胰岛素诱导基因(Insig2)在调控脂肪细胞分化与脂肪合成中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分葡萄糖浓度对3T3-L1细胞分化及insig-1和-2 mRNA表达的影响
     目的胰岛素诱导基因(insig)是近年来发现的新基因,在脂质合成与脂肪细胞的分化中发挥着重要的调控作用。观察不同葡萄糖浓度对3T3-L1细胞分化及insig-1,-2 mRNA表达的影响,探讨insig在脂肪细胞分化与脂肪代谢中的作用。
     方法将3T3-L1细胞分别在不同葡萄糖浓度(5.5mol/L和25mol/L)培养液中诱导分化,用油红“O”染色、RT-PCR和原位杂交技术检测脂肪细胞的分化、insig-1,-2 mRNA及脂肪细胞脂肪酸结合蛋白(AP_2) mRNA的表达。
     结果:随着3T3-L1细胞的分化,insig-1,-2 mRNA、AP_2 mRNA表达逐渐上调;但低糖诱导组的细胞分化程度显著低于高糖诱导组;低糖诱导组的insig-1,-2 mRNA表达较高糖诱导组明显增高(P<0.05),而AP_2 mRNA表达较高糖诱导组明显降低(P<0.05)。
     结论在3T3-L1细胞分化过程心中,insig基因表达逐渐上调,低糖时insig的表达上调更明显,此可能与低糖时脂肪细胞分化及脂质沉积相对受抑制有关。
     第二部分insig-2过表达对3T3-L1前脂肪细胞分化与相关基因的影响
     第一章EGFP-C_3-insig-2和pcDNA3.1(+)-insig-2真核表达质粒的构建及insig-2的亚细胞定位
     目的构建EGFP-C3-insig-2和pcDNA3.1(+)-insig-2融合基因真核表达质粒,探讨insig-2基因的亚细胞定位与表达,以及稳定转染的3T3-L1细胞insig-2过表达对前脂肪细胞分化的影响。
     方法采用RT-PCR法从3T3-L1细胞获取小鼠的全长insig-2基因,经T载体克隆、鉴定后,分别克隆入真核表达载体pEGFP-C_3及pcDNA3.1(+)中。酶切、测序对插入片段进行分析和鉴定后,用脂质体转染法将带绿色荧光蛋白的真核表达载体pEGFP-C_3瞬时转入3T3-L1细胞,通过荧光显微镜、RT-PCR检测其在3T3-L1细胞中的表达、定位及下游基因AP_2 mRNA的变化。
     结果:酶切、测序鉴定所插入片段的大小和基因序列准确无误,成功构建了重组质粒pEGFP-C_3-insig-2和pCDNA3.1(+)-insig-2融合基因真核表达载体。pEGFP-C_3-insig-2真核表达载体瞬时转染3T3-L1细胞后,该融合蛋白在转染的细胞胞浆中表达;insig-2基因的转录明显增强,而其下游基因AP2 mRNA表达明显下调。
     结论:insig-2蛋白在3T3-L1细胞中定位于胞浆,过表达时影响其脂肪代谢。
     第二章insig-2基因稳定转染对3T3-L1细胞分化和脂质合成的影响
     目的:研究pCDNA3.1(+)-insig-2稳定转染3T3-L1细胞后insig-2基因过表达在3T3-L1脂肪细胞分化和脂肪形成中的作用。
     方法:用脂质体转染法将重组质粒pCDNA3.1(+)-insig-2稳定转染3T3-L1细胞。转染后,分别用流式细胞仪检测pCDNA3.1(+)-insig-2转染组、pCDNA3.1(+)空质粒组及未转染的3T3-L1细胞(空白对照组)的细胞周期与凋亡率;用油红“O”染色鉴定分析细胞的诱导分化;用半定量RT-PCR测定各组3T3-L1前脂肪细胞及分化过程中insig-2、insig-1、固醇调节元件结合蛋白(sterol regulatory element binding proteins SREBPs)、SREBP裂解活性蛋白(cleavage-actiwating protein SCAP)、脂肪酸合成酶(FAS)、AP2基因的mRNA表达;用免疫组织化学法检测细胞转染后的insig-2蛋白表达。
     结果:半定量RT-PCR检测和免疫组化分析结果显示,insig-2 mRNA及蛋白表达较转染前及空质粒转染组、空白对照组均显著增加,提示pCDNA3.1(+)-insig-2成功转染的3T3-L1细胞呈高效表达,但对其前体细胞的细胞周期及凋亡率无明显影响;诱导分化后的第6和12天,pCDNA3.1(+)-insig-2转染组的成熟脂肪细胞明显少于两个对照组,且分化过程中三组细胞生长曲线无明显差异。转染后的3T3-L1前脂肪细胞insig-2相关基因insig-1、FAS、AP2、SREBPlc mRNA均表达下调;随着细胞的分化,上述基因mRNA表达均上调,但pCDNA3.1(+)-insig-2转染组的insig-2较其他两个对照组显著上调,而FAS和AP2 mRNA明显下调。
     结论:转染后insig-2高表达抑制3T3-L1前脂肪细胞的分化及脂质合成相关基因表达。
     第三章insig-2基因过表达对3T3-L1脂肪细胞脂联素表达的影响
     目的:脂联素对糖代谢、脂代谢和能量平衡的调控有重要作用。观察pCDNA3.1(+)-insig-2转染后3T3-L1前脂肪细胞脂联素mRNA表达及其分化过程中的脂联素分泌,探讨insig基因过表达对脂肪细胞脂联素分泌的影响。
     方法:以转染pCDNA3.1(+)及未转染的3T3-L1细胞为对照组,半定量RT-PCR检测pCDNA3.1(+)-insig-2转染后24 h和72h 3T3-L1前脂肪细胞的脂联素mRNA表达。用ELISA法测定转染后3T3-L1前脂肪细胞及其在诱导分化过程中的脂联素动态变化。
     结果:3T3-L1前脂肪细胞pCDNA3.1(+)-insig-2转染后,脂联素mRNA的表达量明显降低;3T3-L1前脂肪细胞的脂联素分泌较对照组明显降低(P<0.05);在诱导分化的第0~4天,三组的脂联素下降无明显差异,但此后其分泌逐渐升高,转染组较其他两个对照组明显降低(P<0.05)。
     结论:转染后insig-2过表达抑制3T3-L1脂肪细胞脂联素mRNA和蛋白的表达。
Part 1 Effects of different concentration of glucose on the expression ofinsig-1, -2 and the differentiation in 3T3-L1 preadipocytes
     Objective: Insulin-induced gene 1 (insig-1), plays an important regulatory role in lipogenesis andadipocytes differentiation. The effects of insig-lon adipocytes differentiation and lipogenesis, andthe expression of insig-1, -2 during 3T3-L1 preadipocyte differentiation under differentconcentration of glucose were investigated.
     Methods: 3T3-L1 preadipocytes differentiation was induced with different concentration of glucose(5.5 and 25mol/L). Cell differentiation was observed by oil red O staining, RT-PCR and in situhybridization were used to detect the expressions of insig-1,-2, and fatty acid binding protein(AP_2)mRNA
     Results: With 3T3-L1 preadipocytes differentiation, the expression of insig-1,2 and AP_2 mRNAwas gradually increased. However, the differentiated cell extent under low glucose concentrationwas significantly lower than that under high glucose concentration. A higher expression of insig-1,-2 mRNA with a lower expression of AP_2 mRNA was observed under low glucoseconcentration (P<0.05).
     Conclusion: During 3T3-L1 preadipocytes differentiation, the expression of insig was graduallyincreased. In low glucose condition, much higher expression of insig was probably related to ainhibition of cell differentiation and lipidoses
     Part 2 Effects of insig-2 overexpression on 3T3-L1 preadipocytesdifferentiation and the expression of related genes
     Chapter 1Construction of eukaryotic expression vectors EGFP-C3-insig-2,pcDNA3.1(+)-Insig-2, and the subcellular localization of insig-2 in 3T3-L1preadipocytes
     Objective: To construct the eukaryotic expression vectors EGFP-C3-insig-2, pcDNA3.1(+)-Insig-2and to subcellularly localize insig-2 protein in 3T3-L1 preadipocytes.
     Method: The open reading frame (ORF) of insig-2 was obtained from 3T3-L1 pre- adipocytes byRT-PCR. The fragment encoding for insig-2 gene was inserted into pUCm-T vector, sequenced, andidentified by PCR. pUCm-T-insig-2 was digested by two restrictive enzymes and insig-2 wassubcloned into eukaryotic expressing vector EGFP-C_3 and pcDNA3.1(+)-Insig-2. The recombinedplasmid EGFP-C3-insig-2 was transfected transiently into 3T3-L1 preadipocytes withLipofeetamineTM 2000 Transfection Reagent. Green fluorescence protein expression andlocalization of the plasmid were determined by fluorescence microscopy, and the expression ofdown-stream gene AP_2 was detected by RT-PCR.
     Results: Eukaryotic expression vectors EGFP-C3-insig-2 and pcDNA3.1(+)-Insig-2 wasconstructed successfully. After EGFP-C3-insig-2 transfected into 3T3-L1 preadipocytes,insig-2protein was found to localize in cytoplasm other than nucleus. RT-PCR showed that the amount ofinsig-2 transcription was significantly enhanced with a lowered expression of its down-stream geneAP2.
     Conclusion: Overexpression of insig-2 could produce an impact on cell lipid metabolism during3T3-L1 preadipocyte differentiation.
     Chapter 2Effects of insig-2 stable expression on 3T3-L1 preadipocytes differentiation andlipogenesis
     Objective: To study the effects of insig-2 stable expression on 3T3-L1 preadipocytes differentiationand lipogenesis.
     Methods: The recombinant plasmid pcDNA3.1(+)-insig-2 and control plasmid pcDNA3.1(+) weretransfected into 3T3-L1 preadipocytes with LipofeetamineTM 2000 Transfection Reagent and thepositive clones were screened by G418. Cell cycles and apoptosis index in pcDNA3.1(+)-insig-2,pcDNA3.1(+) and non-transfected cells were analyzed by Flow Cytometry(FCM). Celldifferentiation and cell growth were identified using oil red O staining and cell growthcurves, respectively. Semi-quantitative RT-PCR was performed to detect the expression of insig-1,insig-2, sterol regulatory element binding proteins (SREBPs), cleavage-activating protein (SCAP),fatty acid synthetase (FAS), and fatty acid binding protein (AP2) in 3T3-L1 pre adipocytes anddifferentiation-induced adipocytes. The expression of insig-2 protein was determined byimmunohistochemistry.
     Results: Semi-quantitative RT-PCR and immunohistochemistry showed that the expression ofinsig-2 in 3T3-L1 preadipocytes transfected with insig-2 was significantly increased than thattransfected with blank pcDNA3.1(+) vector and none-transfected cells, suggesting thatpcDNA3.1(+)-insig-2 was transfected in 3T3-L1 preadipocytes successfully with high-efficientexpression. There was no remarkable effect on 3T3-L1 preadipocytes cell cycle and apoptosis indexwith insig-2 gene stably expression. After 6 and 12 days of induction, it was found that the maturedadipocytes in transfected pcDNA3.1(+)-insig-2 were showed to have bright red fat droplets with nosignificant changes of the cell growth curve. After transfected with pcDNA3.1(+)-insig-2, theexpression of insig-2 related genes including insig-1, FAS, AP2, and SREBP1c was down-regulated,but with up-expressions during cell differentiation. However, the expression of insig-2 increasedrapidly than that of FAS and AP2.
     Conclusion: Overexpression of insig-2 could inhibit 3T3-L1 preadipocytes differentiation intomature adipocytes and suppress the expression of genes related to lipogenesis.
     Chapter 3Effects of insig-2 stable expression on adiponectin secretion in 3T3-L1preadipocytes
     Objective: Adiponectin plays an important role in the regulation of glucose and lipid metabolismand energy balance. To approach the influence of overexpression of insig-2 on adiponectin secretionin 3T3-L1 adipocytes, the expression of adiponectin mRNA and the adiponectin secretion duringpreadipocytes differentiation were observed.
     Methods: After 24 and 72 h of transfection, semi-quantitative RT-PCR was performed to detect theexpression of adiponectin mRNA in transfected with cDNA3.1(+)-insig-2) and transfected withblank pcDNA3.1(+) vector or non-transfected cells. Adiponectin was detected by ELISA.
     Results: RT-PCR showed that the expression of adiponectin mRNA was decreased significantlyafter insig-2 gene stable expression in 3T3-L1 preadipocytes with a rather low level of adiponectinsecretion in the culture medium (P<0.05). It was constently low during 0~4 days of induction, thengradually increased, but was still significant lower in transfected with cDNA3.1(+)-insig-2) cells(P<0.05).
     Conclusion: Overexpression of insig-2 could suppressed the expression of adiponectin mRNA andprotein in 3T3-L1 preadipocytes.
引文
[1] Timothy F. Sterol Regulatory Elementbinding Proteins (SREBPs): Key Regulators of Nutritional Homeostasis and Insulin Action. J Biol Chem 2000, 275(42): 32379-32382
    [2] Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid regulators of lipid synthetic genes. Prog Lipid Res 2001, 40: 439-452.
    [3]. Yang T, Wright ME, Yabe D, etal. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002, 110(4): 489-500
    [4]. McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid sythesis. Biochem Cell Biol 2004, 82: 201~
    [5] Yabe D, Brown MS, Goldstein JL. Insig-2. a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 2002, 99(20): 12753-12758
    [6] Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood (sterol regulatory element-binding protein sytranscriptiony Site-1 proteaseySite-2 proteaseysterol-sensing domain). Proc. Natl. Acad. Sci. USA 1999,96, 11041-11048
    [7] Nohturfft A, Brown M S, Goldstein J L. Topology of SREBP cleavage-activating protein, a Polytopic membrane protein with a sterol-sensing domain. J Biol Chem 1998,273:17243-17250
    [8] Horton JD. Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans 2002, 30: 1091~1095.
    [9] Shimano H. SREBP as lipid synthetic genes in energy metabolism. Vitam Horm, 2002, 65: 167~19
    [10]., Kim J B and Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development 1996, 10: 1096-1107
    [11] Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE.Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem. 2003,278(38):36652-60.
    [12] Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory element-binding protein-1c(SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem 2002, 277: 35625-35634
    [13] Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell. 2005,19(6): 829-840
    [4] Sever N, Yang T, Brown M S etal. Accelerated Degradation of HMG CoA Reductase Mediated by Binding of Insig-1 to Its Sterol-Sensing Domain. Mol Cell 2003, 11(1): 25-33
    [15] Li J, Takaishi K, Cook W, McCorkle SK, and Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100(16): 9476-9481
    [16] Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 2003, 100(6): 3155-3160
    [17] Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA 2004, 101(18): 7106-7111
    [18]. Lee S, Lee DK, Choi E, Lee JW. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes. Mol Endocrinol, 2005, 19(2): 399-408
    [1] Spigelman BM, Flier JS. Obsity and the regulation of energy balance. Cell 2001,104:531~543
    [2] Prines JB, O'Rahilly S. Regulation of adipose cell number in man. Clin Sci,1997, 97:3~11
    [3] Chandalia M, Abate N Metabolic complications of obesity: inflated or inflamed? J Diabetes Complications. 2007, 21(2): 128-36
    [4] Esposito K, Pontillo A, Di Palo C, et a.l Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized tria.l JAMA, 2003, 289: 1799-1804.
    [5] Hoist D, Grimaldi P A. New factor in the regulation of adipose differentiation and metabolism. Curr Opin lipidol, 2002, 13(3): 241-245
    [6] Kim J, Temple KA, Jones SA etal. Differential modulation of 3T3-L1 adipogenesis mediated by 11beta -hydroxysteroid dehydrogenase-1 levels. J Biol Chem. 2007 10:1074
    [7] Boone C, MourotJ, Gregiore F, et al. The adipose conversion process: regulation by extracelular and intracelular factors. Reprod Nutr Dec, 2000, 40: 325-358.
    [8] 张崇本.脂肪细胞的分化及调控.生理科学进展 2004,35(1):7-12
    [9] Rawson RB. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem Soc Symp. 2003, (70):221-31.
    [10] Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid regulators of lipid synthetic genes. Prog Lipid Res, 2001, 40: 439-452.
    [11] Horton JD. Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans 2002, 30: 1091~1095.
    [12] Shimano H. SREBP as lipid synthetic genes in energy metabolism. Vitam Horm, 2002, 65:167~19
    [13] Kim J B and Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes&Development, 1996, 10:1096-1107
    [14] Kim J B, Wright H M, Wright M, Spiegelman B M. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci USA, 1998, 95: 4333-4337
    [15] Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem, 2002,277:35625-35634
    [16] McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol. 2004,82(1):201-11.
    [17] Yabe D, Brown MS, Goldstein JL. Insig-2. a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 2002, 99(20): 12753-12758
    [18] Li J, Takaishi K, Cook W, McCorkle SK, and Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100(16): 9476-9481
    [19] Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab 2002, 282(6): E1334-1341
    [20] Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A 2003, 100(6): 3155-3160
    [21] Ou J., Tu H., Shan B.et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. PNAS, 1998, 6027-6032
    [22] Ross S A, Chen X L, Hope H, etal. Development and comparison of two 3T3-L1 adipocyte models of insulin resistance: increased glucose flux vs glucosamine treatment. Biochem Biophys Res. Commun,2000,273:1033-1041
    [23] Ntambi JM, Kim YC.Adipocyte differentiation and gene expression. Nutr, 2000,130(12): 3122-3126
    [24] Nohturfft A, Yebe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 2000, 102(3): 315-323
    [25] Dobrosotskaya IY, Goldstein JL, Brown MS, etal. Reconstitution of sterol-regulated endoplasmic reticulum-to-Golgi transport of SREBP-2 in insect cells by co-expression of mammalian SCAP and Insigs. J Biol Chem, 2003, 278(37):35837-35843
    [26] Rawson RB. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem Soc Symp 2003, (70): 221-231
    [27] Yang T, Wright ME, Yabe D, etal.Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002, 110(4): 489-500
    [28] Horton JD, Shah NA, Wardngton JA, etal. Combinedb analysis of oligonucleotide microarray data from transgenic And knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA, 2003, 100(21): 12027-12032
    [29] Horton JD, Shimomura I, Brown MS, etal. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest, 1998, 101(11): 2331-2339
    [30] Repa J. J, Liang G., Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXR alpha and LXR beta. Genes Dev. 2000,14:2819-2830
    [31] Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem, 2 002, 277:35625-35634
    [32] Sever N, Yang T, Brown M S etal. Accelerated Degradation of HMG CoA Reductase Mediated by Binding of Insig-1 to Its Sterol-Sensing Domain. Mol Cell, 2003,11(1): 25-33
    [33] Lee PC, Sever N, Debose-Boyd RA. Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2. J Biol Chem. 2005, 280(26): 25242-9..
    [34] Coe N R, Bernlonr D A, Flier J S. Physiological properties of and functions of intmcellular fatty acid-binding protein. Biochim Biophys Acta, 2000, 1391(3): 287-306
    [35] Hunt C R, RO J H, Dobson D E, et al. Adipocyte P2 gene: developmental expression and homology of 5'flanking sequences among fat cel—specific genes. Proc Natl Acad Sci USA 1986. 83: 3786-3790
    [36] Ross S R, Graves R A, Greenstein A, et al. A fat-specific enhancer is the primary determinant of gene expressionfor adipocyte P2 in vivo. Proc Natl Acad Sci USA. 1990, 7(24): 9590-9594
    [37] Brandebourg TD, Hu CY Regulation of differentiating pig preadipocytes by retinoic acid. J Anim Sci. 2005,83(1):98-107
    [38] Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA 2004, 101(18): 7106-7111
    [1] Guerre-Millo M. Adipose tissue hormones. J Endocrinol Invest 2002, 25(10): 855-861
    [2] Fruhbeck G, Gomez-Ambrosi J, Mumzabal FI, et al. The adipocyte: a model for integration of endocrine and metabohc signaling energy metabolism regulation. AmJ Physiol. 2001,280:827-847.
    [3] Peng, Y, Schwarz E. J, Lazar, M. A, et al. Cloning, human chromosomal assignment, and adipose and hepatic expression of the CL-6/INSIG1 gene.. Genomics 1997,43: 278-284,.
    [4] Yabe, D.; Brown, M. S.; Goldstein, J. L.Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Nat. Acad. Sci. USA, 2002, 99: 12753-12758,.
    [5]] Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid regulators of lipid synthetic genes. Prog Lipid Res, 2001, 40: 439~452.
    [6] Horton JD. Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans, 2002, 30:1091~1095.
    [7]. Yang T, Wright ME, Yabe D, etal. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002, 110(4): 489-500
    [8]. McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid sythesis. Biochem Cell Biol 2004, 82:201~
    [9] Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood (sterol regulatory element-binding protein sytranscriptionySite-1 proteaseySite-2 proteaseysterol-sensing domain). Proc. Natl. Acad. Sci. USA 1999, 96: 11041-11048
    [10] Kast-Woelbern HR, Dana SL, Cesario RM, etal. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem, 2004, 279(23): 23908-23915
    [11] Adams C, Goldstein JL, Brown MS. Cholesterolinduced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles Proc Natl Acad Sci USA, 2003, 100: 10647-10652.
    [12] Song BL, Sever N, DeBose-Boyd RA Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoAreductase. Mol Cell 2005,19(6): 829-840
    [13] Sever, N., et al.. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 2003,278:52479-52490
    [14 Engelking LJ, Liang G, Hammer RE, etal. Schoenheimer effect explained-feedback regulation of cholesterol synthesis in mice mediated by lnsig proteins. J Clin Invest. 2005, 115: 2489-2498
    [15] Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA, 2004, 101(18): 7106-7111
    [16] Li J, Takaishi K, Cook W, McCorkle SK, and Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100(16): 9476-9481
    [17] Engelking LJ, Kuriyama H, Hammer RE, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest. 2004, 113(8): 1168-75.
    [18] Diamond RH., Du K., LeeV M, et al. Novel delayed-early and highly insulin-induced growth response genes: Identification of HRS, a potential regulator of pre-mRNA splicing. J Biol Chem. 1993,268:15185-15192. [19] Feramisco J D., Goldstein,JL.,Brown M S. Membrane Topology of Human Insig-1, a Protein Regulator of Lipid Synthesis. J. Biol. Chem., 2004, 279(9), 8487-8496
    [20]Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A 2003,100(6): 3155-3160
    [21] Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab 2002, 282(6): E1334-1341
    [22]Chalfie M,Tu Y,Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science 1994, 263: 802-805.
    [23] Hunt CR, RO J H, Dobson D E, Min H Y, Spiegelman B M. Adipocyte P2 gene: developmental expression an d homology of 5'flanking sequences among fat cel—specific genes. Proc Natl Acad Sci USA 1986. 83: 3786-3790
    
    [24] Coe N R, Bernlonr D A, Flier J S, Physiological properties of and functions of intrcellular fatty acid—binding protein. Biochim Biophys Acta, 2000, 1391(3): 287-306
    
    [1] Prines JB,O'Rahilly S. Regulation of adipose cell number in man. Clin. Sci 1997, 97:3-11
    [2] Horton JD. Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans 2002, 30:1091-1095.
    [3] McPherson R, Gauthier A.Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis.Biochem. Cell Biol. 2004,82(1):201-11.
    [4] Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid regulators of lipid synthetic genes. Prog Lipid Res, 2001, 40:439-452.
    [5] Shimano H. SREBP as lipid synthetic genes in energy metabolism. Vitam Horm, 2002, 65:167-19
    [6] Brown MS,Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood (sterol regulatory element-binding protein sytranscriptionySite-1 proteaseySite-2 proteaseysterol-sensing domain). Proc. Natl. Acad. Sci USA 1999, 96, 11041-11048
    [7] Yabe D, Brown MS, Goldstein J, et al. Insig-2. a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc NatlAcad Sci USA 2002, 99(20): 12753-12758
    [8] Nohturfft A, Yebe D, Goldstein JL, et al. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 2000, 102(3): 315-323
    [9] Dobrosotskaya IY, Goldstein JL, Brown MS, et al. Reconstitution of sterol-regulated endoplasmic reticulum-to-Golgi transport of SREBP-2 in insect ceils by co-expression of mammalian SCAP and Insigs. J Biol Chem, 2003, 278(37):35837-35843
    [10] Rawson RB. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem Soc Symp, 2003, (70): 221-231
    [11] Yang T, Wright ME, Yabe D, etal. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002, 110(4): 489-500
    [12] Edwards PA, Tabor D, Kast HR, etal. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta. 200015; 1529(1-3):103-13
    [13] Spigelman BM, Flier JS. Obsity and the regulation of energy balance. Cell 2001,104:531~543
    [14] Prines JB, O'Rahilly S. Regulation of adipose cell number in man. Clin Sci 1997, 97: 3~11
    [15] Rosen ED, Spiegelman BM. Adipocytes as regulators of energy alance and glucose homeostasis. Nature. 2006, 444(7121): 847-853
    [16] Boone C, MourotJ, Gregiore F. et al. The adipose conversion process: regulation by extracelular and intracelular factors. Reprod Nutr Dec 2000, 40: 325-358.
    [17] Avram MM, Avram AS, James WD. Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol. 2007, 56(3): 472-92
    [18] Farmer SR. Transcriptional control of adipocyte formation Cell Metab. 2006 4(4): 263-73
    [19] Chen, G., Liang, G., Ou, J et. al. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl. Acad Sci. USA 2004, 101: 11245-11250
    [20] Kim J B and Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes & Development, 1996,10:1096-1107
    [21] Kim J B, Wright H M, Wright M, Spiegelman B M. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci USA 1998, 95:4333-4337
    [22] Kim J B, Wright H M, Wright M, Spiegelman B M. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci U SA 1998, 95:4333-4337
    [23] Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem. 2003,278(38):36652-60.
    [24] Loyd DJ, Trembath RC, ShackletonS. A novel interaction between lamin A and other laminopathies. Hum Mol Genet 2002,11:769_777
    [25] Kast-Woelbern HR, Dana SL, Cesario RM, Sun L. etal. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem, 2004, 279(23): 23908-23915
    [26] Engelking LJ, Liang G, Hammer RE, etal. Schoenheimer effect explained-feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin. Invest 2005, 115: 2489-2498
    [27] Li J, Takaishi K, Cook W, McCorkle SK, and Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100(16): 9476-9481
    [28] Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA, 2004, 101(18): 7106-7111
    [29] Engelking LJ, Kufiyama H, Hammer RE, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest. 2004, 113(8): 1168-75.
    [30] Adams C, Goldstein JL, Brown MS. Cholesterol induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc Natl Acad Sci USA, 2003, 100(19): 10647-10652.
    [31] Tong Q, Hotamisligil G S. Molecular mechanisms of adipocyte ifferentiation. Rev Endoc Metab Disorders,2001,2:349~355
    [32] Clarke SD. Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation J Anim Sci. 1993, 71(7): 1957-65
    [33] Lee PCW, Sever N, DeBose-Boyd R A, et al. Isolation of Sterol-resistant Chinese Hamster Ovary Cells with Genetic Deficiencies in Both Insig-1 and Insig-2. J. Biol. Chem., 2005,280(26): 25242-25249
    [34] Sever, N., Lee, P.C.W., Song, B.L., et al. Isolation of mutant cells lacking Insig-1 through selection with SR-12813, an agent that stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 2004, 279::43136-43147.
    [35] Sever, N., et al.. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 2003,278:52479-52490
    [36] Sever, N., Yang, T., Brown, M.S., R.A. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 2003, 11:25-33.
    [37] Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab, 2002, 282(6): E1334-1341
    [38] Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 2003, 100(6): 3155-3160
    [1] Havel, P. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr. Opin. Lipidol. 2002.13: 51-59. [2] Berg AH, Combs TP, Scherer PE, et al. Acrp30/Adipone ctin: an adipocytokine regulating glucose and lipid metabolism. Trends Endocrinol Metabolism 2002, 13 (2) : 84-89
    [3] Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001.7: 941-946 [4] Yamauchi, TJ. Kamon, Y. Minokoshi, Y. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med 2002,8: 1288-1295
    [5] Halleux CM, Takahashi M, DelporteML, et al.Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophy Res Commun 2001, 288(5):1 102-107
    [6]Fasshauer M,Klein J, Neumann S,Eszlinger M,et al. Hormonal regulation adiponectin gene expression in 3T3-L1 adopocytes. Biochem Biophy Res Commun 2002, 290(3):1089-089
    [7] Seo JB, Moon HM, Noh MJ, et al. Adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding proteinlc regulates mouse adiponectin expression. J Biol Chem. 2004, 279(21): 22108-22117.
    [8]Yang WS, JengCY, WuTJ, Tanaka S, el al. Sythetic proliferator proliferator-activated receptor-r agonist,rosigliton increased plasma levels of adiponectin in type 2diabetes patients. Diabetes Care 2002,25(2): 376-380
    [9] Saito K, To T, Yoda M, et al Regulation of gelatin-binding protein 28 (GBP28) gene expression by C/EBP. Biol Pharm Bull 1999, 22(11): 1158-1162.
    
    [10]Shklyaev S Aslanidi G, Tennant M,et al Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci U S A 2003, 100(24): 14217-22.
    [11]Fu Y, Luo N, Klein RL,Garvey WT.Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005,46(7):1369-79.
    [12]Diez JJ, Iglesias P. The role of novel adipocyte- derived hormone Adiponectin in human disease. Eur J Endocrinol, 2003,148(3): 293- 300
    [13]. Yamauchi, T., J. Kamon, H. Waki, Y. Imai, N. Shimozawa, K. Hioki, S. Uchida, Y. Ito, K. Takakuwa, J. Matsui, et al. 2003. Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis. J. Biol. Chem. 278: 2461-2468
    [14]Ouchi NS, Kihara Y, Arita Y, et al.. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-B signaling through a cAMP-dependent pathway. Circulation. 2000,102:1296-1301
    [15]Maeda M, Takahashi M, Funahashi T, et al. PPArY Ligands Increase Expression and Plasma Concentrations of Adiponectin, an Adipose-Derived Proteinn. Diabetes 2001,50:2094-2099,
    [16]McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid sythesis. Biochem Cell Biol, 2004,82:201-
    [17] Brown MS,Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood (sterol regulatory element-binding protein sytranscriptiony Site-1 proteasey Site-2 proteaseysterol-sensing domain) Proc. Natl. Acad. Sci. USA 1999, 96:11041-11048
    [18].Yang T , Wright ME, Yabe D, etal.Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002,110(4): 489-500
    [19].Weyer C, Funahashi T, Tanaka S, et aL Hypoadiponecfimia in obesity and type 2 diabetes: clese associafion with insulin resistance and hyperinsulinemie. J Clin Endocrinol Metab 2001,86: 1930-1935.
    
    [20]. 1 waki M,Matsuda M,Macda N,et al. Induction of adiponection, a fat-derived anti-diabetic antiatherogenic factor by nuclear receptor. Diabetes 2003, 52(7): 1655-1663
    [21]Rawson RB. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem Soc Symp 2003, (70): 221-231
    [22] McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig- SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol. 2004, 82(1): 201-11
    [23] Li J, Takaishi K, Cook W, et al. Insig-1 "brakes" lipogenesis in adipocytes and inhibitsdifferentiation of preadipocytes. Proc Natl Acad Sci USA, 2003, 100(16): 9476-9481
    [1] Diamond, RH, Du K, Lee, V M., et al. Novel delayed-early and highly insulin-induced growth response genes: Identification of HRS, a potential regulator of pre-mRNA splicing. J Biol Chem. 1993,268:15185-15192.
    
    [2].Bortoff, K. D, Zhu CC, Hrywna, Y, et al. Insulin induction of pip 92, CL-6, and novel mRNAs in rat hepatoma. Endocr. 1997, 7(2):199-207
    [3].Peng, Y.; Schwarz, E. J.; Lazar, M. A.et al.Cloning, human chromosomal assignment, and adipose and hepatic expression of the CL-6/INSIG1 gene. Genomics 1997,43: 278-284
    [4] Yabe, D.; Brown, M. S.; Goldstein, J. L. : Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Nat Acad. Sci. 2002, 99: 12753-12758
    [5] Jamison D. Feramisco, Joseph L. Goldstein, and Michael S. Brown Membrane Topology of Human Insig-1, a Protein Regulator of Lipid Synthesis. J Biol Chem. 2004,279(9), 8487-8496
    [6]Yabe, D.; Komuro, R.; Liang, G; Goldstein, J. L.; Brown, M. S. : Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc. Nat. Acad. Sci. 2003,100: 3155-3160
    [7] Gong Y, Lee JN, Brown M. S,et al. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis. Proc Nat Acad Sci. 2006,103: 6154-6159
    [8] Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab, 2002, 282(6): E1334-1341
    [9] Timothy F. Osborne.Sterol Regulatory Elementbinding Proteins (SREBPs):Key Regulators of Nutritional Homeostasis and Insulin Action J. Biol. Chem 2000, 275(42): 32379-32382
    [10] Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid regulators of lipid synthetic genes. Prog Lipid Res 2001, 40:439-452.
    
    [11] Espenshade P J. SREBPs: sterol-regulated transcription factors. J Cell Sci 2006,119: 973-976
    [12]Yang T , Wright ME, Yabe D, etal.Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 2002, 110(4): 489-500
    
    [13]. Brown, M. S,Goldstein, J. L.. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997,89: 331-340
    [14] Dobrosotskaya IY, Goldstein JL, Brown MS, et al. Reconstitution of sterol-regulated endoplasmic reticulum-to-Golgi transport of SREBP-2 in insect cells by co-expression of mammalian SCAP and Insigs. J Biol Chem, 2003, 278(37):35837-35843
    [15] Attie A D. Insig: a significant integrator of nutrient and hormonal signals. J Clin Invest. 2004,113:1112-1114
    [16] Nohturfft A, Yebe D, Goldstein JL, et al. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 2000,102(3): 315-323
    [17].Rawson RB. Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem Soc Symp, 2003, (70): 221-231
    
    [18]. Horton JD, Shimomura I, Brown MS, et al. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest, 1998,101(11): 2331-2339
    
    [19] Simons K, Toomre D. Lipid rafts and signal transduction.Nat Rev Mot Cell Biol 2000,1:31-39
    [20].Peter A E. Sterols and isoprenoids: Signaling Molecules Derived from the Cholesterol Bio synthetic Pathway. Annu.Rev.Biochem,1999,68:157-185
    [21].McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid sythesis. Biochem Cell Biol 2004, 82:201-
    [22] Brown MS,Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood (sterol regulatory element-binding protein sytranscriptionySite-1 proteaseySite-2 proteaseysterol-sensing domain). Proc. Natl. Acad. Sci. USA 1999, 96:11041-11048
    [23] Nohturfft A, Brown M S, Goldstein J L. Topology of SREBP cleavage-activating protein,a Polytopic membrane protein with a sterol-sensing domain. J Biol Chem, 1998,273:17243-17250
    [24]Gimpl G, Burger K, Fahrenholz F. A closer look at the cholesterol sensor. Trends Biochem Sci 2002, 27:596-599
    [25] Horton JD. Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans 2002, 30:1091-1095.
    [26] Eberle, D, Hegarty B, Bossard P etal. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004 ,6: 839-848
    
    [27] Horton JD, Shah NA, Warrington JA,et al. Combined analysis of oligonucleotide microarray data from transgenic And knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 2003, 100(21): 12027-12032
    [28] Bobard A, Hainault I, Ferre P, et al. Differential Regulation of Sterol Regulatory Element-binding Protein 1c Transcriptional Activity by Insulin and Liver X Receptor during Liver Development J Biol Chem 2005, 280(1): 199-206,
    [29] Repa, J. J. et al.. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 2000,14::2819-2830
    [30] Repa JJ., Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXR alpha and LXR beta. Genes Dev. 2000,14:2819-2830
    [31] Chen G, Liang G., Ou J, et al. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Pro Natl Acad. Sci. USA 2004,101:11245-11250
    [32] Shimomura L, Bashmakov Y, Ikemoto S, et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci. USA 1999,96:13656-13661
    [33] Adams C M, Goldstein J L, Brown MS, et al. Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. PNAS 2003,100(19):10647-10652
    [34]. Brown A J., Sun LP, Feramisco JD, et al. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell, 2002,10:237-245
    [35] Dobrosotskaya I Y., Goldstein J L, Brown M S et al.. Reconstitution of Sterol-regulated Endoplasmic Reticulum-to-Golgi Transport of SREBP-2 in Insect Cells by Co-expression of Mammalian SCAP and Insigs. J Biol Chem. 2003,278(37):35837-43.
    [36] Rawson, R. B. The SREBP pathway-insights from Insigs and insects. Nat. Rev. Mol. Cell, Biol. 2003,4:631-640
    [37] Feramisco JD, Radhakrishnan A, Ikeda Y, etal. Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change. Proc Natl Acad Sci USA 2005,102:3242-3247
    [38] Yabe D, Xia Z-P, Adams CM, etal. Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols. Proc. Natl. Acad. Sci. USA 2002,99:16672-16677
    [39] Engelking IA, Liang G, Hammer RE, etal. Schoenheimer effect explained-feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest. 2005,115:2489-2498.
    [40] Lee PCW, Sever N, DeBose-Boyd R A. Isolation of Sterol-resistant Chinese Hamster Ovary Cells with Genetic Deficiencies in Both Insig-1 and Insig-2. J Biol Chem 2005, 280(26): 25242-25249
    [41] McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol 2004 82(1): 201-11
    [42] Adams C M., ReitzJ, De Brabander JK, et al. Goldstein Cholesterol and 25-Hydroxycholesterol Inhibit Activation of SREBPs by Different Mechanisms, Both Involving SCAP and Insigs. J Biol Chem 2004, 279(50): 52772-52780
    [43] Janowski BA. The hypocholesterolemic agent LY295427 up-regulates INSIG-1, identifying the INSIG-1 protein as a mediator of cholesterol homeostasis through SREBP. Proc Natl Acad Sci USA 2002, 99(20): 12675-12680
    [44] Engelking L J, Kuriyama H, Hammer R E, etal. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin. Invest 2004,113:1168-1175
    [45] Takaishi K, Duplomb L, Wang MY, etal. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA 2004, 101(18): 7106-7111
    [46] Li J, Takaishi K, Cook W, McCorkle SK, and Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci USA 2003, 100(16): 9476-9481
    [47] Sever N, Lee PC, Song BL, etal. Isolation of Mutant Cells Lacking Insig-1 through Selection with SR-12813, an Agent That Stimulates Degradation of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase. J Biol Chem 2004, 279(41): , 43136-43147
    [48] Brown, M.S., and Goldstein, J.L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980, 21:: 505-517.
    [49]. Sever, N., Yang, T., Brown, M.S., Goldstein, J.L., and DeBose-Boyd, R.A.. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 2003,11: 25-33.
    [50] Sever N, Song BL, Yabe D, et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 2003,278:52479-52490
    [51] Song BL, Sever N, DeBose-Boyd RA Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell 2005, 19(6): 829-840
    [52]. Roitelman J, Simoni, RD. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 1992,267(35): 25264-73
    [53] Kuwabara, P. E., and Labouesse, M. The sterol-sensing domain: multiple families, a unique role? Trends Gene. 2002, 18: 193-20
    [54] Lee PC, Nguyen AD, Debose-Boyd RA. Mutations within the membrane domain of HMG-CoA reductase confer resistance to sterol-accelerated degradation. J Lipid Res. 2007, 48(2): 318-27.
    [55] Lee JN, Song B, DeBose-Boyd RA, Ye J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J Biol Chem. 2006,281(51):39308-15
    [56] Song B-L DeBose-Boyd RA. Insig-dependent Ubiquitination and Degradation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Stimulated by δ- and γ-Tocotrienols. J Biol Chem 2006,27852):52479-52490
    [57] Luke J. Engelking~1, Bret M. Evers etal. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin J. Clin. Invest. 2006, 116: 2356-2365
    [58] Keeton AB, Bortoff KD,Franklin JL, etal. Blockade of Rapid Versus Prolonged Extracellularly Regulated Kinase 1/2 Activation Has Differential Effects on Insulin-Induced. Gene Expression Endocrinology 2005, 146(6): 2716-2725
    [59] Lee S, Lee DK, Choi E, Lee JW. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes. Mol Endocrinol 2005, 19(2): 399-408
    [60] Kast-Woelbern HR, Dana SL, Cesario RM, Sun L. etal. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J Biol Chem 2004, 279(23): 23908-23915
    [61]. Muller-Wieland D, Kotzka J. SREBP-1: gene regulatory key to syndrome X? Ann N Y Acad Sci 2002,967:19-27
    [62] Lee JN, Gong Y, Zhang X, etal. Proteasomal degradation of ubiquitinated Insig proteins is determined by serine residues flanking ubiquitinated lysines. PNAS 2006,103(13): 4958-4963
    [63] Lee J N, Ye, J. Proteolytic Activation of Sterol Regulatory Element-binding Protein Induced by Cellular Stress through Depletion of Insig-1. J Biol Chem. 2004, 279, 45257-45265
    [64] Gong Y, Lee JN, Lee PC et al. Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab. 2006, 3(1): 15-24.
    [65] Lee JN, Ye J. Proteolytic Activation of Sterol Regulatory Element-binding Protein Induced by Cellular Stress through Depletion of Insig-1. J Biol Chem.2004, 279(43): 45257-45265
    [66] Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab. 2003, 14(9): 398-403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700