INSIG1基因rs9769826和rs9769506多态性与2型糖尿病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨胰岛素诱导基因1(INSIG1) rs9769826和rs9769506单核苷酸多态性(SNPs)与青岛地区汉族人群2型糖尿病(T2DM)的关系以及INSIG1rs9769826多态性与高胆固醇、腰臀比异常和高血压之间的交互作用对2型糖尿病发病的影响。方法:采用频数匹配的病例对照研究方法,选取125名T2DM病人和125名正常对照者,应用聚合酶链式反应-限制性片段长度多态性检测技术(PCR-RFLP),对INSIG1基因rs9769826和rs9769506多态性进行基因分型,比较两组间基因型频率和等位基因频率;同时对所有研究对象进行人体测量学及生化指标检测,计算体质指数(BMI)和腰臀比(WHR)。应用多因素非条件Logistic回归分析INSIG1基因rs9769826和rs9769506多态性与T2DM的关系。应用相加模型分析INSIG1基因多态性与高胆固醇、腰臀比异常以及高血压之间的交互作用对T2DM发病的影响。结果:1. INSIG1基因rs9769826位点AA、AG、GG基因型频率在T2DM组中分别为58.4%、37.6%和4.0%,对照组分别为76.8%、20.0%和3.2%,两组比较差异具有显著性(x2=9.964,P<0.01);两组间G等位基因频率分别为22.8%,13.2%,病例组高于对照组(x2=7.805,P<0.01)。多因素非条件Logistic回归调整年龄、性别、BMI、 WHR、血压、血脂等混杂因素后,分析结果显示,携带突变位点G的基因型(AG+GG)与T2DM仍有关联关系(OR=3.220,95%CI=1.550-6.686).2. INSIG1基因rs9769506位点未检测到AA基因型,T2DM组CC和AC基因型频率分别为96.0%和4.0%,在对照组中分别为97.6%和2.4%,两组比较差异无统计学意义(x2=0.517,P>0.05);T2DM组和对照组A等位基因频率分别为2.0%和1.2%,两组比较差异无显著性(x2=0.508,P>0.05)。多因素非条件Logistic回归分析结果显示,该变异与T2DM无关联关系(P>0.05)。3.经调整年龄、性别、体重指数、血脂等混杂因素后,INSIG1基因rs9769826变异与高胆固醇存在正交互作用,归因交互效应[I(AB)]、归因比(AP%)、纯交互作用归因比(AP*%)、交互作用指数(S)分别为3.346、30.96%、34.12%和1.52。INSIG1基因rs9769826变异与腰臀比异常亦有在正交互作用,其I(AB)、AP%、AP*%、S分别为2.901、45.17%、53.49%和2.125。INSIG1基因rs9769826变异与高血压亦存在正交互作用,其I (AB)、AP%、AP*%、S分别为5.233、58.96%、79.43%和4.86。结论:1.INSIGI基因rs9769826位点多态性与青岛地区汉族人群T2DM有关联关系,G等位基因是T2DM遗传风险因子。2.INSIG1基因rs9769506位点多态性与T2DM无关联关系。3.T2DM的发生是环境与遗传因子综合作用的结果,INSIG1基因rs9769826变异与高胆固醇、腰臀比异常以及高血压在T2DM发生中具有一定的交互作用。在携带INSIG1基因rs9769826G等位基因的人群中,控制胆固醇、腰臀比以及血压可明显降低居民患T2DM的危险。
Objective To explore the relationship between rs9769826and rs9769506single nucleotide polymorphisms of INSIG1gene and type2diabetes in Han population of Qingdao, and to analyze the interactions between rs9769826mutation in INSIG1Gene and High total cholesterol(TC),waist-to-Hip Ratio (WHR), hypertension in type2diabetes mellitus.Methods Selecting125patients with type2diabetes and125normal controls by using frequency matched case-control study design. The rs9769826polymorphism of INSIG1gene was genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.The differences of genotypic and allelic frequencies were compared between patients with type2diabetes and normal controls. Anthropometries and biochemical indicators were measured for all subjects, and calculated body mass index (BMI) and waist-hip ratio (WHR). Multiple factors unconditional Logistic regression was used to analyze the risk factors of type2diabetes mellitus.Additive model was used to analyze the interactions between rs9769826mutation in INSIG1gene and High total cholesterol(TC),waist-to-Hip Ratio (WHR) hypertension in type2diabetes mellitus.Results The frequencies of AA, AG and GG genotypes were58.4%,37.6%and4.0%, respctively, in case group, and76.8%,20.0%and3.2%, respctively, in control group. There were significant differences in genotypes frequencies between patients with type2diabetes and normal controls.(χ2=9.964, P<0.01), G allele frequency was22.8%in case group, significantly higher than that of13.2%in control group,(%=7.805, P<0.01).after adjusting age, gender, BMI, WHR, blood pressure and blood fats by logistic regression, AG+GG genotype of carrying mutation G was associated with T2DM (OR=3.220,95%CI=1.550-6.686)Two genetypes of rs9769506were detected, i.e., CC and AC, but no AA was detected. The frequencies of CC and AC genotypes were96.0%and4.0%,in case group,97.6%and2.4%, in control group, there were no significant differences in genotypes frequencies between patients with type2diabetes and normal controls(χ2=0.517,P>0.05); The frequencies of A allele were2.0%and1.2%in case group and control group, respectively. No significant difference in the allelic frequencies existed between the two groups (χ2=0.508,P>0.05). Logistic regression analysis indicated that the rs9769506mutation was not associated with type2diabetes (P>0.05)After adjusting age, gender, body mass index (BMI) and blood fats by logistic regression, the rs9769826mutation of INSIG1gene and high total cholesterol show a positive interaction, attributable interaction was3.346, attributable interaction percentage was30.96%, pure attributable interaction percentage was34.12%, synergy index was1.52. The rs9769826mutation of INSIG1gene and abnormality of WHR also show a positive interaction, the indexes mentioned above were2.901,45.17%,53.49%and2.125, respectively.The rs9769826mutation of INSIG1gene and hypertension also show a positive interaction, the indexes mentioned above were5.233,68.96%,79.43%and4.86, respectively.Conclusion1.The rs9769826polymorphism of INSIG1gene was associated with type2diabetes in Qingdao Han population, G allele was a genetic risk factor of T2DM.2. The rs9769506polymorphism of INSIG1gene was not associated with type2diabetes.3. The study indicated that risk factors of T2DM, i.e, High total cholesterol(TC), abnormality of Waist-to-Hip Ratio (WHR), hypertension and the rs9769826mutation of INSIG1gene were associated with increased risks of T2DM, and the rs9769826mutation of INSIG1gene was interacted with high total cholesterol(TC), abnormality of Waist-to-Hip Ratio (WHR) and hypertension. To control TC, abnormality of WHR and hypertension in the population who had rs9769826G allele of INSIG1gene could significantly reduce the danger of residents suffering from type2diabetes.
引文
[1]王克安等.中国糖尿病的防治和研究[J].中华流行病学杂志.1999,20(5):260-263.
    [3] Parikh H, Groop L. Candidate genes for type 2 diabetes. Rev Endocr Metab Disord.2004. 5(2):151-176.
    [2] Stumvoll M, Goldstein BJ, Van Haefien TW. Type 2 diabetes:principles of pathogenesis and therapy[J]. Lancet.2005,365(9467):1333-1346.
    [4] King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025:prevalence, numerical estimates, and projections[J]. Diabetes Care.1998,21(9):1414-1431.
    [5] Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for typel(insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland[J]. Diabetologia.1992,35(11):1060-1067.
    [6] Pijl M, Henneman L, Claassen L, et al. Family history of diabetes:exploring perceptions of people at risk in the Netherlands[J]. Prev Chronic Dis.2009,6(2):A54.
    [7] Lenz M, Richter T, MUhlhauser I. The morbidity and mortality associated with overweight and obesity in adulthood:a systematic review[J]. Dtsch Arztebl Int.2009,106(40):641-648.
    [8] Zhang DF, Pang Z, Li S, et al. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population[J].Obesity.2011, advance online publication.
    [9] Kettunen J, Perola M, Martin NG, et al. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci[J]. International Journal of Obesity.2009,33(11):1235-1242.
    [10] Takaishi K. Duplomb L, Wang MY, et al. Hepatic insig-1 or-2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats[J]. Proc Natl Acad Sci USA. 2004,101(18):7106-7111.
    [12] Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols[J]. Cell. 2006,124(1):35-46.
    [13] Krapivner S, Chernogubova E, Ericsson M, et al. Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration[J]. Diabetologia, 2007,50(1):94-102.
    [14] Liu X, Li Y, Wang L, et al. The INSIG1 gene, not the INSIG2 gene, associated with coronary heart disease:tagSNPs and haplotype-based association study. The Beijing Atherosclerosis Study[J]. Thromb Haemost.2008,100(5):886-892.
    [15] Szopa M, Meirhaeghe A, Luan J, et al. No association between polymorphisms in the INSiG|
    gene and the risk of type 2 diabetes and related traits[J]. Am J Clin Nutr.2010,92(1):252-257.
    [16] Hunter DJ. Gene-environment interactions in human diseases[J]. Nat Rev Genet. 2005,6(4):287-298.
    [17] Sever N, Yang T, Brown MS, et al. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain[J]. Mol Cell.2003,11(1):25-33.
    [18] Sever N, Song BL, Yabe D, et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol[J].J Biol Chem.2003,278(52):52479-52490.
    [19] Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER[J].Cell.2002,110(4):489-500.
    [20] Li J, Takaishi K, Cook W, et al. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes[J]. Proc Natl Acad Sci USA.2003,100(16):9476-9481.
    [21] Miiller-Wieland D, Kotzka J. SREBP-1:gene regulatory key to syndrome x?[J]. Ann NY Acad Sci. 2002,967:19-27.
    [22] Smith EM, Zhang Y, Baye TM, et al. INSIG1 influences obesity-related hypertriglyceridemia in humans[J]. J Lipid Res.2010,51(4):701-708.
    [23]王宇,施榕.2型糖尿病危险因素流行病学研究进展[J].上海预防医学杂志.2004,16(2):53-55.
    [24]潘惠,陈志华,张宝马,等.自然人群中高血压危险因素研究[J].江苏预防医学.2001,12(4):11-13.
    [25]陈玉,周玲,徐耀初,等.2型糖尿病与遗传和环境因素相互关系的研究[J].中华预防医学杂志.2002,36(3):191-194.
    [26]唐晓君,张素华,李革,等.老年人群糖尿病和IGT患病率及其影响因素[J].现代预防医学.2005,32(12):1614—1616.
    [27] Kaufer-Horwitz M, Pelaez-Robles K, Lazzeri-Arteaga P, et al. Hypertension, overweight and abdominal adiposity in women. An Analytical Perspective [J]. Archives of Medical Research.36 (4);404-411.
    [28] Unger RH. Lipid overload and overflow:metabolic trauma and the metabolic syndrome[J]. Trends Endocrinol Metab.2003,14(9):398-403.
    [29] Engelking LJ, Liang G, Hammer RE, et al. Schoenheimer effect explained-feedback regulation of cholesterol synthesis in mice mediated by Insig proteins[J]. J Clin Invest.2005,115(9):2489 2498.
    [1] Diamond RH, Du K, Lee VM, et al. Novel delayed-early and highly insulin-induced growth response genes:Identification of HRS, a potential regulator of pre-mRNA splicing[J]. J Biol Chem. 1993,268(20):15185-15192.
    [2] Bortoff KD, Zhu CC, Hrywna Y, et al. Insulin induction of pip 92,CL6, and novel mRNAs in rat hepatoma[J]. Endocrine.1997,7(2):199-207.
    [3] Taub R. Liver regeneration 4:transcriptional control of liver regeneration[J].FASEB J.1996,10(4): 413-427.
    [4] Mohn KL, Laz TM, Hsu JC, et al. The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells:Comparison to serum stimulated 3T3 cells and identification of 41 novel immediate-early genes[J]. Mol Cell Biol.1991,11(1):381-390.
    [5] Peng Y, Schwatz EJ, Lzar MA, et al. Cloning,human chromosomal assignment,and adipose and hepatic expression of the CL-6/INSIGl gene[J].Genomics.1997,43(3):278-284.
    [6] Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins[J]. Proc Nat Acad. Sci USA. 2002,99(20):12753-12758.
    [7] Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG1, a membrane protein that facilitates retention of SREBPs in ER[J]. Cell. 2002,110(4):489-500.
    [8] Feramisco JD, Goldstein JL, Brown MS. Membrane topology of human insig-1, a protein regulator of lipid synthesis[J]. J Biol Chem.2004,279(9):8487-8496.
    [9] Gong Y, Lee JN, Brown MS, et al. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis [J]. Proc Natl Acad Sci U S A.2006,103(16):6154-6159.
    [10] Haber BA, Naji L, Cressman DE, et al. Coex pression of liver-specific and growth-induced genes in perinatal and regenerating liver:attainment and maintenance of the differentiated state during rapid proliferation[J]. Hepatology.1995,22(3):906-914.
    [11] Chin S, Ramirez S, Greenbaum LE, et al. Blunting of the immediate-early and mitogenic response in hepatectomized type 1 diabetic animals[J]. Am J Physiol.1995,269(4):E691-E700.
    [12] Haber BA, Mohn KL, Diamond RH, et al. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration[J]. J Clin Invest.1993,91(4): 1319-1326.
    [13] Attie AD. Insig:a significant integrator of nutrient and hormonal signals[J]. J Clin Invest.2004,113(8):1112-1114.
    [14] Zhang J, Ou J, Bashmakov Y, et al. Insulin inhibits transcription of IRS-2 gene in rat liver through an insulin response element (IRE) that resembles IREs of other insulin-repressed genes[J]. Proc Natl Acad Sci USA.2001,98(7):3756-3761.
    [15] Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-lalpha interaction[J]. Nature.2003,423(6939):550-555.
    [16] Muller-Wieland D, Kctzka J. SREBP-1:gene regulatory key to syndrome x?[J].Ann NY Acad Sci. 2002,967:19-27.
    [17] Bonzon-Kulichenko E, Schwudke D, Gallardo N, et al. Central leptin regulates total ceramide content and sterol regulatory element binding protein-lC proteolytic maturation in rat white adipose tissue[J]. Endocrinology.2009,150(1):169-178.
    [18] Nogalska A, Sucajtys-Szulc E, Swierczynski J. Leptin decreases lipogenicenzyme gene expression through modification of SREBP-lc gene expression in white adipose tissue of aging rats[J]. Metabolism.2005,54(8):1041-1047.
    [19] Commerford SR, Peng L, Dube JJ, O'Doherty RM. In vivo regulation of SREBP-lc in skeletal muscle:effects of nutritional status, glucose, insulin, and leptin[J]. Am J Physiol Regul Integr Comp Physiol.2004,287(1):R218-227.
    [20] Kakuma T, Lee Y, Higa M, et al. Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets[J]. Proc Natl Acad Sci U S A.2000,97(15):8536-8541.
    [21] Janowski BA. The hypocholestemlemic agent LY295427 up-regulates INS1G-1, identifying the INSIG-1 protein as a mediator of cholesterol homeostasis through SREBP[J]. Proc Natl Acad Sci USA.2002,99(20):12675-12680.
    [22] Lin HS, Rampersaud AA, Archer RA, et al. Synthesis and biological evaluation of a new series of sterols as potential hypocholesterolemic agents[J]. J Med Chem.1995,38(2):277-288.
    [23] Bensch WR, Gadski RA, Bean JS, et al. Effects of LY295427, a low-density lipoprotein (LDL) receptor up-regulator, on LDL receptor gene transcription and cholesterol metabolism in normal and hypercholesterolemic hamsters[J]. J Pharmacol Exp Ther 1999,289(1):85-92.
    [24] Janowski BA. The hypocholesterolemic agent LY295427 up-regulates INSIG-1, identifying the 1NS1G-1 protein as a mediator of cholesterol homeostasis through SREBP[J]. Proc Natl Acad Sci USA. 2002,99(20):12675-12680.
    [25] Ma KL, Varghese Z, Ku Y, et al. Sirolimus inhibits endogenous cholesterol synthesis induced by inflammatory stress in human vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol. 2010,298(6):H1646-1651.
    [26] Le Hellard S, Theisen FM, Haberhausen M, et al. Association between the insulin-induced gene 2
    (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects?[J]. Mol Psychiatry.2009,14(3):308-317.
    [27] Ka SO, Kim KA, Kwon KB, et al. Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway[J]. Int J Mol Med.2009,23(5):633-637.
    [28] Xie YH, Mo ZH, Chen K, et al. Effect of different glucose concentrations on the expressions of insig-1 and insig-2 mRNA during the differentiation of 3T3-L1 cells[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban.2008,33(3):238-244.
    [29] Lee JN, Ye J. Proteolytlc Activation of Sterol Regulatory Element-binding Pmtcin Induced by Cellular Stress through Depletion of lnsig-1[J]. J Biol Chem.2004,279(43):45257-45265.
    [30] Roth A, Looser R, Kaufmann M, et al. Regulatory cross-talk between drug metabolism and lipid homeostasis:constitutive androstane receptor and pregnane X receptor increase Insig-1 expression[J]. Mol Pharmacol.2008,73(4):1282-1289.
    [31] Lee JN, Gong Y, Zhang X, et al. Proteasomal degradation of ubiquitinated lusig proteins is determined by serine residues flanking ubiquitinated lysines[J]. Proc Natl Acad Sci U S A 2006,103(13):4958-4963.
    [32] Hampton RY. Proteolysis and sterol regulation[J]. Annu Rev Cell Dev Biol.2002,18:345-378.
    [33] Radhakrishnan A, Ikeda Y, Kwon HJ, et al. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:oxysterols block transport by binding to Insig[J]. Proc Natl Acad Sci USA.2007,104(16):6511-6518.
    [34] Espenshade PJ, Li WP, Yabe D. Sterols block binding of COPII proteins to SCAP thereby controlling SCAP sorting in ER[J]. Proc Natl Acad Sci USA.2002,99(18):11694-11699.
    [35] Nohturfft A, Yabe D, Goldstein JL, et al. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes [J]. Cell.2000,102(3):315-323.
    [36] Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J]. Proc Natl Acad Sci USA.1999,96 (20):11041-11048.
    [37] Osborne TF. Sterol regulatory element2binding proteins (SREBPs):key regulators of nutritional homeostasis and insulin action [J]. J Biol Chem.2000,275(42):32379-32382.
    [38] Horton JD, Shimomura I, Ikemoto S, et al. Overexpression of sterol regulatory elementbinding protein-la in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver[J]. J Biol Chem.2003,278(38):36652-36660.
    [39] Horton JD, Goldstein JL, Brown MS. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest.2002,109(9):1125-1131.
    [40] Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols[J]. Cell.
    2006,124(1):35-46.
    [41] Hua X, Norturfft A, Goldstein JL, et al. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein[J]. Cell.1996,87(3):415-426.
    [42] Yang T, Goldstein JL, Brown MS. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP. SREBP exit from endoplasmic reticulum[J]. J Biol Chem. 2000,275(38):29881-29886.
    [43] DeBose-Boyd RA. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase[J]. Cell Res.2002,18(6):609-621.
    [44] Brown MS, Goldstein JL. Multivalant feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth[J]. J Lipid Res.1980,21(5):505-517.
    [45] Nohturfft A, Brown MS, Goldstein JL. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain[J]. J Biol Chem. 1998,273(27):17243-17250.
    [46] Roitelman J, Olender EH, Bar-Nun S, et al. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase:implications for enzyme degradation in the endoplasmic reticulum[J]. J Cell Biol.1992,117(5):959-973.
    [47] Sakai J, Nohturfft A, Cheng D, et al. Identification of complexes between the COOH-terminal domains of sterol regulatory elementbinding proteins (SREBPs) and SREBP cleavage-activating protein[J]. J Biol Chem.1997,272(32):20213-20221.
    [48] Hua X, Nohturfft A, Goldstein JL, et al. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein[J]. Cell.1996,87(3):415-426.
    [49] Lee PC, Liu P, Li WP, et al. Amplification of the gene for SCAP, coupled with Insig-1 deficiency, confers sterol resistance in mutant Chinese hamster ovary cells[J]. J Lipid Res.2007,48(9):1944-1954.
    [50] Sever N, Yang T, Brown MS, et al. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain[J]. Mol Cell.2003,11(1):25-33.
    [51] Engelking LJ, Kuriyama H, Hammer RE, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis[J]. J Clin Invest. 2004,113(8):1168-1175.
    [52] Lee JN, Zhang X, Feramisco JD, et al. Unsaturated fatty acids inhibit proteasornal degradation of Insig-1 at a postubiquitination step[J]. J Biol Chem.2008,283(48):33772-83.
    [53] Leichner GS, Avner R, Harats D, et al. Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation[J]. Mol Biol Cell. 2009,20(14):3330-3341.
    [54] Li J, Takaishi K, Cook W, et al. Insig-1 "brakes" lipogenesis in adipocytes and inhibits
    differentiation of preadipocytes[J]. Proc Natl Acad Sci USA.2003,100(16):9476-9481.
    [55] Sever N, Lee PC, Song BL, et al. Isolation of mutant cells lacking lnsig-1 through selection with SR-12813, an agent that stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. J Biol Chem.2004,279(41):43136-47.
    [56] Kast-Woelbern HR, Dana SL, Cesario RM, et al. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis[J]. J Biol Chem. 2004,279(23):23908-23915.
    [57] Takaishi K, Duplomb L, Wang MY, et al. Hepatic insig-1 or-2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats[J]. Proc Natl Acad Sci USA. 2004,101(18):7106-7111.
    [58] Horton JD, Shah NA, Warrington JA, et al. Combine analysis of oligonucleotide microarray data from transgenic an knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci USA. 2003,100(21):12027-12032.
    [59] Chakravarty K, Leahy P, Becard D, et al. Sterol regulatory element-binding protein-1c mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription[J]. J Biol Chem.2001,276(37):34816-34823.
    [60] Becard D, Hainault I, Azzout-Marniche D, et al. Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice[J]. Diabetes.2001,50(11):2425-2430.
    [61] Chakravarty K, Wu SY, Chiang CM, et al. SREBP-1c and Spl interact to regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver[J]. J Biol Chem. 2004,279(15):15385-15395.
    [62] Foretz M, Guichard C, Ferre P, et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes[J]. Proc Natl Acad Sci USA.1999,96(22):12737-12742.
    [63] Kim SY, Kim HI, Kim TH, et al. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression [J]. J Biol Chem.2004,279(29):30823-30829.
    [64] Gregori C, Guillet-Deniau I, Girard J, et al. Insulin regulation of glucokinase gene expression: evidence against a role for sterol regulatory element binding protein 1 in primary hepatocytes[J]. FEBS Lett.2006,580(2):410-414.
    [65] Foretz M, Pacot C, Dugail I, et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose[J]. Mol Cell Biol.1999,19(5):3760-3768.
    [66] Shimomura I, Bashmakov Y, Ikemoto S, et al. Insulin selectively increases SREBP-1c mRNA in
    the livers of rats with streptozotocin-induced diabetes[J]. Proc Natl Acad Sci USA. 1999,96(24):13656-13661.
    [67] Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-lc in adipose tissue:model for congenital generalized lipodystrophy[J]. Genes Dev.1998,12(20):3182-3194.
    [68] Evers BM, Farooqi MS, Shelton JM, et al. Hair growth defects in insig-deficient mice caused by cholesterol precursor accumulation and reversed by simvastatin[J]. J Invest Dermatol. 2010,130(5):1237-1248.
    [69] Krapivner S, Chernogubova E, Ericsson M, et al. Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration[J]. Diabetologia. 2007,50(1):94-102.
    [70] Smith EM, Zhang Y, Baye TM, et al. INSIG1 influences obesity-related hypertriglyceridemia in humans[J]. J Lipid Res.2010,51 (4):701-708.
    [71] Liu X, Li Y, Wang L, et al. The INSIG1 gene, not the INSIG2 gene, associated with coronary heart disease:tagSNPs and haplotype-based association study.The Beijing Atherosclerosis Study[J]. Thromb Haemost.2008,100(5):886-892.
    [72] Szopa M, Meirhaeghe A, Luan J, et al. No association between polymorphisms in the INSIG1 gene and the risk of type 2 diabetes and related traits[J]. Am J Clin Nutr.2010,92(1):252-257.
    [73] Connelly PW, Petrasovits A, Stachenko S, et al. Prevalence of high plasma triglyceride combined with low HDL-C levels and its association with smoking, hypertension, obesity, diabetes, sedentariness and LDL-C levels in the Canadian population. Canadian Heart Health Surveys Research Group[J]. Can J Cardiol.1999,15(4):428-433.
    [74] Tai ES, Emmanuel SC, Chew SK, et al. Isolated low HDL cholesterol:an insulin-resistant state only in the presence of fasting hypertriglyceridemia. Diabetes[J].1999,48(5):1088-1092.
    [75] Austin MA, King MC, Bawol RD, et al. Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences[J]. Am J Epidemiol. 1987,125(2):308-318.
    [76] Heller DA. de Faire U, Pedersen NL, et al. Genetic and environmental influences on serum lipid levels in twins[J]. N Engl J Med.1993,328(16):1150-1156.
    [77] Perusse L, Rice T, Despres JP, et al. Familial resemblance of plasma lipids, lipoproteins and postheparin lipoprotein and hepatic lipases in the HERITAGE Family Study[J]. Arterioscler Thromb Vasc Biol.1997,17(11):3263-3269.
    [78] Sonnenberg GE, Krakower GR, Martin LJ, et al. Genetic determinants of obesity-related lipid traits[J]. J Lipid Res.2004,45(4):610-615.
    [79] Li WD, Dong C, Li D, et al. A genome scan for serum triglyceride in obese nuclear families[J]. J Lipid Res.2005,46(3):432-438.
    [80] Duggirala R, Blangero J, Almasy L, et al. A major susceptibility locus influencing plasma triglyceride concentrations is located on chromosome 15q in Mexican Americans[J]. Am J Hum Genet, 2000,66(4):1237-1245.
    [81] Home BD, Malhotra A, Camp NJ, et al. Comparison of linkage analysis methods for genome-wide scanning of extended pedigrees, with application to the TG/HDL-C ratio in the Framingham Heart Study [J]. BMC Genet.2003,4 (Suppl.l):S93.
    [82] Lin JP. Genome-wide scan on plasma triglyceride and high density lipoprotein cholesterol levels, accounting for the effects of correlated quantitative phenotypes[J]. BMC Genet.2003,4(Suppl.l):S47.
    [83] Shearman AM, Ordovas JM, Cupples LA, et al. Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter:a genome-wide scan in the Framingham study[J]. Hum Mol Genet. 2000,9(9):1315-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700