luciferaserevealed that only PpHsp20 prevented the aggregation of luciferase.
     5 Cloning and sequence analysis of wsp, ftsZ and 16S rRNA genes fromWolbachia in the 13 populations of P. puparum in China
     The results showed that all the 13 populations were infected with B-Wolbachia.In the 13 populations, we found four distinct sequences for wsp (wPup1, wPup2,wPup3 and wPup4), two distinct sequences for both ftsZ(fPup1 and fPup2) and 16S(16SPup1 and 16SPup2). Moreover, recombination of wsp gene within distinctsequences was found.
     In addition, only one sequence was found for wsp, ftsZ and 16S rRNA in the allthe southern populations with the exclusion of Shanghai population. However, two orthree distinct sequences for the three genes were found in the all northern populations.The results indicated that two Wolbachia strains present in the northern populations,whereas only one Wolbachia strain present in the southern populations (exceptShanghai population).
引文
陈忠,苏维埃,汤章城.豌豆热激蛋白Hpc60对酶的高温保护功能及其机理.科学通报.1999.44:2171-2174
    董胜张.蝶蛹金小蜂卵黄发生与卵子发生的生理和分子基础[浙江大学博士学位论文].浙江杭州.浙江大学.2007.1-191
    胡萃,万兴生.蝶蛹金小蜂性比的研究.昆虫学报.1988.31:332-335
    胡萃,俞伯良.蝶蛹金小蜂散放试验.昆虫天敌.1987.9:199-202
    胡萃.蝶蛹金小蜂发育速率与温度的关系.昆虫学报.1986.9:101-103
    胡萃.蝶蛹金小蜂在杭州的年生活史.昆虫学报.1984.27:302-307
    刘彬斌,柴春利,王先燕,黄飞飞,鲁成.家蚕hsp24.3基因的克隆及功能研究.中国农业科学.2008.41:4201-4208
    吕慧平,蔡峻,叶恭银,徐红星,胡萃.寄生对越冬代菜粉蝶蛹血淋巴中蛋白质和糖类代谢的影响.浙江大学学报(农业与生命科学版).2000.26:611-615
    沈骅,王晓蓉,张景飞.应用应激蛋白HSP70作为生物标志物研究锌、铜及其联
    合毒性对鲫鱼肝脏的影响.环境科学学报.2004.24:895-899
    唐启义,冯明光.实用统计分析及其DPS数据统计分析软件.北京:科学出版社,2007.
    吴玛莉.蝶蛹金小蜂毒液的生理功能及活性成分分离纯化的研究[浙江大学博士学位论文].浙江杭州.浙江大学.2008.1-99
    夏佳音,张耀洲.小热休克蛋白的结构和功能.中国生物化学和分子生物学报.2007.23:911-915
    张忠.蝶蛹金小蜂和丽蝇金小蜂毒液的生化特性和生理功能[浙江大学博士学位论文].浙江杭州.浙江大学.2005.1-178
    Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, Lerch M M, Saluja A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res. 2007.67:616-625
    Amin J, Ananthan J, Voellmy R. Key features of heat shock regulatory elements. Mol. Cell. Biol. 1988.8:3761-3769
    Amin J, Mestril R, Voellmy R. Genes for Drosophila small heat shock proteins are regulated differently by ecdysterone. 1991. Mol. Cell. Biol. 11: 5937-5944
    Arts M S J, Schill R O, Knigge T, Eckwert H, Kammenga J E, Kohler H R. Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicol. 2004. 13: 739-755
    Baldo L, Dunning Hotopp J C, Jolley K A, Bordenstein S R, Biber S A, Choudhury R R, Hayashi C, Maiden M C J, Tettelin H, Werren J H. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ.Microbiol. 2006. 72: 7098-7110
    Baldo L, Lo N, Werren J H. Mosaic nature of wsp (Wolbachia surface protein). J.Bacteriol. 2005. 187: 5406-5418
    Baldo L, Werren J H. Revisiting Wolbachia supergroup typing based on WSP:spurious lineages and discordance with MLST. Curr. Microbiol. 2007. 55: 81-87
    Bandi C, Anderson T J C, Genchi C, Blaxter M L. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. B-Biol. Sci. 1998. 265: 2407-2413
    Bardwell J C A, Craig E A. Ancient heat shock gene is dispensable. J. Bacteriol. 1988.170:2977-2983
    Bardwell J C A, Craig E A. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1987. 84: 5177-5181
    Benedict M Q, Levine B J, Ke Z X, Cockburn A F, Seawright J A. Precise limitation of concerted evolution to ORFs in mosquito Hsp82 genes. Insect Mol. Biol. 1996.5: 73-79
    Binart N, Chambraud B, Dumas B, Rowlands D A, Bigogne C, Levin J M, Gamier J,Baulieau E E, Catelli M G. The cDNA-derived amino acid sequence of chicken heat shock protein Mr 90,000 (hsp 90) reveals a "DNA like" structure: potential site of interaction with steroid receptors. Biochem. Biophys. Res. Commun. 1989.159: 140-147
    Bordenstein S R, Wernegreen J J. Bacteriophage flux in endosymbionts (Wolbachia):infection frequency, lateral transfer and recombination rates. Mol. Biol. Evol.2004.21: 1981-1991
    Bordenstein S, Rosengaus R B. Discovery of a novel Wolbachia supergroup in Isoptera. Curr. Microbiol. 2005. 51: 393-398
    Bourtzis K, Miller T A. Insect symbiosis. New York: CRC Press. 2003. 368
    Bourtzis K, Miller T A. Insect symbiosis. Vol.2. New York: CRC Press. 2006. 368
    Bourtzis K, Nirgianaki A, OnangoP, Savakis C. A prokaryotic dnaA sequence in Drosophila melanogaster. Wolbachia infection. Insect Mol. Biol. 1994. 3:131-142
    Bourtzis K. Wolbachia-based technologies for insect pest population control. Adv.Exp. Med. Biol. 2008. 627: 104-113
    Breeuwer J A J, Werren J H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990. 346:558-560
    Breeuwer J A J. Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity. 1997. 79: 41-47
    Morimoto R I, Tissieres A , Georgopoulos C. The Biology of Heat Shock Proteins and Molecular Chaperones. Plainview: Cold Spring Harbor Laboratory Press. 1994.85-109
    Brouwnstein J S, Hett E, O'Neill S. The potential of virulent Wolbachia to modulate disease transmission by insects. J. Invertebr. Pathol. 2003. 84: 24-29
    Cabello T, Vargas P. Temperature as a factor influencing the form of reproduction of Trichogramma cordubensis. Z. Angew. Entomol. 1985. 100: 434-441
    Cai J, Ye G Y, Hu C. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol. 2004. 50:315-322
    Casiraghi M, Anderson T J, Bandi C, Bazzocchi C, Genchi C. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitol. 2001. 122: 93-103
    Chen B, Kayukawa T, Monteiro A, IshikawaY The expression of the HSP90 gene in response to winter and summer diapause and thermal-stress in the onion maggot,Delia antiqua. Insect Mol. Biol. 2005. 14: 697-702
    Chen G T, Inouye M. Suppression of the negative effect of minor arginin codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 1990. 18: 1465-1473
    Cheng M Y, Hartl F U, Horwich A L. The mitochondrial chaperonin HSP60 is required for its own assembly. Nature. 1990. 348: 455-458
    Cho E K, Bae S-J. ATP-independent thermoprotective activity of Nicotiana tabacum heat shock protein 70 in Escherichia coli. BMB Reports. 2007. 40: 107-112
    Choi D H, Ha J S. Lee W H, Song J K, Kim G Y, Park J H, Cha H J. Lee B J, Park J W. Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cells. FEBS Lett. 2007. 581: 1649-1656
    Christine Q, Todd A S, Susan L. Hsp90 as a capacitor of phenotypic variation. Nature.2002.417:618-625
    Compto S A, Elmore L W, Haydu K, Jackson-Cook C K, Holt S E. Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell. Biol. 2006. 26: 1452-1462
    Corsi A K, Schekman R. The luminal domain of Sec63p stimulates the ATPase activity of Bip and mediates Bip recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol. 1997. 137: 1483-1493
    Covacin C, Barker S C. Supergroup F Wolbachia bacteria parasitise lice (Insecta:Phthiraptera). Parasitol. Res. 2007. 100: 479-485
    Crawford L A, Hodkinson I D, Lepp N W. The effects of elevated host-plant cadmium and copper on the performance of the aphid Aphis fabae (Homoptera: Aphididae).J.Appl. Ecol. 1995.32:528-535
    Crawford L A, Hodkinson I D, Lepp N W. The effects of feeding by the black bean aphid Aphis fabae Scop. (Homoptera: Aphididae) on copper and cadmium accumulation in broad bean (Vicia faba L.). Environ. Geochem. Health. 1990. 12:245-251
    Crawford L A, Lepp N W. Hodkison I D. Accumulation and egestion of dietary copper and cadmium by the grasshopper Locusta migratoria R & F (Orthoptera:acrididae). Environ. Pollut. 1996. 92: 241-246
    Csermely P, Miyata Y, Soti Cs, Yahara I. Binding affinity of proteins to hsp90 correlates with both hydrophobicity and positive charges. A surface plasmon resonance study. Life Sci. 1997. 61: 411-418
    Csermely P, Schnaider T, Soti C, Prohaszka Z, Narda G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Then 1998. 79: 129-168
    Cunnea P M, Miranda-Vizuete A, Bertoli G Simmen T, Damdimopoulos A E,Hermann S. Leinonen S, Huikko M P, Gustafsson J A, Sitia R, Spyrou G. ERdj5,an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J. Biol. Chem. 2003.278: 1059-1066
    Czar M J, Welsh M J, Pratt W B. Immunoflurescence localization of the 90-kDa heat-shock protein to cytoskeleton. Eur. J. Cell Biol. 1996. 70: 322-330
    Czarnetzki A B, Tebbe C C. Detection and phylogenetic analysis of Wolbachia in Collembola. Environ. Microbiol. 2004. 6: 35-44
    Debrah A Y, Mand S , Marfo-Debrekyei Y, Batsa L, Pfarr K, Buttner M, Adjei O,Buttner D, Hoerauf A. Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop. Med. Int. Health. 2007. 12:1433-1441
    Denlinger D L, Giebultowicz J, Saunders D S. Insect Timing: Circadian Rhythmicity to seasonality. Amsterdam: Elsevier Sciences B. V. 2001. 155-171
    Dobson S L, Fox C W, Jiggins F M. The effect of Wolbchia-induccd cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc.R. Soc. B-Biol. Sci. 2002. 269: 437-445
    Dyson E M, Kamath M K, Hurst G D D. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transfer of a butterfly male killer. Heredity. 2002. 88: 166-171
    Emelyanov V V. Evolutionary relationship of rickettsiae and mitochondria. FEBS Lett.2001.501: 11-18
    Emelyanov V V. Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. Gene. 2002.299:125-133
    Engelmann F. The Physiology of Insect Reproduction. Oxford: Pergamon Press. 1970.
    Falah M, Gupta R S. Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J. Bacteriol. 1994. 176: 7748-7753
    Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999. 61:243-282
    Feng J T, Liu Y K, Song H Y, Dai Z, Qin L X, Almofti M E, Fang C Y, Lu H J, Yang P Y, Tang Z Y. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005. 5:4581-4588
    Fenton W A, Kashi Y, Furtak K, Horwich A L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994. 371: 614-619
    Fialho R F, Stevens L. Male-killing Wolbachia in a flour beetle. Proc. R. Entomol.Soc. London B. 2000. 267: 1469-1474
    Flanders S A. The bisexuality of uniparental hymenoptera, a function of the environment. Am. Nat. 1945. 79: 122-141
    Flanders S E. On the sexuality and sex ratios of hymenopterous populations. Am. Nat.1965.99:489-494
    Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A,Kapatral V, Kumar S, Posfai J, Vincze T, Ingtam J, Moran L, Lapidus A,Omelchenko M, Kyrpids N, Ghedin E, Wang S, Goltsman E, Joukov V,Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 2005. 3: e121
    Fostinis Y, Theodoropoulos P A, Gravanis A, Stournaras C. Heat shock protein HSP90 and its association with the cytoskeleton: a morphological study. Biochem. Cell Biol. 1992. 70: 779-786
    Fourie A M, Sambrook J F, Gething M J H. Common and divergent peptide binding specificities of Hsp70 molecular chaperones. J. Biol. Chem. 1994. 269:30470-30478
    Freeman B C, Morimoto R I. The human cytosolic molecular chaperones hsp90,hsp70 (hsc70) and hdj-I have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 1996. 15: 2969-2979
    Garrido C, Bruey J M, Fromentin A, Hammann A, Arrigo A P, Solary E. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb. J. 1999. 13:2061-2070
    Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 2006. 5:2592-2601
    Georg Rde C, Gomes S L. Comparative expression analysis of members of the Hsp70 family in the chytridiomycete Blastocladiella emersonii. Gene. 2007. 386: 24-34
    Germot A, Philippe H. Le Guyader H. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Nati. Acad. Sci. USA. 1996. 93:14614-14617
    Goto S G, Kimura M T. Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene. 2004. 326: 117-122
    Goto S G, Yoshida K M, Kimura M T. Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J. Insect Physiol. 1998. 44: 1009-1015
    Gray M W. Evolution of organellar genomes. Curr. Opin. Genet. Dev. 1999. 9:678-687
    Grenier S, Pintureau B, Heddi A, Lassabliere F, Jager C, Louis C, Khatchadourian C.Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps. Proc. R. Soc. B-Biol. Sci. 1998. 265: 1441-1445
    Gull K. Protist tubulins: new arrivals, evolutionary relationships and insights to cytoskeletal function. Curr. Opin. Microbiol. 2001. 4: 427-432.
    Gupta R S. Evolution of chaperonin families (HSP60, HSP10, and TCP-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 1995. 15: 1-11
    Gurbuxani S, Bruey J M, Fromentin A, Larmonier N, Parcellier A, Jaattela M, Maritin F, Solary E, Garrido C. Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene. 2001. 20: 7478-7485
    Hattori H, Kaneda T, Lokeshwar B, Laszlo A, Ohtsuka K A. Stress-inducible 40-kDa protein(HSP40)-purification by modified 2-dimensional gel electrophoresis and co-localization with hsc70(p73) in heat-shocked HeLa cells. J. Cell Sci. 1993.104:629-638
    Heads R J, Yellon D M, Latchman D S. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J. Mol. Cell. Cardiol. 1995. 27: 1669-1678
    Hertig M. The rickettsia, Wolbachia pipientis (gen. et sp. n.) and associated inclusions of the mosquite Culex pipiens. Parasitology. 1936. 28: 453-486
    Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren J H. How many species are infected with Wolbachia? - a statistical analysis of current data.FEMS Microbiol. Lett. 2008. 281: 215-220
    Hiroki M, Kato Y, Kamito T, Miura K. Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae).Naturwissenschaften. 2002. 89: 167-170
    Holden P R, Brookfield J F Y, Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 1993.240:213-220
    Horner D S, Embley T M. Chaperonin 60 phylogeny provides further evidence of secondary loss of mitochondria among putative early-branching eukaryotes. Mol.Biol. Evol. 2001. 18: 1970-1975
    Hosoda A, Kimata Y, Tsuru A, Kohno K. JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J domain and thioredoxin-like motifs. J. Biol.Chem. 2003. 278: 2669-2676
    Huang L H, Kang L. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Molecular Biology. 2007.16: 491-500
    Huigens M E, Luck R F, Klaassen RHG, Maas M F P N, Timmermans M J T N,Stouthamer R. Infectious parthenogenesis. Nature. 2000. 405: 178-179
    Bourtzis K, Miller T A. Insect Symbiosis. New York: CRC Press. 2003.177-197
    Hurst G D D, Jiggins F M, von der Schulenburg J H G, Bertrand D, West S A,Goriacheva I I, Zakharov I A, Werren J H, Stouthamer R, Majerus E N.Male-killing Wolbachia in two species of insect. Proc. R. Soc. B-Biol. Sci. 1999.266:735-740
    Hurst G D D, Johnson A P, von der Schulenburg J H G, Fiyama Y. Male-killing Wolbachia in Drosophila: a temperature sensitive trait with a threshold bacterial density. Genetics. 2000. 156: 699-709
    Hurst L D. The incidences and evolution of cytoplasmic male killers. Proc. R. Soc.B-Biol. Sci. 1991.244:91-99
    Hwang J, Go H, Goo T, Yun E, Choi K, Seong S, Lee S, Lee B, Kim I, Chun T, Kang S. The analysis of differentially expressed novel transcripts in diapausing and diapause-activated eggs of Bombyx mori. Arch. Insect Biochem. Physiol. 2005.59:197-201
    Iannotti A M, Rabideau D A, Dougherty J J. Characterization of purified avian 90,000-Da heat shock protein. Arch. Biochem. Biophys. 1988. 264: 54-60
    Ireland R C, Berger E M. Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc. Natl. Acad.Sci. USA. 1982.79: 855-859
    Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Oqura M,Suzuki A, Hamada F. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur. J. Biochem. 2002. 269: 5931-5938
    Jakob U, Lilie H, Meyer I, Buchner J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J.Biol. Chem. 1995. 270: 7288-7294
    Jakob U, Meyer I, Bugl H. Andre S, Bardwell J C, Buchner J. Structural organization of prokaryotic and eukaryotic Hsp90. Influence of divalent cations on structure and function. J. Biol. Chem. 1995. 270: 14412-14419
    Jervis M A, Kidd N A C. Host-feeding strategies in hymenopteran parasitoids.Biological Review. 1986. 61: 395-434
    Jeyaprakash A, Hoy M A. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 2000.9: 393-405
    Jiggins F M, Hurst G D D, Dolman C E, Majerus M E M. High prevalence of male-killing Wolbachia in the butterfly Acraea encedana. J. Evol. Biol. 2000. 13:495-501
    Jiggins F M, von der Schulenburg J H, Hurst G D, Majerus M E. Recombination confounds interpretations of Wolbachia evolution. Proc. Biol. Sci. 2001. 268:1423-1427
    Kageyama D, Hoshizaki S, Ishikawa Y. Female-biased sex ratio in the Asian corn borer, Ostrinia furnacalis: evidence for the occurrence of feminizing bacteria in an insect. Heredity. 1998. 81: 311-316
    Kageyama D. Nishimura G, Hoshizaki S, Ishikawa Y. Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity. 2002. 88:444-449
    Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M. Hsp27 knockdown using nucleotide-base therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Then 2007. 6: 299-308
    Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm M F, Fritz L C, Burrows F J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003. 425: 407-410
    Kiang J G, Tsokos G C. Heat shock protein 70 kDa: molecular biology, biochemistry,and physiology. Pharmacol. Ther. 1998. 80: 183-201
    Kiebler M, Becker K, Pfanner N, Neupert W. Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J. Memb. Biol. 1993.135: 191-207
    Koll H, Guiard B, Rassow J, Ostermann J, Horwich A, Neupert W, Hartl F U.Antifolding activity of HSP60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell. 1992. 68: 1163-1175
    Krone P H, Sass J B. hsp 90-a and hsp 90-P genes are present in the zebrafish and are differentially regulated in developing embryos. Biochem. Biophys. Res.Commun. 1994. 204: 746-752
    Kurland C G, Andersson S G. Origin and evolution of the mitochondrial proteome.Microbiol. Mol. Biol. Rev. 2000. 64: 786-820
    Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. J. Cell. Mol. Med. 2008. 12:743-761
    Wright J W, Pal R. Genetics of Insect Vectors of Disease. Holland: Elsevier. 1967.251-275
    Lawson R, Mestril R, Luo Y, Voellmy R. Ecdysterone selectively stimulates the expression of a 23000-Da heat-shock protein-beta-galactosidase hybrid gene in cultured Drosophila cells. Dev. Biol. 1985. 110: 321-330
    Liberek K, Georgopoulos C, Zylicz M. Role of the Escherichia coli DnaK and Dnaj heat shock proteins in the initiation of bacteriophage lambda DNA replication.Proc. Natl. Acad. Sci. USA. 1988. 85: 6632-6636
    Lindquist S, Craig E A. The heat shock proteins. Annu. Rev. Genet. 1988. 22: 631-677
    Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986. 55: 1151-1191
    Livak K J. Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(△△CT) method. Methods. 2001. 25: 402-408
    Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many Wolbachia supergroups exist? Mol. Biol. Evol. 2002. 19: 341-346
    Lu Q, Wallrath L L, Granok H, Elqin S C. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol. Cell. Biol. 1993. 13: 2802-2814
    L(u|¨) Z-C, Wan F-H. Differentia] gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Comp. Biochem.Physiol. PT. D. 2008. 3: 257-262
    MacRae T H. Structure and function of small heat shock/a-crystallin proteins:established concepts and emerging ideas. Cell. Mol. Life Sci. 2000. 57: 899-913
    Mahroof R, Zhu K Y, Neven L, Subramanyam B, Bai J. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle,Tribolium castaneum (Coleoptera: Tenebriomidae). Comp. Biochem. Physiol. A.2005. 141:247-256
    Majerus M E N, von der Schulenburg J H G, Zakharov I A. Multiple causes of male-killing in a single sample of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) fro, Moscow. Heredity. 2000. 84: 605-609
    Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik K V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998. 393:162-165
    Masui S, Sasaki T, Ishikawa H. groE-Homologous operon of Wolbachia, an intracellular symbiont of arthropods: a new approach for their phylogeny. Zool.Sci. 1997. 14:701-706
    Mestril R, Shciller P, Amin J, Klapper H, Ananthan J, Voellmy R. Heat shock and ecdysterone activation of the Drosophila melanogaster hsp23 gene; a sequenceelement implied in developmental regulation. EMBO J.1986. 5: 1667-1673
    Michels A A, Kanon B, Bensaude O, Kampinga H H. Heat shock protein (Hsp) 40 matants inhitit Hsp70 in mammalian cells. J. Biol. Chem. 1999. 17: 36757-36763
    Moore S K, Kozak C, Robinson E A, Ullrich S J, Appella E. Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origin. J. Biol. Chem. 1989. 264: 5343-5351
    Mosser D D, Caron A W, Bourget L, Meriin A B, Sherman M Y, Morimoto R I,Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell. Biol. 2000. 20: 7146-7159
    Mosser D D, Morimoto R I. Molecular chaperones and the stress of oncogenesis.Oncogene. 2004. 23: 2907-2918
    Nadeau D, Corneau S, Plante I, Morrow G, Tanguay R M. Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaper. 2001. 6: 153-163
    Nadeau K, Das A, Walsh C T. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J. Biol. Chem.1993.268: 1479-1487
    Nakahara T, Hunter R, Hirano M, Uchimura H, McArdle A, Broome C S, Koll M,Martin C R, Preedy V R. Alcohol alters skeletal muscle heat shock protein gene expression in rats: these effects are moderated by sex, raised endogenous acetaldehyde, and starvation. Metabolism. 2006. 55: 843-851
    Nathan D F, Vos M H, Lindquist S. In vivo functions of the Saccharomyces cerevisiae hsp90 chaperone. Proc. Natl. Acad. Sci. USA. 1997. 94: 12949-12956
    Neupert W, Pfanner N. Roles of molecular chaperones in protein targeting to mitochondria. Philos. Trans. R. Soc. Lon. 339: 355-362
    Nimmanapalli R, O'Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygel-danamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. 2001.61: 1799-1804
    Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc. Natl. Acad.Sci. USA. 2000. 97: 7871-7876
    O'Neill S L, Giordano R, Colbert A M E, Karr T L, Robertson H M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA. 1992. 89:2699-2702
    O'Neill S L, Hoffmann A A, Werren J H. Influential passengers: inherited microorganisms and arthropod reproduction. New York: Oxford University Press.1997.232
    Pelham H R B. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 1984. 3: 3095-3100
    Pelham H R. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell. 1982. 30: 517-528
    Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol.Life Sci. 2002. 59: 1640-1648
    Qian Y Q, Patel D, Hartl F U, McColl D J. Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J domain. J. Mol. Biol. 1996. 260:224-235
    Qiu X B, Shao Y M, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 2006. 63: 2560-2570
    Rabitsch W B. Metal accumulation in arthropods near a lead/zinc smelter in Amoldstein, Austria. II. Formicidae. Environ. Pollut. 1995. 90: 239-247
    Ramsey A J, Russell L C, Whitt S R, Chinkers M. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J. Biol. Chem. 2000. 275: 17857-17862
    Ranford J C, Coates A R, Henderson B. Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev. Mol. Med. 2000. 2: 1-17
    Renier N K K, Yang W J, Rao K R. Cloning and charactrization of a 70 kDa heat shock cognate gene (hsc70) from two species of Chironomus. Insect Mol. Biol.2003. 12: 19-26
    Richards F O, Amann J, Arana B, Punkosdy G, Klein R, Blanco C, Lopez B, Mendoza C, Dominguez A, Guarner J, Maguire J H, Eberhard M. No depletion of Wolbachia from Onchocera volvulus after a short course of rifampin and/or
    Azithromycin. Am. J. Trop. Med. Hyg. 2007. 77: 878-882
    Rigaud T, Juchault P, Mocquard J P. The evolution of sex determination in isopod crustaceans. BioEssays. 1997. 19: 409-416
    Rinehart J P, Joseph P, Robich R M, Denlinger D L. Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J. Med. Entomol.2006.43:713-722
    Rinehart J P, Li A, Yocum G D, Robich R M, Hayward S A L, Denlinger D L.Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA. 2007. 104: 11130-11137
    Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962. 18: 571-573
    Roussett F, Bouchon D, Pintureau B, Juchault P, Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods.Proc. R. Soc. B-Biol. Sci. 1992. 250: 91-98
    Rowley S M, Raven R J, McGraw E A. Wolbachia pipientis in Australian spiders.Curr. Microbiol. 2004. 49: 208-214
    Rybczynski R, Gilbert L I. cDNA cloning and expression of a hormone-regulated heat shock protein (hsc70) from the prothoracic gland of Manduca sexta. Insect Biochem. Mol. Biol. 2000. 30: 579-589
    Sakamoto J M, Feinstein J, Rasgon J L. Wolbachia infections in the Cimicidae:museum specimens as an untapped resource for endosymbiont surveys. App.Environ. Microbiol. 2006. 72: 3161-3167
    Schlesinger M J. Heat shock proteins. J. Biol. Chem. 1990. 265: 12111-12114
    Siozios S, Sapountzis P, Ioannidis P, Bourtzis K. Wolbachia symbiosis and insect immune response. Insect Sci. 2008.15: 89-100.
    Soga S, Kozawa T, Narumi H, Akinaga S, Irie K, Matsumoto K, Sharma S V, Nakano H, Mizukami T, Hara M. Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. J. Biol. Chem. 1998. 273:822-828
    Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D, Ruden D M. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 2002. 33: 70-74
    Sonoda S, Ashfaq M, Tsumuki H. A comparison of heat shock protein genes from cultured cells of the cabbage army warm, Mamestra brassicae, in response to heavy metals. Arch. Insect Biochem. Physiol. 2007. 65: 210-222
    Sonoda S, Ashfaq M, Tsumuki H. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth,Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect. Biochem. Physiol. 2006. 62: 80-90
    Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Arch.Insect Biochem. Physiol. 2006. 63: 36-47
    Spence J, Georgopoulos C. Purification and properties of the Escherichia coli heat shock protein, HtpG. J. Biol. Chem. 1989. 264: 4398-4403
    Stebbins C E, Russo A A, Schneider C, Rosen N, Haiti F U, Pavletich N P. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997. 89: 239-250
    Stouthamer R, Breeuwer J A J, Hurst G D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999. 53: 71-102
    Stouthamer R, Kazmer D J. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity. 1994. 73:317-327
    Stouthamer R, Pinto J D, Platner G R, Luck R F. Taxonomic status of thelytokous forms of Trichogramma. Annu. Entomol. Soc. Am. 1990. 83: 475-481
    O'Neill S L, Hoffmann A A, Werren J H. Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press. 1997. 102-122.
    Sun Y, MacRae T H. Small heat shock proteins: molecular structure and chaperone function. Cell. Mol. Life Sci. 2005. 62: 2460-2476
    Suzanne L R, Susan L. Hsp90 as a capacitor for morphological evolution. Nature.1998.396:336-342
    Szyperski T, Pellecchia M, Wall D, Georgopoulos C, Wuthrich K. NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2-108) containing the highly conserved J domain. Proc. Natl. Acad. Sci. USA. 1994. 91:11343-11347
    Tachibana S, Numata H, Goto S G. Gene expression of heat-shock proteins (Hsp23,Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. J. Insect Physiol. 2005. 51: 641-647
    Tagami Y, Milura K, Stouthamer R. How does infection with parthenogenesis-inducing Wolbachia reduce the fitness of Trichogramma? J.Invertebr. Pathol. 2001. 78: 267-271
    Takenaka I M, Leung S M, McAndrew S J, Brown S J, Hightower L E.Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J. Biol. Chem. 1995. 270: 19839-19844
    Taylor R P. Benjamin I J. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell Card. 2005. 38: 433-44
    Theodoraki M A, Mintzas A C. cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol. 2006. 15: 839-852
    Tissieres A, Mitchell H K. Tracy U M. Protein synthesis in salivary gland of Drosophila melanogaste: relation to chromosome puffs. J. Mol. Biol. 1974. 84:389-398
    Tomanek L, Somero G N. Evolutionary and acclimation-induced variation and the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J.Exp. Biol. 1999. 202: 2925-2936
    Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science. 2002. 296: 1124-1126
    Tsugekils R, Mori H, Nishimura M. Purication cDNA cloning and Northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur. J. Biochem. 1992.209:453-458
    Turner J D. Mand S, Debrah A Y, Muehlfeld J, Pfarr K, McGarry H E, Adjei O, Taylor M J, Hoerauf A. A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin. Infect Dis. 2006. 42: 1081-1089
    Van Opijnen T, Breeuwer J A. High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont from the two-spotted spider mite. Exp.Appl. Acarol. 1999. 23: 871-881
    Vandekerckhove T T, Watteyene S, Willems A, Swings J G, Mertens J, Gillis M.Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia Candida (Hexapoda, Collembola) and its implications for Wolbachial taxonomy. FEMS Microbiol. Lett. 1999. 180:279-286
    Varennes S, Baty D, Verheij H, Shire D, Lazdunski C. The maximum rate of gene expression is dependent on the downstream context of unfavourable codons.Biochimie. 1989.71: 1221-1229
    Vavre F, Fleury F, Varaldi J, Fouillet P, Bouletreau M. Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects:epidemiologic and evolutionary consequences. Evolution. 2000. 54: 191-200
    Viale A M, Arakaki A K. The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett. 1994.341: 146-151
    Walsh P, Bursac D, Law Y C, Cyr D, Lithgow T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 2004. 5: 567-571
    Wang H S, Wang X H, Zhou C S, Huang L H, Zhang S F, Guo W, Kang L. cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust. Insect Mol. Biol. 2007. 16: 207-219
    Webb D, Gagnon M M. The value of stress protein 70 as an environmental biomarker of fish health under conditions. Environ. Toxicol. 2008. DOI 10. 1002/tox
    Weeks A R, Breeuwer J A J. Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc. R. Soc. B-Biol. Sci. 2001. 268: 2245-2251
    Welch W J. Brown C R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996. 1: 109-115
    Welch W J, Garrels J I, Thomas G P, Lin J J C, Fermisco J R. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca~(2+)-ionophore-regulated proteins. 1983. J. Biol. Chem.258:7102-7111
    Werner-Washburne M, Craig E A. Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome. 1989. 31: 684-689
    Werren J H, Bartos J D. Recombination in Wolbachia. Curr. Biol. 2001. 11: 431-435
    Werren J H, Windsor D M. Wolbachia infection frequency in insects: evidence of a global equilibrium? Proc. R. Soc. B-Biol. Sci. 2000. 267: 1277-1285
    Werren J H, Zhang W, Guo L R. Evolution and phylogeny Wolbachia: reproductive parasites of arthropods. Proc. Biol. Sci. 1995. 261: 55-63
    Werren J H. Biology of Wolbachia. Annu. Rev. Entomol. 1997. 42: 587-609
    Wheeler J C, Bieschke E T, Tower J. Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc. Natl. Acad. Sci. USA. 1995. 92: 10408-10412
    Workman P. Combinatorial attack on multistep oncogenesis bu inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004. 206: 149-157
    Wu C. An exonuclease protection assay receals heatshock element and TATA-box DNA-binding proteins in crude nuclear extracts. Nature. 1985. 317: 84-87
    Wu C. Heat shock transcription factors: structure and regulation. 1995. 11: 441-469 Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie J C, McGraw E A,Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan M J,Brinkac L M, Daugherty S C, Durkin A S, Kolonay J F, Nelson W C, Mohamoud Y, Lee P, Berry K, Young M B, Utterback T, Weidman J, Nierman W C, Paulsen I T, Nelson K E, Tettelin H, O'Neill S L, Eisen J A. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2004. 2:327-341
    Yahara I, Iida H, Koyasu S. A heat shock-resistant variant of Chinese hamster cell line constitutively expressing heat shock protein of Mr 90,000 at high level. Cell Struct. Funct. 1986. 11:65-73
    Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H. Characterization of the hydrophobic region of heat shock protein 90. J. Biochem. 1991. 110: 141-145
    Yao Q, Nishuchi R, Li Q, Kumar A R, Hudson W A, Kersey J H. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin. Cancer Res. 2003. 9: 4483-4493
    Yen J H, Barr A R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971. 232: 657-658
    Yengkokpam S, Pal A K, Sahu N P, Jain K K, Dalvi R, Misra S, Debnath D. Metablic modulation in Labeo rohita fingerlings during starvation: Hsp70 expression and oxygen consumption. Aquaculture. 2008. 285: 234-237
    Yochem J, Uchida H, Sunshine M, Saito H, Georgopoulos C P, Feiss M. Genetic analysis of two genes, danJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol. Gen. Genet. 1978. 164: 9-14
    Yocum G D, Kemp W P, Bosch J, Knoblett J N. Temporal variation in overwintering gene expression and respiration in the solitary bee Megachile rotundata. J. Insect Physiol. 2005. 51:621-629
    Yocum G D. Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J. Insect Physiol. 2001.47: 1139-1145
    Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I. Heat-induced chaperone activity of HSP90. J. Biol. Chem. 1996. 271: 2641-2645
    Zabalou S, Reigler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc. Natl. Acad. Sci. 2004: 101: 15042-15045
    Zhang Z. Ye G Y, Cai J, Hu C. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis toward the hemocytes of their nature hosts, non-target insects and cultured insect cell. Toxicon. 2005. 46: 337-349
    Zhou W, Rousset F, O'Neill S L. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene s equences. Proc. R. Soc. B-Biol. Sci. 1998.265:509-515
    Zimmerman J L, Petri W, Meselson M. Accumulation of a specific subset of D.melanogaster heat shock mRNAs in normal development without heat shock. Cell. 1983.32: 1161-1170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700