糖尿病所致骨关节炎易感及发生机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨关节炎(osteoarthritis, OA)是一种以软骨退行性病变为主要病理特征的慢性关节疾病,是老年人群疼痛和致残的主要原因。OA病因复杂,传统观点认为主要由机械因素及年龄相关的软骨退变所致。但近年来越来越多的证据显示,代谢综合征(]metabolic syndrome)与OA有密切联系。流行病学调查研究发现,OA患者的代谢综合征发病率明显增加。作为代谢综合征的重要组成部分,糖尿病(Diabetes Mellitus, DM)与OA关系密切,并可能是OA发病的一个独立危险因素。流行病学调查研究发现,非胰岛素依赖型糖尿病患者更易患OA,且OA人群患糖尿病的风险较对照组人群患糖尿病的风险高。此外,有研究发现,以链脲佐菌素(Streptozotocin, STZ)诱导糖尿病,大鼠软骨出现胰岛素样生长因子1(insulin-like growth factor1, IGF-1)抵抗,70天后滑膜结构重塑,胶原沉积。这些研究均提示糖尿病与OA之间存在密切关联,而高血糖作为糖尿病最直接的表现,其在糖尿病性OA发生发展中的作用目前鲜有报道。
     OA不仅仅是关节软骨的损伤,也可观察到其它关节组织(如滑膜)的病理性改变。OA的初始表现大多是滑膜病变,这些病变一般要早于关节软骨的X线或MRI的影像学表现。滑膜炎与OA的许多临床症状相关,可反映疾病的结构性进展。滑膜炎的严重程度可提示髌股关节软骨病将如何进展。由于一些可溶性介质的活性,滑膜炎成为OA发病机制的关键因素。参与OA发病机制的两个主要细胞因子,IL-1β和TNF,主要由活化的滑膜细胞、单核细胞和关节软骨细胞产生。此外,在OA进程中,滑膜可产生基质金属蛋白酶(matrix metalloproteinases, MMPs)和聚集蛋白聚糖酶(aggrecanase),促进软骨基质降解。滑膜在OA发病中的重要作用及其作为治疗靶标的可能性已经受到广泛关注。
     内质网(endoplasmic reticulum, ER)应激是真核细胞在受到外界刺激时的一种保护性应激反应,通过诱导未折叠蛋白反应(unfolded protein response, UPR)来进行适应性调节,UPR则通过抑制蛋白的合成,诱导内质网伴侣蛋白表达以此促进蛋白折叠以及加速未折叠蛋白或错误折叠的蛋白的降解来缓解内质网应激。研究表明,内质网应激偶联炎症反应与多种疾病的发生发展密切相关,包括糖尿病和OA。OA软骨的内质网应激标志物葡萄糖调节蛋白-78(Glucose regulation protein78,Grp78)和Bcl-2交互蛋白(Bc12-Interacting Protein-1,Bag-1)较正常软骨表达增高。更有研究表明,细胞内晚期糖基化终产物的聚集通过内质网应激诱导软骨细胞凋亡。此外,有研究证明了关节炎滑膜和滑膜细胞高表达内质网应激相关基因。
     为证实糖尿病慢性高糖暴露可致OA,且滑膜内质网应激在其中发挥关键作用,本研究通过动物实验建立1型糖尿病和OA模型,并在细胞和分子水平证实高糖的损伤作用及其可能的内质网应激机制,在整体和细胞水平证实我们的假说。
     第一部分糖尿病大鼠OA易感现象
     目的:流行病学调查和临床试验研究提示糖尿病与OA关系密切,本部分拟通过整体动物实验,证实糖尿病大鼠关节软骨质量下降,长距离跑步刺激下OA易感现象。
     方法:成年wistar雄性大鼠STZ(60mg/kg)一次性腹腔注射,2周后大鼠断尾取血检测糖尿病造模成功率。糖尿病造模成功大鼠正常饮食一月后,给予长距离跑步(每日以20m/mmin的速度跑55mmin,共6周,总跑步里程30Km)诱导OA。跑步结束后,异氟烷麻醉处死大鼠。取部分膝关软骨节行墨汁染色,观察大体形态改变并进行软骨大体形态评分。剩余膝关节组织固定、包埋、脱钙切片后,行HE和番红O染色,Ⅱ型胶原免疫组化,光镜下观察软骨病理改变,并行OA的Mankin's评分。此外,膝关节滑膜行HE和MMP-13、NF-KB免疫组化。
     结果:①糖尿病大鼠OA造模前后血糖变化:大鼠STZ腹腔注射后一周尾静脉血糖为23.83±1.34mmol/L,对照组血糖为5.90+1.34mmo1/L,两组间统计学差异显著(P<0.01),糖尿病造模成功率100%;跑步6周后,糖尿病组大鼠血糖为32.16+1.14mmol/L,对照组血糖为7.19±0.47mmo1/L,糖尿病大鼠在整个实验过程中均处于高血糖状态;②关节软骨大体改变及评分:与对照组相比,正常大鼠接受跑步刺激后,其关节软骨大体形态正常,关节表面较光滑;糖尿病大鼠接受跑步刺激后,其关节软骨表面出现较严重磨损,行墨汁染色后发现关节软骨表面明显毛糙,糖尿病组软骨大体评分均较对照组明显升高(P<0.01);③关节软骨病理学改变及评分:跑步后大鼠膝关节石蜡切片行番红0染色后发现,对照组基质染色明显,表面出现轻度毛糙;与对照组相比,糖尿病组出现不同程度的软骨表面缺损,软骨基质结构紊乱,软骨厚度变薄,基质淡染,软骨细胞数明显减少;免疫组化示糖尿病鼠关节软骨Ⅱ型胶原蛋白表达降低。跑步诱导OA后,糖尿病组软骨OA病理Mankin's评分升高至11.9分,较对照组(1.6分)明显增高(P<0.01);④滑膜病理改变:糖尿病大鼠膝关节滑膜衬里细胞层增厚,间质细胞数增多,出现炎性细胞浸润,滑膜炎组织学评分明显增高(P<0.01),免疫组织化学结果显示,MMP-13和NF-κB的蛋白表达显著升高(P<0.01)。
     结论:糖尿病损伤大鼠关节软骨和滑膜,在接受过量跑步负荷诱导OA后,膝关节出现典型的OA病理改变,提示,糖尿病高糖状态可致大鼠OA易感,滑膜炎可能参与糖尿病OA发生。
     第二部分高糖通过损伤滑膜引起软骨细胞病理变化
     目的:本部分研究拟在细胞水平证实高糖对关节软骨和滑膜的损伤作用及其相互作用机制。
     方法:以不同浓度葡萄糖(10、20、30、40mM)分别处理大鼠膝关节软骨细胞和成纤维样滑膜细胞(Fibroblast-Like Synoviocytes, FLS)3天和10天,实时定量PCR检测细胞基质合成(col2al、aggrecan)、基质降解(MMP-3、MMP-13、ADAMTS-4、 ADAMTS、 TIMP-1和TIMP-3),以及炎症因子(IL-6/TNF-a)和凋亡相关基因(caspase-3、 caspase-8、 caspase-9和Bcl-2)的表达。检测FLS培养液中MDA和SOD的改变。然后,以30mM葡萄糖处理FLS3天的细胞培养液刺激软骨细胞3天,检测软骨细胞基质合成、基质降解、炎症和凋亡改变。
     结果:①对软骨细胞:高糖刺激3天和10天对软骨细胞的活力无明显影响;3天时软骨基质合成相关基因col2al和aggrecan表达增加,10天时增加更为显著;基质降解重要基因在3天时显著降低,但高糖刺激10则转为升高;凋亡相关基因在3天和10天均未见明显变化;IL-6和TNF-α在10天明显升高。②对FLS:高糖刺激3天时对滑膜细胞活力有促进作用,10天时转为抑制:高糖处理3天时FLS促炎、降解和凋亡相关基因即明显升高,并且升高的程度在高糖刺激10天时更为显著;此外,高糖培养基培养3天的FLS培养液上清中SOD含量呈葡萄糖浓度依赖性降低,MDA浓度依赖性升高。③滑膜培养液对软骨细胞:30mM高糖的滑膜培养液培养软骨细胞后,软骨细胞基质合成显著下降,促基质降解酶表达增强,促炎因子IL-6和TNF-α显著升高;凋亡相关基因均未见明显变化。
     结论:FLS较软骨细胞更易受高糖损伤。高糖可能通过刺激FLS分泌炎症和降解因子,从而引起软骨细胞病理损害。氧化损伤可能参与了这一过程。
     第三部分内质网应激参与高糖所致滑膜损伤
     目的:拟在细胞分子水平,进一步探讨高糖损伤FLS的机制,证实内质网应激参与糖尿病性OA。
     方法:①高糖诱导内质网应激:高糖分别处理软骨细胞和FLS24/48/72小时,检测细胞内质网应激标志基因表达;②内质网应激效应的证实:实验分四组,正常对照组(10mM葡萄糖)、内质网应激诱导组(10mM葡萄糖+内质网应激诱导剂衣霉素5μg/m)、高糖对照组(30mM葡萄糖)和内质网应激抑制组(30mM葡萄糖+内质网应激抑制剂4-丁酸苯酯1mM),分别处理FLS2/4/8/16小时,检测滑膜细胞内质网应激、凋亡和基质降解相关基因表达情况。
     结果:①高糖诱导关节软骨细胞和FLS内质网应激:软骨细胞高糖处理24、48和72小时结果显示,内质网应激标志基因C/EBP同源蛋白(CCAAT-enhancer-binding protein homologous protein, CHOP)呈时间依赖性升高,升高在72小时具有统计学意义(P<0.05)。与对照组相比,NF-κB和生长静止DNA损伤诱导基因34(growth arrest and DNA damage-inducible gene34,GADD34)在葡萄糖浓度20和30mM时出现显著性升高;GRP78在20mM葡萄糖浓度处理72小时时升高。对于FLS,在30mM高糖处理24小时时,所有检测的内质网应激标志基因的表达明显上调,而当处理时间延长到48和72小时后,这些基因表达恢复至对照组水平。比较发现,高糖诱导FLS应激的强度明显大于对软骨细胞的强度。②衣霉素诱导FLS内质网应激并出现类似高糖暴露的细胞损伤:与正常对照组相比,衣霉素处理组内质网应激标志基因中脑星形胶质细胞源性神经营养因子(mesencephalic astrocyte-deriVed neurotrophic factor,MANF)和GADD34出现时间依赖性升高,在处理8和16小时时升高具有显著统计学意义(P<0.01);MMP-3、MMP-13和ADAMTS5升高,同时TIMP-1也明显升高;caspase-3禾□caspase-9在衣霉素处理16小时明显升高,caspase-8则在4小时明显升高,Bcl-2则呈时间依赖性降低,降低在8和16小时具有显著统计学意义(P<0.01);此外,葡萄糖转运体(Glucose transporter,GLUT)-1在8和16小时明显升高,同时伴有iNOS的升高(P<0.05)。③4-丁酸苯酯抑制高糖所致的FLS内质网应激及细胞炎症降解改变:与高糖对照组相比,4-丁酸苯酯处理组内质网应激标志基因显著降低(P<0.01);MMP-3明显降低,但同时TIMP-1也明显降低(P<0.01),MMP-13和ADAMTS-5无明显改变;caspase-3呈时间依赖性降低,且降低在处理16小时具有统计学意义(P<0.01),抗凋亡基因Bcl-2升高,在4小时和8小时差异具有显著统计学意义;此外,葡萄糖转运体GLUT-1在16小时明显降低(P<0.01)。
     结论:高糖可诱导软骨细胞和FLS内质网应激,且对FLS的影响更为显著。内质网应激介导了高糖所致的FLS降解和凋亡等病理损伤。
     综上,糖尿病高血糖可诱导FLS内质网应激从而损伤滑膜,病变滑膜分泌炎症和降解因子加剧高糖对关节软骨的损害,使关节软骨质量下降,长距离跑步刺激下OA易感。
Osteoarthritis (OA), a joint disorder characterized by cartilage degradation and osteophyte formation, is considered a major public health issue today. Millions of people suffer from this musculoskeletal degenerative disorder, which may lead to disability, deterioration of quality of life and a heavy economical impact on every nation's health systems. The lack of an effective treatment reflects the need for better understanding of the pathophysiology and aetiopathology of OA.
     The articular joint includes three different but closely linked tissues:cartilage, synovial membrane, and subchondral bone, all of which are known to play significant roles in the pathogenesis of osteoarthritis. Chondrocytes are the only cells in cartilage and interdispersed within extracellular matrix. Cartilage contains a number of matrix metalloproteinases (MMPs) involved in matrix turnover. These include MMP-3, MMP-8, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motif4(ADAMTS-4) and ADAMTS-5. OA is not only due to articular cartilage damage, but also related to pathological changes in other joint tissues (such as synovium). Most of the initial performance of OA are synovial lesions and these lesions are generally appeared ealier than X-ray or MRI imaging findings of articular cartilage. In the process of OA, synovium can produce MMPs and aggrecanase, promoting cartilage matrix degradation.
     OA is a multi-factorial disease and conventionally considerated to be induced mainly by mechanical factors and age-related degeneration of cartilage. However, recent study indicates that diabetes has compacted relationship with OA and may be an independent risk factor of OA. Epidemiological studies have found that patients with non-insulin-dependent diabetes are more susceptible to OA, and the OA population are more susceptible to suffer diabetes than the control population. Epidemiological studies revealed that the incidence of metabolic syndrome with OA significantly increased in patients (2.2to5.3-fold).As an important part of the metabolic syndrome, diabetes is closely related to OA. It may represent an independent risk factor for OA. The main features of DM characterized with chronic hyperglycemia accompanied with insulin secretion or metabolic disorders induced by lack of function. The number of world DM patients was approximately285million in2010, and it will be up to439million in2030. In addition, studies have found that STZ induced DM with IGF-1resistance in rat cartilage, which occurs synovial remodeling and collagen deposition in70days.These studies strongly suggest that there is a close association between DM and OA, and hypoglycemic as the direct representation of DM, its role in the development of diabetic O A rarely reported in the present.
     However, the role of hyperglycemia, the most direct manifestation of diabetes, in diabetes-induced OA has been rarely reported. The present study was designed to test the adverse effects of high glucose on articular cartilage and explore the underline mechanism, so as to demonstrater the diabetes induced OA.
     PART ONE
     Diabetes increased the susceptibility of OA in adult male rats
     Objective Correlations between diabetes and osteoarthritis were found by epidemiological investigations and clinical case studies. This part was designed to confirm the decline of articular cartilage quality in diabetic rats, and the increased the susceptibility of OA in adult male rats under long distance running stimulation.
     Methods Adult male wistar rats were administrated with STZ (60mg/kg) through intraperitoneal injection. Two week later, the blood of tails was detected to confirm if the diabetes model is achived successfully. The rats were fed with normal diet. One month after confirmation of diabetes model, rats were given the long distance running to induce OA (with speed of20m/min and time of55min daily, a total of six weeks, with a total running mileage30Km). After running, the rats were sacrificed by isoflurane anesthesia. A portion of the knee cartilage carried ink staining, observed the gross morphological changes and scored the cartilage gross morphology. For HE and safranin O staining experiments, the rest tissue of knee were fixed, embedded, decalcified sections. col2al, MMP-13was on immunohistochemistry, cartilage pathological changes were observed by light microscopy, and Mankin's score was carried out to assess OA.
     Results①changes of blood glucose and body weight in diabetic rats before and after OA modeling:23.83±1.34mM VS5.90±1.34mM (P     Conclusion Diabetes possess advers effects on articular cartilage of rats. After receiving excessive running, rats with diabetes suffered typical OA, suggesting that diabetes increased the susceptibility of OA in adult male rats.
     PART TWO
     Catabolic effect of high glucose on rat chondrocytes potentiated by fibroblast-like synoviocytes
     Objective The present study was designed to test the adverse effects of high glucose on articular cartilage and explore the underline mechanism.
     Methods Rat articular chondrocytes and fibroblast-like synoviocytes (FLS) were cultured in media with different concentrations of glucose (10,20,30and40mM) for three and ten days during the2nd passage, respectively. Expression levels of matrix metalloproteinase3(MMP-3), MMP-13, a disintegrin and metalloproteinase with thrombospondin motif4(ADAMTS-4), ADAMTS-5, interleukin6(IL-6) and tumor necrosis factor a (TNF-a) were detected. Malondialdehyde (MDA) and Superoxide Dismutase (SOD) contents in synoviocytic culture media were detected. Culture media of synoviocytes stimulated by30mM glucose for three days were collected and administrated on another part of chondrocytes for three days. Catabolic profiles of chondrocytes were detected.
     Results High glucose inhibited matrix degradation of chondrocytes in three days, but favored in ten days. In FLS, high glucose promoted inflammatary cytokines and MMPs secretion, more obviously in long term. MDA was increased and SOD was reduced in synoviocytic media. Chondrocytes administrated with synoviocytic media showed increased matrix degradation.
     Conclusion FLS was more vulnerable to high glucose than chondrocyte. High glucose might impair articular cartilage by stimulating secretion of catabolic and proinflammatory factors of FLS. Oxidative damage might be involved in the process.
     PART THREE
     Endoplasmic reticulum stress involved in synovial injury induced by high glucose
     Objective High glucose can induce endoplasmic reticulum stress, and it exists in OA. This part intended to explore the mechanism of synovial injury induced by high glucose on cellular and molecular level, and confirme the involved endoplasmic reticulum stress in diabetic OA.
     Methods Fibroblast-like synovial cells were treated by Tunicamycin5ug/ml+10mM glucose and4-Phenylbutyric acid lmM+30mM glucose for2/4/8/16hours, and the gene expression of endoplasmic reticulum stress, apoptosis and matrix degradation were detected by real-time quantitative PCR.
     Results①TM induced ERS in fibroblast-like synovial cells accompanied by similar cells injury exposed to high glucose:Compared with the control group, ERS marker genes MANF and GADD34in TM treatment group appeared time-dependent increase, and there was a statistically significant increase after treatment with8and16hours (P<0.01). CHOP increased slightly but there was no statistically significance, and GRP78had no significant change. Matrix degradation-related genes MMP-3, MMP-13and ADAMTS5increased. However, anti-matrix-degrading enzyme TIMP-1increased significantly. Apoptosis-related genes caspase3and caspase9in TM treatment group were significantly increased after processing16hours, and caspase8 increased significantly after processing4hours. Anti-apoptotic gene Bcl2had a time-dependent decrease, with a statistically significant lower after treatment with8and16hours (P     Conclusion TM can induce ERS in fibroblast-like synovial cells, accompanied by cell apoptosis and degradation pathological changes.4-PBA can inhibit ERS and subsequent matrix degradation and apoptosis changes induced by high glucose. Thus, high glucose can induce ERS, leading to cell apoptosis and matrix degradation, and finally resulting in disease.
引文
[1]Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, et al. Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis[J]. Osteoarthritis Cartilage, 2007(15): 743-751.
    [2]顾明士, 杨军, 金哲峰, 李绍峙, 张金伟, et al. 析[J]. 中医药临床杂志,2005(17): 246-247.
    [3]张奉春,费允云.老年骨关节炎的诊治进展[J].实用老年医学,2008(22):11-13.
    [4]Bruce KD, Byrne CD. The metabolic syndrome: common origins of a multifactorial disorder[J]. Postgraduate Medical Journal, 2009(85): 614-621.
    [5]Inoue R, Ishibashi Y, Tsuda E, Yamamoto Y, Matsuzaka M, et al. Medical problems and risk factors of metabolic syndrome among radiographic knee osteoarthritis patients in the Japanese general population!J]. J Orthop Sci, 2011(16): 704-709.
    [6]Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES Ⅲ data[J]. Postgrad Med, 2009(121): 9-20.
    [7]Velasquez MT, Katz JD. Osteoarthritis: another component of metabolic syndrome?[J]. Metab Syndr Relat Disord, 2010(8): 295-305.
    [8]Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome[J]. Curr Opin Rheumatol, 2010(22): 512-519.
    [9]Stunner T, Brenner H, Brenner RE, Gunther KP. Non-insulin dependent diabetes mellitus (NIDDM) and patterns of osteoarthritis. The Ulm osteoarthritis study[J]. Scand J Rheumatol, 2001(30): 169-171.
    [10]Burner TW, Rosenthal AK. Diabetes and rheumatic diseases[J]. Curr Opin Rheumatol, 2009(21):50-54.
    [II]Pallu S, Francin PJ, Guillaume C, Gegout-Pottie P, Netter P, et al. Obesity affects the chondrocyte responsiveness to leptin in patients with osteoarthritis[J]. Arthritis Res Ther, 2010(12): R112.
    [12]Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions[J]. Best Pract Res Clin Rheumatol, 2008(22): 351-384.
    [13]Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases[J]. Arthritis Res Ther, 2009(11): 224.
    [14]Cimmino MA, Cutolo M. Plasma glucose concentration in symptomatic osteoarthritis:a clinical and epidemiological survey[J]. Clin Exp Rheumatol, 1990(8): 251-257.
    [15]Waine H, Nevinny D, Rosenthal J, Joffe IB. Association of osteoarthritis and diabetes mellitus[J]. Tufts Folia Med, 1961(7):13-19.
    [16]Rosa SC, Goncalves J, Judas F, Mobasheri A, Lopes C, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage[J]. Arthritis Res Ther, 2009(11): R80.
    [17]Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype[J]. Ann Rheum Dis,2011(70):1354-1356.
    [18]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity[J]. Biochim Biophys Acta, 2010(1803): 55-71.
    [19]Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis[J]. Bone, 2012(51): 249-257.
    [20]Crema MD, Roemer FW, Marra MD, Guermazi A. MR imaging of intra- and periarticular soft tissues and subchondral bone in knee osteoarthritis[J]. Radiol Clin North Am, 2009(47):687-701.
    [21]Loeuille D, Rat AC, Goebel JC, Champigneulle J, Blum A, et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features[J]. Osteoarthritis Cartilage,2009(17):1186-1192.
    [22]Belcher C, Yaqub R, Fawthrop F, Bayliss M, Doherty M. Synovial fluid chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in arthritic and normal knees[J]. Ann Rheum Dis, 1997(56): 299-307.
    [23]Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis[J]. Nat Rev Rheumatol, 2010(6): 625-635.
    [24]Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang Y, Yosef M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning[J]. J Bone Joint SurgAm,2011(93): 241-251.
    [25]Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, et al. Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1 [J]. JHistochem Cytochem, 2009(57): 923-931.
    [26]Takada K, Hirose J, Senba K, Yamabe S, Oike Y, et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage[J]. Int JExp Pathol, 2011(92): 232-242.
    [27]Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, et al. Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes[J]. FEBSJ, 2013(280): 1617-1629.
    [28]Park YJ, Yoo SA, Kim WU. Role of endoplasmic reticulum stress in rheumatoid arthritis pathogenesis[J]. J Korean Med Sci, 2014(29): 2-11.
    [29]Hellman M, Arumae U, Yu LY, Lindholm P, Peranen J, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons[J]. J Biol Chem,2011(286): 2675-2680.
    [30]Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, et al. Cyclooxygenase in biology and disease[J]. FASEB J, 1998(12): 1063-1073.
    [31]Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, et al. Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide[J]. J Clin Invest, 1997(99): 1231-1237.
    [32]Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2alpha, p38-MAPK and NF-kappaB in advanced glycation end products stimulated human chondrocytes[J]. Biochim Biophys Acta, 2012(1823): 2179-2189.
    [33]Smith LL, Burnet SP, McNeil JD. Musculoskeletal manifestations of diabetes mellitus[J]. Br J Sports Med, 2003(37):30-35.
    [34]Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways[J]. Bone, 2007(40):345-353.
    [35]Arkkila PE, Gautier JF. Musculoskeletal disorders in diabetes mellitus:an update[J]. Best Pract Res Clin Rheumatol, 2003(17):945-970.
    [36]Wu Q, Zhu M, Rosier RN, Zuscik MJ, O'Keefe RJ, et al. (3-catenin, cartilage, and osteoarthritis[J]. Annals of the New York Academy of Sciences, 2010(1192): 344-350.
    [37]Swierkot J, Gruszecka-Marczynska K, Sowinski D, Szechinski J. Rheumatic disorders in diabetes mellitus[J]. Pol Merkur Lekarski,2005(19):843-847.
    [38]Del Rosso A, Cerinic MM, De Giorgio F, Minari C, Rotella CM, et al. Rheumatological manifestations in diabetes mellitus[J]. Curr Diabetes Rev,2006(2):455-466.
    [39]Douloumpakas I, Pyrpasopoulou A, Triantafyllou A, Sampanis C, Aslanidis S. Prevalence of musculoskeletal disorders in patients with type 2 diabetes mellitus:a pilot study[J]. Hippokratia,2007(11):216-218.
    [40]Shakoor N, Agrawal A, Block JA. Reduced lower extremity vibratory perception in osteoarthritis of the knee[J]. Arthritis Rheum,2008(59):117-121.
    [41]Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, et al. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility[J]. Cardiovasc Diabetol, 2011(10): 57.
    [42]Liu F, Xie M, Chen D, Li J, Ding W. Effect of V(IV)O(dipic-Cl)(H2O)2 on Lipid Metabolism Disorders in the Liver of STZ-Induced Diabetic Rats[J]. J Diabetes Res,2013(2013): 956737.
    [43]Tang T, Muneta T, Ju YJ, Nimura A, Miyazaki K, et al. Serum keratan sulfate transiently increases in the early stage of osteoarthritis during strenuous running of rats:protective effect of intraarticular hyaluronan injection[J]. Arthritis Res Ther, 2008(10):R13.
    [44]Jansen H, Meffert RH, Birkenfeld F, Petersen W, Pufe T. Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model[J]. Ann Anat, 2012(194):452-456.
    [45]Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis[J]. Histopathology, 2006(49):358-364.
    [46]Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract,2010(87):4-14.
    [47]Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women:the Chingford Study[J]. J Rheumatol, 1995(22): 1118-1123.
    [48]Frey MI, Barrett-Connor E, Sledge PA, Schneider DL, Weisman MH. The effect of noninsulin dependent diabetes mellitus on the prevalence of clinical osteoarthritis. A population based study[J]. J Rheumatol,1996(23):716-722.
    [49]Kelley KM, Russell SM, Matteucci ML, Nicoll CS. An insulin-like growth factor I-resistant state in cartilage of diabetic rats is ameliorated by hypophysectomy. Possible role of metabolism[J]. Diabetes,1993(42):463-469.
    [50]Atayde SA, Yoshinari NH, Nascimento DP, Catanozi S, Andrade PC, et al. Experimental diabetes modulates collagen remodelling of joints in rats[J]. Histol Histopathol, 2012(27): 1471-1479.
    [51]risk Pocd, factors among US adults with self-reported osteoarthritisSchellevis FG, van der Velden J, van de Lisdonk E, van Eijk JT, et al. Comorbidity of chronic diseases in general practice[J]. JClin Epidemiol, 1993(46): 469-473.
    [52]Singh G, Miller JD, Lee FH, Pettitt D, Russell MW. Prevalence of cardiovascular disease risk factors among US adults with self-reported osteoarthritis: data from the Third National Health and Nutrition Examination Survey[J]. Am JManag Care, 2002(8):S383-391.
    [53]Dahaghin S, Bierma-Zeinstra SM, Koes BW, Hazes JM, Pols HA. Do metabolic factors add to the effect of overweight on hand osteoarthritis? The Rotterdam Study [J]. Ann Rheum Dis,2007(66):916-920.
    [54]Rosa SC, Goncalves J, Judas F, Mobasheri A, Lopes C, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage[J]. Arthritis Research & Therapy, 2009(11):R80.
    [55]Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease[J]. Wiley Interdiscip Rev Syst Biol Med, 2012(4): 15-37.
    [56]Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth[J]. J Clin Invest, 2005(115):622-631.
    [57]Barker SA, Bayyuk SH, Brimacombe JS, Hawkins CF, Stacey M. Fingerprinting the Hyaluronic Acid Component Of Normal And Pathological Synovial Fluids[J]. Clin Chim Acta, 1963(8):902-909.
    [58]Dahl LB, Dahl M, Engstrom-Laurent A, Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies[J]. Ann Rheum Dis, 1985(44): 817-822.
    [59]Stafford CT, Niedermeier W, Holley HL, Pigman W. Studies on the Concentration And Intrinsic Viscosity Of Hyaluronic Acid In Synovial Fluids Of Patients with Rheumatic Diseases[J]. Ann Rheum Dis, 1964(23):152-157.
    [60]Endres M, Andreas K, Kalwitz G, Freymann U, Neumann K, et al. Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCLI recruit human subchondral mesenchymal progenitor cells[J]. Osteoarthritis Cartilage, 2010(18):1458-1466.
    [61]Andreea SI, Marieta C, Anca D. AGEs and glucose levels modulate type I and III procollagen mRNA synthesis in dermal fibroblasts cells culture[J]. Exp Diabetes Res, 2008(2008): 473603.
    [62]Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation[J]. Arthritis Res Ther, 2003(5):94-103.
    [63]Abeles AM, Pillinger MH. The role of the synovial fibroblast in rheumatoid arthritis: cartilage destruction and the regulation of matrix metalloproteinases[J]. Bull NYU Hosp Jt Dis, 2006(64):20-24.
    [64]Bau B, Gebhard PM, Haag J, Knorr T, Bartnik E, et al. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro[J]. Arthritis Rheum,2002(46):2648-2657.
    [65]Masuhara K, Nakai T, Yamaguchi K, Yamasaki S, Sasaguri Y. Significant increases in serum and plasma concentrations of matrix metalloproteinases 3 and 9 in patients with rapidly destructive osteoarthritis of the hip[J]. Arthritis Rheum, 2002(46):2625-2631.
    [66]Edelman SV, Blose JS. The Impact of Nocturnal Hypoglycemia on Clinical and Cost-Related Issues in Patients With Type 1 and Type 2 Diabetes[J]. Diabetes Educ, 2014.
    [67]Lau JC, Kroes RA, Moskal JR, Linsenmeier RA. Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina[J]. Mol Vis, 2013(19):1538-1553.
    [68]Zhao LM, Wang Y, Ma XZ, Wang YW, Deng XL. Oxidative stress impairs IKCa- and SKCa-mediated vasodilatation in mesenteric arteries from diabetic rats[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2013(33):939-944.
    [69]Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, Liakou C, Triantafillopoulos IK, et al. Useful animal models for the research of osteoarthritis[J]. Eur J Orthop Surg Traumatol, 2013.
    [70]Chang JK, Chang LH, Hung SH, Wu SC, Lee HY, et al. Parathyroid hormone 1-34 inhibits terminal differentiation of human articular chondrocytes and osteoarthritis progression in rats[J]. Arthritis Rheum,2009(60):3049-3060.
    [71]Pap G, Eberhardt R, Sturmer I, Machner A, Schwarzberg H, et al. Development of osteoarthritis in the knee joints of Wistar rats after strenuous running exercise in a running wheel by intracranial self-stimulation[J]. Pathol Res Pract, 1998(194):41-47.
    [72]Mobasheri A, Bondy CA, Moley K, Mendes AF, Rosa SC, et al. Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines[J]. Adv Anat Embryol Cell Biol, 2008(200):1 p following vi, 1-84.
    [73]Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway[J]. Science, 2004(306): 2105-2108.
    [74]Martens G, Cai Y, Hinke S, Stange G, Van de Casteele M, et al. Nutrient sensing in pancreatic beta cells suppresses mitochondrial superoxide generation and its contribution to apoptosis[J]. Biochem Soc Trans, 2005(33):300-301.
    [75]McNulty AL, Vail TP, Kraus VB. Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2[J]. Biochim Biophys Acta, 2005(1712):212-221.
    [76]McAlindon TE. Nutraceuticals:do they work and when should we use them?[J]. Best Pract Res Clin Rheumatol, 2006(20):99-115.
    [77]Rosa SC, Rufino AT, Judas FM, Tenreiro CM, Lopes MC, et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes[J]. Journal of Cellular Biochemistry, 2011(112):2813-2824.
    [78]Conaghan PG, D'Agostino MA, Le Bars M, Baron G, Schmidely N, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis:results from a large, 3-year, prospective EULAR study[J]. Ann Rheum Dis, 2010(69): 644-647.
    [79]Song IH, Althoff CE, Hermann KG, Scheel AK, Knetsch T, et al. Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI[J]. Ann Rheum Dis, 2009(68): 75-83.
    [80]Bird TA, Davies A, Baldwin SA, Saklatvala J. Interleukin 1 stimulates hexose transport in fibroblasts by increasing the expression of glucose transporters[J]. J Biol Chem, 1990(265): 13578-13583.
    [81]Hernvann A, Jaffray P, Hilliquin P, Cazalet C, Menkes CJ, et al. Interleukin-1 beta-mediated glucose uptake by chondrocytes. Inhibition by cortisol[J]. Osteoarthritis Cartilage, 1996(4):139-142.
    [82]Otte P. Basic cell metabolism of articular cartilage. Manometric studies[J]. Z Rheumatol, 1991(50):304-312.
    [83]Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation[J]. Arthritis Rheum, 1998(41):1331-1342.
    [84]Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, et al. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis[J]. Histol Histopathol, 2002(17): 1239-1267.
    [85]Sweeney C, Mackintosh D, Mason RM. UDP-sugar metabolism in Swarm rat chondrosarcoma chondrocytes[J]. Biochem J, 1993(290 (Pt 2)): 563-570.
    [86]Susana C. Rosa, Rufino AT. Role of Glucose as a Modulator of Anabolic and Catabolic Gene Expression in Normal and Osteoarthritic Human Chondrocytes[J]. Journal of Cellular Biochemistry, 2011(1):2813-2824.
    [87]Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, et al. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants[J]. J Orthop Res, 2001(19): 729-737.
    [88]Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis[J]. Clin Orthop RelatRes, 2004: S96-103.
    [89]Yudoh K, Nguyen v T, Nakamura H, Hongo-Masuko K, Kato T, et al. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function[J]. Arthritis Res Ther, 2005(7): R380-391.
    [90]Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage[J]. Osteoarthritis Cartilage, 2003(11):747-755.
    [91]Sutipornpalangkul W, Morales NP, Harnroongroj T. Free radicals in primary knee osteoarthritis[J]. J Med Assoc Thai, 2009(92 Suppl 6): S268-274.
    [92]Giugliano D, Ceriello A, Paolisso G. Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress?[J]. Metabolism, 1995(44): 363-368.
    [93]Krasnokutsky S, Attur M, Palmer G, Samuels J, Abramson SB. Current concepts in the pathogenesis of osteoarthritis[J]. Osteoarthritis Cartilage, 2008(16 Suppl 3): S1-3.
    [94]Schroder M, Kaufman RJ. ER stress and the unfolded protein response[J]. Mutat Res, 2005(569): 29-63.
    [95]Kim SY, Hwang JS, Han IO. Tunicamycin inhibits Toll-like receptor-activated inflammation in RAW264.7 cells by suppression of NF-kappaB and c-Jun activity via a mechanism that is independent of ER-stress and N-glycosylation[J]. Eur J Pharmacol, 2013(721): 294-300.
    [96]Malo A, Kruger B, Goke B, Kubisch CH. 4-Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini[J]. Pancreas, 2013(42): 92-101.
    [97]Zhang H, Nakajima S, Kato H, Gu L, Yoshitomi T, et al. Selective, potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues[J]. Br J Pharmacol, 2013(170):822-834.
    [98]Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications[J]. N Engl J Med, 1988(318): 1315-1321.
    [99]Vlassara H, Palace MR. Diabetes and advanced glycation endproducts[J]. J Intern Med, 2002(251):87-101.
    [100]Takeuchi M, Yamagishi S. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer's disease[J]. J Alzheimers Dis, 2009(16): 845-858.
    [101]Yamagishi S, Nakamura K, Matsui T, Noda Y, Imaizumi T. Receptor for advanced glycation end products (RAGE): a novel therapeutic target for diabetic vascular complication[J]. Curr Pharm Des, 2008(14): 487-495.
    [102]Singh VP, Bali A, Singh N, Jaggi AS. Advanced Glycation End Products and Diabetic Complications[J]. Korean J Physiol Pharmacol, 2014(18): 1-14.
    [103]Yang L, Carlson SG, McBurney D, Horton WE, Jr. Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis[J]. J Biol Chem, 2005(280): 31156-31165.
    [104]Lee AS. The glucose-regulated proteins: stress induction and clinical applications[J]. Trends Biochem Sci, 2001(26):504-510.
    [105]Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program[J]. Cell Death Differ, 2004(11):372-380.
    [106]Li Z, Li Z. Glucose regulated protein 78:a critical link between tumor microenvironment and cancer hallmarks[J]. Biochim Biophys Acta, 2012(1826): 13-22.
    [107]Shu CW, Sun FC, Cho JH, Lin CC, Liu PF, et al. GRP78 and Raf-1 cooperatively confer resistance to endoplasmic reticulum stress-induced apoptosis[J]. J Cell Physiol, 2008(215):627-635.
    [108]Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, et al. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase[J]. J Biol Chem, 2004(279): 46384-46392.
    [109]Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR. PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis[J]. Biochem J, 2006(393):201-209.
    [110]Rasheed Z, Akhtar N, Haqqi TM. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-kappaB in human osteoarthritis chondrocytes[J]. Rheumatology (Oxford),2011(50):838-851.
    [111]Hamamura K, Goldring MB, Yokota H. Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum[J]. Arch OralBiol, 2009(54):279-286.
    [112]McLay LM, Halley F, Souness JE, McKenna J, Benning V, et al. The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy[J]. Bioorg Med Chem, 2001(9): 537-554.
    [113]Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses[J]. Mol Cell Biol, 2003(23): 5651-5663.
    [114]Waris G, Tardif KD, Siddiqui A. Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3[J]. Biochem Pharmacol, 2002(64): 1425-1430.
    [115]Mateos JL. Selective inhibitors of cyclooxygenase-2 (COX-2), celecoxib and parecoxib:a systematic review[J]. Drugs Today (Bare),2010(46 Suppl A):1-25.
    [116]de Boer TN, Huisman AM, Polak AA, Niehoff AG, van Rinsum AC, et al. The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment[J]. Osteoarthritis Cartilage, 2009(17): 482-488.
    [117]Fadok VA, Bratton DL, Henson PM. Phagocyte receptors for apoptotic cells:recognition, uptake, and consequences[J]. J Clin Invest, 2001(108):957-962.
    [118]Takada K, Hirose J, Yamabe S, Uehara Y, Mizuta H. Endoplasmic reticulum stress mediates nitric oxide-induced chondrocyte apoptosis[J]. Biomed Rep, 2013(1):315-319.
    [119]Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J]. Genes Dev, 2004(18): 3066-3077.
    [120]Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes[J]. JClin Invest, 2008(118): 3378-3389.
    [1]Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases[J]. Arthritis Res Ther, 2009(11):224.
    [2]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity[J]. Biochim Biophys Acta, 2010(1803): 55-71.
    [3]Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, et al. Osteoarthritis cartilage histopathology: grading and staging[J]. Osteoarthritis Cartilage, 2006(14): 13-29.
    [4]Guo D, Ding L, Homandberg GA. Telopeptides of type II collagen upregulate proteinases and damage cartilage but are less effective than highly active fibronectin fragments[J]. Inflammation Research,2009(58):161-169.
    [5]Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis[J]. Arthritis Rheum, 2010(62): 647-657.
    [6]Gustafson B. Adipose tissue, inflammation and atherosclerosis[J]. J Atheroscler Thromb, 2010(17): 332-341.
    [7]Kirilmaz B, Asgun F, Alioglu E, Ercan E, Tengiz I, et al. High inflammatory activity related to the number of metabolic syndrome components[J]. J Clin Hypertens (Greenwich), 2010(12):136-144.
    [8]Distel E, Cadoudal T, Durant S, Poignard A, Chevalier X, et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor[J]. Arthritis Rheum,2009(60):3374-3377.
    [9]Franke S, Sommer M, Riister C, Bondeva T, Marticke J, et al. Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells[J]. Arthritis Research & Therapy, 2009(11): R136.
    [10]Attur M, Al-Mussawir HE, Patel J, Kitay A, Dave M, et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor[J]. J Immunol, 2008(181):5082-5088.
    [11]Oregon-Romero E, Vazquez-Del Mercado M, Navarro-Hernandez RE, Torres-Carrillo N, Martinez-Bonilla G, et al. Tumor necrosis factor receptor 2 M196R polymorphism in rheumatoid arthritis and osteoarthritis: relationship with sTNFR2 levels and clinical features[J]. Rheumatol Int, 2006(27): 53-59.
    [12]Moos V, Rudwaleit M, Herzog V, Hohlig K, Sieper J, et al. Association of genotypes affecting the expression of interleukin-lbeta or interleukin-1 receptor antagonist with osteoarthritis[J]. Arthritis Rheum, 2000(43): 2417-2422.
    [13]Guerassimov A, Zhang Y, Cartman A, Rosenberg LC, Esdaile J, et al. Immune responses to cartilage link protein and the G1 domain of proteoglycan aggrecan in patients with osteoarthritis[J]. Arthritis Rheum, 1999(42): 527-533.
    [14]Nakamura H, Yoshino S, Kato T, Tsuruha J, Nishioka K. T-cell mediated inflammatory pathway in osteoarthritis[J]. Osteoarthritis Cartilage, 1999(7): 401-402.
    [15]Ishii H, Tanaka H, Katoh K, Nakamura H, Nagashima M, et al. Characterization of infiltrating T cells and Thl/Th2-type cytokines in the synovium of patients with osteoarthritis[J]. Osteoarthritis Cartilage,2002(10):277-281.
    [16]Moos V, Menard J, Sieper J, Sparmann M, Muller B. Association of HLA-DRB1*02 with osteoarthritis in a cohort of 106 patients[J]. Rheumatology (Oxford), 2002(41):666-669.
    [17]Tsuruha J, Masuko-Hongo K, Kato T, Sakata M, Nakamura H, et al. Autoimmunity against YKL-39, a human cartilage derived protein, in patients with osteoarthritis[J]. JRheumatol, 2002(29): 1459-1466.
    [18]Nishioka M, Ioi H, Matsumoto R, Goto TK, Nakata S, et al. TMJ osteoarthritis/osteoarthrosis and immune system factors in a Japanese sample[J]. Angle Orthod, 2008(78): 793-798.
    [19]Rosenthal AK. Crystals, inflammation, and osteoarthritis[J]. Curr Opin Rheumatol, 2011(23): 170-173.
    [20]Shen PC, Wu CL, Jou IM, Lee CH, Juan HY, et al. T helper cells promote disease progression of osteoarthritis by inducing macrophage inflammatory protein-lgamma[J]. Osteoarthritis Cartilage, 2011(19): 728-736.
    [21]Al-Arfaj AS. Radiographic osteoarthritis and serum cholesterol[J]. Saudi Med J, 2003(24): 745-747.
    [22]Jonsson H, Helgadottir GP, Aspelund T, Eiriksdottir G, Sigurdsson S, et al. Hand osteoarthritis in older women is associated with carotid and coronary atherosclerosis: the AGES Reykjavik study[J]. Ann Rheum Dis, 2009(68): 1696-1700.
    [23]Baker AR, Goodloe RJ, Larkin EK, Baechle DJ, Song YE, et al. Multivariate association analysis of the components of metabolic syndrome from the Framingham Heart Study [J]. BMC Proc, 2009(3 Suppl 7):S42.
    [24]Inoue R, Ishibashi Y, Tsuda E, Yamamoto Y, Matsuzaka M, et al. Medical problems and risk factors of metabolic syndrome among radiographic knee osteoarthritis patients in the Japanese general population[J]. J Orthop Sci, 2011(16): 704-709.
    [25]Puenpatom RA, Victor TW. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data[J]. Postgrad Med, 2009(121):9-20.
    [26]Kornaat PR, Sharma R, van der Geest RJ, Lamb HJ, Kloppenburg M, et al. Positive association between increased popliteal artery vessel wall thickness and generalized osteoarthritis: is OA also part of the metabolic syndrome?[J]. Skeletal Radiol,2009(38): 1147-1151.
    [27]Velasquez MT, Katz JD. Osteoarthritis: another component of metabolic syndrome?[J]. Metab Syndr Relat Disord, 2010(8): 295-305.
    [28]Katz JD, Agrawal S, Velasquez M. Getting to the heart of the matter: osteoarthritis takes its place as part of the metabolic syndrome[J]. Curr Opin Rheumatol, 2010(22): 512-519.
    [29]Masuko K, Murata M, Suematsu N, Okamoto K, Yudoh K, et al. A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation[J]. Clin Exp Rheumatol, 2009(27): 347-353.
    [30]Javaid MK, Lynch JA, Tolstykh I, Guermazi A, Roemer F, et al. Pre-radiographic MRI findings are associated with onset of knee symptoms: the most study[J]. Osteoarthritis and Cartilage, 2010(18): 323-328.
    [31]Davies-Tuck ML, Hanna F, Davis SR, Bell RJ, Davison SL, et al. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women - a prospective cohort study[J]. Arthritis Research & Therapy, 2009(11): R181.
    [32]Tsezou A, Iliopoulos D, Malizos KN, Simopoulou T. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes[J]. J Orthop Res, 2010(28): 1033-1039.
    [33]Soran N, Altindag O, Cakir H, Celik H, Demirkol A, et al. Assessment of paraoxonase activities in patients with knee osteoarthritis[J]. Redox Rep, 2008(13): 194-198.
    [34]Vaillancourt F, Fahmi H, Shi Q, Lavigne P, Ranger P, et al. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase[J]. Arthritis Res Ther, 2008(10): R107.
    [35]Collerton J, Davies K, Jagger C, Kingston A, Bond J, et al. Health and disease in 85 year olds: baseline findings from the Newcastle 85+ cohort study[J]. Bmj, 2009(339): b4904.
    [36]White WB. Defining the problem of treating the patient with hypertension and arthritis pain[J]. Am JMed, 2009(122): S3-9.
    [37]White WB, Pepine CJ, Weber MA. The potential role of nitric oxide in cardiovascular safety when treating patients with osteoarthritis and hypertension: a moderated panel discussion[J]. Am JMed, 2009(122):S23-25.
    [38]White WB. The potential role of nitric oxide in cardiovascular safety when treating osteoarthritis in patients with hypertension. Introduction[J]. Am JMed, 2009(122): S1-2.
    [39]Findlay DM. Vascular pathology and osteoarthritis[J]. Rheumatology (Oxford),2007(46): 1763-1768.
    [40]Mader R, Lavi I. Diabetes mellitus and hypertension as risk factors for early diffuse idiopathic skeletal hyperostosis (DISH)[J]. Osteoarthritis Cartilage, 2009(17): 825-828.
    [41]Dahaghin S, Bierma-Zeinstra SM, Koes BW, Hazes JM, Pols HA. Do metabolic factors add to the effect of overweight on hand osteoarthritis? The Rotterdam Study[J]. Ann Rheum Dis, 2007(66): 916-920.
    [42]Berenbaum F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype[J]. Ann Rheum Dis, 2011(70): 1354-1356.
    [43]Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010(87): 4-14.
    [44]Sturmer T, Brenner H, Brenner RE, Gunther KP. Non-insulin dependent diabetes mellitus (NIDDM) and patterns of osteoarthritis. The Ulm osteoarthritis study[J]. Scand J Rheumatol, 2001(30):169-171.
    [45]Kelley KM, Russell SM, Matteucci ML, Nicoll CS. An insulin-like growth factor I-resistant state in cartilage of diabetic rats is ameliorated by hypophysectomy. Possible role of metabolism[J]. Diabetes, 1993(42): 463-469.
    [46]Atayde SA, Yoshinari NH, Nascimento DP, Catanozi S, Andrade PC, et al. Experimental diabetes modulates collagen remodelling of joints in rats[J]. Histol Histopathol, 2012(27): 1471-1479.
    [47]Singh G, Miller JD, Lee FH, Pettitt D, Russell MW. Prevalence of cardiovascular disease risk factors among US adults with self-reported osteoarthritis: data from the Third National Health and Nutrition Examination Survey[J]. Am JManag Care, 2002(8): S383-391.
    [48]Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study[J]. J Rheumatol, 1995(22): 1118-1123.
    [49]Waine H, Nevinny D, Rosenthal J, Joffe IB. Association of osteoarthritis and diabetes mellitus[J], Tufts Folia Med, 1961(7): 13-19.
    [50]Cimmino MA, Cutolo M. Plasma glucose concentration in symptomatic osteoarthritis: a clinical and epidemiological survey[J]. Clin Exp Rheumatol, 1990(8): 251-257.
    [51]Frey MI, Barrett-Connor E, Sledge PA, Schneider DL, Weisman MH. The effect of noninsulin dependent diabetes mellitus on the prevalence of clinical osteoarthritis. A population based study[J]. J Rheumatol, 1996(23): 716-722.
    [52]risk Pocd, factors among US adults with self-reported osteoarthritisSchellevis FG, van der Velden J, van de Lisdonk E, van Eijk JT, et al. Comorbidity of chronic diseases in general practice[J]. JClin Epidemiol, 1993(46): 469-473.
    [53]Rosa SC, Goncalves J, Judas F, Mobasheri A, Lopes C, et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage[J]. Arthritis Research & Therapy, 2009(11):R80.
    [54]Roemer FW, Zhang Y, Niu J, Lynch JA, Crema MD, et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study[J]. Radiology, 2009(252): 772-780.
    [55]Lago R, G6mez R, Lago F, Gomez-Reino J, Gualillo O. Leptin beyond body weight regulation--Current concepts concerning its role in immune function and inflammation[J]. Cellular Immunology, 2008(252):139-145.
    [56]Power J, Poole KE, van Bezooijen R, Doube M, Caballero-Alias AM, et al. Sclerostin and the regulation of bone formation: Effects in hip osteoarthritis and femoral neck fracture[J]. J Bone Miner Res, 2010(25): 1867-1876.
    [57]Mutabaruka M-S, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression[J], Arthritis Research & Therapy, 2010(12): R20.
    [58]Ku JH, Lee CK, Joo BS, An BM, Choi SH, et al. Correlation of synovial fluid leptin concentrations with the severity of osteoarthritis[J]. Clin Rheumatol, 2009(28): 1431-1435.
    [59]Sandell LJ. Obesity and osteoarthritis: Is leptin the link?[J]. Arthritis & Rheumatism, 2009(60):2858-2860.
    [60]Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, et al. Evidence for a key role of leptin in osteoarthritis[J]. Arthritis Rheum, 2003(48): 3118-3129.
    [61]Vuolteenaho K, Koskinen A, Kukkonen M, Nieminen R, Paivarinta U, et al. Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage--Mediator Role of NO in Leptin-Induced PGE2, IL-6, and IL-8 Production[J]. Mediators of Inflammation, 2009(2009): 1-10.
    [62]Gandhi R, Takahashi M, Syed K, Davey JR, Mahomed NN. Relationship between body habitus and joint leptin levels in a knee osteoarthritis population[J]. J Orthop Res, 2010(28):329-333.
    [63]Fernandez-Moreno M, Rego I, Carreira-Garcia V, Blanco FJ. Genetics in osteoarthritis[J]. Curr Genomics,2008(9):542-547.
    [64]Sowers M, Karvonen-Gutierrez CA, Palmieri-Smith R, Jacobson JA, Jiang Y, et al. Knee osteoarthritis in obese women with cardiometabolic clustering[J]. Arthritis Rheum, 2009(61):1328-1336.
    [65]Griffin TM, Huebner JL, Kraus VB, Guilak F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis[J]. Arthritis Rheum, 2009(60): 2935-2944.
    [66]Kumpers P, Gueler F, Rong S, Mengel M, Tossidou I, et al. Leptin is a coactivator of TGF-beta in unilateral ureteral obstructive kidney disease[J]. Am J Physiol Renal Physiol, 2007(293):F1355-1362.
    [67]Anitua E, Sanchez M, de la Fuente M, Azofra J, Zalduendo M, et al. Relationship between Investigative Biomarkers and Radiographic Grading in Patients with Knee Osteoarthritis[J]. Int JRheumatol, 2009(2009): 747432.
    [68]Wu Q, Kim KO, Sampson ER, Chen D, Awad H, et al. Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice[J]. Arthritis Rheum,2008(58):3132-3144.
    [69]Andriamanalijaona R, Felisaz N, Kim SJ, King-Jones K, Lehmann M, et al. Mediation of interleukin-1 beta-induced transforming growth factor betal expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: possible cooperation with activator protein 1[J]. Arthritis Rheum, 2003(48): 1569-1581.
    [70]Horie T, Ono K, Kinoshita M, Nishi H, Nagao K, et al. TG-interacting factor is required for the differentiation of preadipocytes[J]. JLipid Res, 2008(49):1224-1234.
    [71]Mackenzie IS, Rutherford D, MacDonald TM. Nitric oxide and cardiovascular effects: new insights in the role of nitric oxide for the management of osteoarthritis[J]. Arthritis Res Ther, 2008(10 Suppl 2): S3.
    [72]Matsumoto T CG, Gharaibeh B, et al. Blocking VEGF as a potential approach to improve cartilage healing after osteoarthritis.pdf[J]. J Musculoskelet Neuronal Interact, 2008(8): 316-317.
    [73]Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone[J]. Arthritis Rheum, 2008(58): 442-455.
    [74]Beamer B, Hettrich C, Lane J. Vascular Endothelial Growth Factor: An Essential Component of Angiogenesis and Fracture Healing[J]. HSS J, 2009.
    [75]Fay J, Varoga D, Wruck CJ, Kurz B, Goldring MB, et al. Reactive oxygen species induce expression of VEGF in chondrocytes and articular cartilage explants[J]. Arthritis Research & Therapy, 2006(8): R189.
    [76]Conaghan PG, Vanharanta H, Dieppe PA. Is progressive osteoarthritis an atheromatous vascular disease?[J]. Ann Rheum Dis, 2005(64):1539-1541.
    [77]de Haro Miralles J, Martinez-Aguilar E, Florez A, Varela C, Bleda S, et al. Nitric oxide: link between endothelial dysfunction and inflammation in patients with peripheral arterial disease of the lower limbs[J]. Interact Cardiovasc Thorac Surg, 2009(9): 107-112.
    [78]Abramson SB. Nitric oxide in inflammation and pain associated with osteoarthritis[J]. Arthritis Res Ther, 2008(10 Suppl 2): S2.
    [79]Berenbaum F. New horizons and perspectives in the treatment of osteoarthritis[J]. Arthritis Res Ther, 2008(10 Suppl 2): S1.
    [80]Anagnostis P, Athyros VG, Adamidou F, Florentin M, Karagiannis A. Vitamin D and cardiovascular disease: a novel agent for reducing cardiovascular risk?[J]. Curr Vasc Pharmacol, 2010(8):720-730.
    [81]Kim MK, II Kang M, Won Oh K, Kwon HS, Lee JH, et al. The association of serum vitamin D level with presence of metabolic syndrome and hypertension in middle-aged Korean subjects[J]. Clin Endocrinol (Oxf), 2010(73): 330-338.
    [82]Parker J, Hashmi O, Dutton D, Mavrodaris A, Stranges S, et al. Levels of vitamin D and cardiometabolic disorders: systematic review and meta-analysis[J], Maturitas, 2010(65): 225-236.
    [83]Chaganti RK, Parimi N, Cawthon P, Dam TL, Nevitt MC, et al. Association of 25-hydroxyvitamin D with prevalent osteoarthritis of the hip in elderly men: the osteoporotic fractures in men study [J]. Arthritis Rheum, 2010(62): 511-514.
    [84]Bergink AP, Uitterlinden AQ Van Leeuwen JP, Buurman CJ, Hofman A, et al. Vitamin D status, bone mineral density, and the development of radiographic osteoarthritis of the knee: The Rotterdam Study[J]. JClin Rheumatol, 2009(15): 230-237.
    [85]Davidson RK, Waters JG, Kevorkian L, Darrah C, Cooper A, et al. Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage[J]. Arthritis Res Ther, 2006(8): R124.
    [86]Corr M. Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis[J]. Nat Clin Pract Rheumatol, 2008(4): 550-556.
    [87]Lambrecht S, Verbruggen G, Elewaut D, Deforce D. Differential expression of alphaB-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis[J]. Arthritis Rheum,2009(60): 179-188.
    [88]Lanfranchi A, Porta F, Chirico G. Stem cells and the frontiers of neonatology[J]. Early Hum Dev, 2009(85): S15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700