烟草表皮毛蛋白NtTTG1与转录因子AtMYB44调控植物防卫反应信号传导的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的植物经常遭受病原菌或病原激发子的侵袭,而植物利用自身的先天免疫系统形成一套复杂而有效的防御机制来抵御这种侵害,这些机制包括过敏性细胞死亡(hypersensitive cell death, HCD)和系统获得性抗性(systemic acquired resistance, SAR)。HCD又叫过敏反应(hypersensitive response, HR),是植物抗病反应的一种典型症状,可在24 h内观察到。其特征是病原菌所侵染部位的细胞呈现快速枯死,病原菌得不到营养而致其不能生长和扩散。HR的产生与两种类型的病原菌与植物产生互作有关:一种是病原菌与寄主之间的不亲和互作(avr-R);另外一种是由病原菌与非寄主植物的互作所引起。已有研究表明,病原真菌中引起非寄主过敏性反应的物质主要是由疫霉属病原菌所产生的激发子elicitinS。ParA1是由寄生疫霉Phytophthra parasitica var nicotianae分泌产生的一种elicitin。ParA1处理烟草叶片的表皮毛,可以引起表皮毛细胞发生一系列的HCD相关反应。这表明,表皮毛中存在着一套接受外源激发子ParA1信号的分子机制。那么,ParA1是如何被植物体识别的?表皮毛发育蛋白NtTTG1是如何参与到ParA1引发的HCD过程之中的?
     转录因子在植物应对生长发育过程中遭受的各种生物和非生物胁迫的过程中起重要的作用。转录因子通过与其调控的下游基因启动子区的顺式作用元件结合而直接调控靶基因的表达,或形成同源、异源二聚体,或与其它蛋白互作成为某种活化形式而参与乙烯、水杨酸(SA)、茉莉酸(JA)与脱落酸(ABA)等信号传导途径,形成复杂的基因表达调控网络,提高植物对环境胁迫的适应能力。HrpNEa是由梨火疫病原细菌Erwinia amylovora产生的一种蛋白激发子。外施HrpNEa能够诱导拟南芥中多种转录基因的表达,也可以通过激发不同信号通路,诱导植物产生抗病、抗虫、抗旱以及促生长等多种有利表型。EIN2 (ethylene insensitive2)是乙烯信号通路的关键调控因子,那么,转录因子和EIN2之间会有什么样的联系?转录因子在乙烯信号传导通路中起到什么作用?
     本研究着重剖析NtTTG1在ParA1引发的烟草过敏细胞死亡中的作用机制以及AtMYB44参与乙烯信号传导通路的作用机制。
     1、ParA1与功能缺失蛋白C51S的获得及其功能验证
     根据以往的研究得知,蛋白激发子ParA1注射烟草叶片,可以引发过敏性细胞死亡;喷施烟草叶片时,可以引发肉眼不可见的微敏反应(microscopic hypersenseitve response, micro-HR),并伴随有活性氧爆发(ROS burst)和染色质凝集现象(Chromatin condensation, Cc)的发生。ParA1中含有6个保守的半胱氨酸,且两两结合形成三对二硫键维持着对于ParA1的功能行使所必需的特异的空间构象。本研究主要通过点突变(site directed mutagenesis)的方法将ParA1中的第51位半胱氨酸替换为丝氨酸,得到了基因C51S,经原核表达得到了点突变蛋白C51S。通过与对照ParA1的功能验证发现,C51S完全丧失了在烟草叶片上诱导HR的能力。而且DAB、trypan blue和DAPI染色结果发现,C51S处理表皮毛12h后,仍检测不到氧爆发、微敏反应和染色质凝集现象的发生。这些结果都表明,C51S已经完全丧失其生物功能。
     2、ParA1与NtTTG1在烟草表皮毛细胞的细胞膜附近的相互作用
     根据拟南芥中参与叶片表皮毛发育的几个关键基因,在烟草中筛选可以受ParA1诱导表达的同源物。发现只有AtTTG1的同源物受诱导表达,并依此克隆到NtTTG1基因。NtTTG1在表皮毛中被ParA1诱导表达的程度明显强于叶肉细胞。并通过酵母双杂交和pull-down assay证明了ParA1与NtTTG1可以发生互作,而C51 S与NtTTG1却不能相互作用。蛋白结构分析表明,51位的半胱氨酸位于ParA1蛋白的边缘,这个位置很可能在与其它蛋白的互作中起作用。ParA1与NtTTG1之间的互作经两个蛋白在植物表皮毛中的亚细胞定位而得到进一步验证。将融合有红色荧光蛋白RFP的NtTTG1在烟草中瞬时表达,这个融合基因瞬时表达12h后在烟草表皮毛中有大量的转录。荧光观察表明,NtTTG1-RFP明显的定位在烟草表皮毛细胞的细胞膜上。而且荧光叠加结果表明,ParA1-eGFP可以与NtTTG1-RFP相结合,而C51S-eGFP不能与之结合。双分子荧光互补实验也进一步验证了荧光叠加的结果,而且,这种互作发生在表皮毛细胞的细胞膜附近。
     3、烟草叶片表皮毛在ParA1引发过敏性细胞死亡过程中的导航作用
     表皮毛作为烟草最外部的第一道天然屏障,势必最早接触蛋白激发子ParA1,并参与其诱导的过敏性细胞死亡(hypersensitive cell death, HCD)过程。我们以HCD发生过程中的重要信号分子H202和细胞内的染色质凝集为切入点,确定了表皮毛对于ParA1激发子诱导HCD的响应(见本博士论文研究报告第一章)。DCFH-DA染色及荧光观察结果表明,ParA1处理后1h,表皮毛内发生氧爆发,这比叶肉细胞早2h,其产生的活性氧还有向下部叶肉细胞传导的趋势。同时,药物抑制实验证明了活性氧的主要成份是H2O2。DAPI荧光分析表明,表皮毛内染色质凝集的发生要比叶肉细胞早5h左右。Trypan blue染色,并配合质壁分离实验,结果证明,在ParA1处理后1h到12h中,细胞死亡从表皮毛向底部细胞逐渐扩散,表皮毛细胞死亡发生比叶肉细胞早大约5h,且表皮毛在每个时间段内的细胞死亡数都高于叶肉细胞。RT-PCR方法检测了HCD反应中的标志基因PAL、hin1和hsr203的表达,三个基因在ParA1处理12h后的表皮毛中都有明显表达,而在叶肉细胞内表达稍晚一些。这些结果表明,HCD信号是从表皮毛向叶肉细胞中传导的。
     4、介导HrpNEa诱导拟南芥抗绿桃蚜作用的37个转录因子的初步筛选
     HrpNEa是由病原细菌产生的一类harpin蛋白质,它可以通过激发不同信号通路,诱导植物产生抗病、抗虫、抗旱以及促生长等多种有利表型。HrpNEa处理拟南芥可以通过激活乙烯信号通路来诱导植物对绿桃蚜的抗性反应。EIN2是乙烯信号通路中的关键调节因子,在诱导抗虫反应中起重要作用。为了阐明乙烯信号在诱导抗虫反应中的调控机制,我们对在拟南芥上由乙烯诱导的37个转录因子进行了研究。HrpNEa处理野生型Col-0后,与对照相比,发现有22个基因被上调表达,4个被下调,还有9个没有变化,其中AtMYB44的上调表达度最强。通过研究37个转录因子突变体中蚜虫趋避以及蚜虫繁殖情况时发现,有24种突变体和野生型差不多,有4种抗性增强,还有9种抗性减弱。atmyb44对蚜虫的趋避性减弱程度最为明显,而且削弱了HrpNEa诱导的抗虫反应。我们又分别检测了乙烯信号通路的标志基因PDF1.2的表达情况,发现其在野生型中表达,但在atmyb44和另外的4种突变体里不表达,这说明了乙烯信号通路已被阻断。本研究证明了拟南芥突变体atmyb44能消除HrpNEa诱导的EIN2基因的表达,从而说明了AtMYB44与EIN2有着很紧密的联系。
     5、转录因子AtMYB44与EIN2的互作研究
     AtMYB44是拟南芥MYB家族的一种转录因子,可以对乙烯信号发生感应,从而介入植物防卫反应。植物防卫反应经常受乙烯信号传导支配,而乙烯信号的中心调控因子是EIN2。目前,对AtMYB44调控的蛋白靶标及EIN2的作用机理的研究,都还不够深入。通过遗传学、药理学及微生物学等方法,我们发现AtMYB44、EIN2和乙烯在对HrpNEa诱导拟南芥对蚜虫产生抗性的过程中都是必需的因子。本研究通过geⅠmobility shift assay (GMSA)和chromatin immunoprecipitation assay (ChIP)两种方式证明了AtMYB44与EIN2能在植物体外体内产生互作。
     6、转基因双突变体ein2-1 atpp2-a1和ein2-1 abi2-1的产生与鉴定
     拟南芥AtPP2类韧皮部蛋白是一种独特的结合几丁质的凝集素,其氨基酸序列高度保守且均有韧皮部组织特异性,对刺吸式昆虫的侵袭有着特殊的防卫功能,在植物韧皮部相关防卫(plant phloem-related defense, PRD)反应过程中起重要作用。逆境激素脱落酸(ABA)能调控植物营养生长和生殖生长过程中的气孔关闭、抵抗逆境、种子后熟和休眠等许多重要事件。乙烯是植物生长发育重要的内源信号分子,其介导的植物抗病防卫基本信号通路对于植物的基本防卫十分重要。而EIN2是乙烯信号通路中的关键调节因子。本研究通过RNAi介导的基因沉默的转化方法,构建了AtPP2-A1与ABl2基因的沉默发夹结构,分别转化拟南芥乙烯不敏感突变体ein2-1,将AtPP2-A1与ABl2基因沉默,成功获得了双突变体品系ein2-1 atpp2-a1和ein2-1 abi2-1。为深入研究植物乙烯与PRD、ABA信号通路在植物防卫信号传导过程中的关系提供了材料与依据。
In the nature, plant suffers from the pathogen or the pathogenic exciton attack frequently, but they can use their own innate immune system to form a set complex and effective defense mechanism for resisting these kinds of violation, including hypersensitive cell death (HCD) and system acquired resistance (SAR). HCD is also called hypersensitive response (HR), is one of the typical symptoms for the plant disease-resistant response. The HR production are related with two types of pathogen interacted with the plant. One kind is the interaction between the pathogen and the host like the avr-R. Another kind is the interaction between the pathogen and the non-host plant. Previous researches indicate that elicitins are the main fungi which can cause HR to the non-host plant. ParAl is one kind of elicitin produced by Phytophthra parasitica var nicotianae. The tobacco leaf trichomes treated by ParA1 may cause a series of HCD correlation response. This indicated that there are a set of molecular mechanism for receiving the ParA1 signal in the tobacco leaf trichomes. However, how does the plant recognize the ParA1? How does the trichome development protein NtTTG1 participate in the HCD process induced by the ParA1?
     Transcription factor plays a vital role in plant growth and development process to answering much kinds of biological and non-biological intimidate. According to binding the cis-element of downstream gene promoter, or forming homologous or heterogenous dimmers, or interacting with other proteins, transcription factor can regulate the expression of target genes, or participate in the ethylene, salicylic acid (SA), jasmine acid (JA) and abscisic acid (ABA) signal transductions, so they can form the complex gene expression regulation network and enhance the ability for the plant to adapt to the environment. HrpNEa is one kind of protein produced by Erwinia amylovora, which can stimulate different signal pathways to cause many kinds of advantageous phenotypes. EIN2 (ethylene insensitive2) is the key regulation factor in the ethylene signal pathway, however, how the relationship between the transcription factor and EIN2? What does the transcription factor play in the ethylene signal transduction pathway?
     This study analyzes the tobacco trichome protein NtTTGl and the Arabidopsis transcription factor AtMYB44 function to regulate transduction of two distinct defensive signals (ParA1 and HrpNEa) via the membrane and in the plant cell.
     1、Production of the loss of function protein C51S and its functional analysis compared with ParAl
     According to the previous studies about ParA1, it is a kind of proteinous elicitor with low molecular weight derived from Phytophthora parasitica var. nicotianae. Infiltrated in the tobacco leaves, ParA1 can induce hypersensitive cell death (HCD). Sprayed on the tobacco leaves, it may induce the microscopic hypersensitive response (micro-HR), companied with ROS burst and chromatin condensation (Cc) in the corresponding plant cells. The leaves were excised at 12h post treatment (hpt) and stained with green fluorescence dye 2', 7'-dichlorofluorescein diacetate (DCFH-DA) and ROS could be detected, but not the C51S treatment. Cc was studied by 4',6'-diamino-2-phenylindole (DAPI) fluoluminescence assay. There are 6 conserved cysteines that form three disulfides to maintain the specific structure in ParA1, and this structure is required for the function of ParAl. This study focused on the site direct mutant of ParA1. We replaced the cysteine at the site of 51 by serine, and obtained the mutagenesis protein C51S. Compared with ParA1, C51S lost the function of inducing HR in tobacco leaves. And we could not detect ROS burst、micro-HR and chromatin condensation in trichome cells by further experiments. Our results suggest that C51S has been lost of biological functions.
     2、Analysis of the interaction between ParA1 and NtTTG1 in tobacco trichome cell membrane
     According to cloning the homologues genes AtGL1, AtGL3, AtTTG1, and AtTTG2, which are essentially involved in the development of Arabidopsis thaliana leaf trichomes, we found only AtTTG1 homologue responded to ParA1 and NtTTG1 was cloned. Also amino acid sequence of NtTTG1 is highly identical with that of AtTTG1. The expression of NtTTG1 was strongly induced by ParA1 in tobacco trichomes rather than leaves. ParA1, but not C51S, could interact with NtTTG1 by yeast two-hybrid assay and pull-down assay. Analysis of ParA1 structure model,51' cysteine is positioned on the surface of the outer edge of the protein, which is implicated in interacting with other proteins. These also suggested that the importance of 51/95 disulfide bone with 3/71 in ParA1. ParA1-NtTTG1 interaction conformed to subcellular localization of both proteins in tobacco trichomes that transiently expressed NtTTG1 fused to a red-fluorescence protein (RFP) gene. Fluorescence microscopy showed different distribution of these proteins in trichomes. NtTTG1-RFP showed conspicuous localization at the trichome cell membrane. At equivalent locations, ParAl-eGFP was affluent but C51S was little when applied externally and treated with a washing solution. This observation suggested that ParAl was bound tightly but C51S was not. The following experiment about mergence of red and green fluorescence indicated that ParA1-eGFP, instead of C51S-eGFP, bound NtTTG1-RFP, and that the interacting sign clearly localized at the cell membrane.
     3、Tobacco leaf trichomes contribute to ParAl-induced signalling and cell death
     As the first and the most external barriers of the plant, trichomes always touch the ParAl elicitor at the earliest time, and also contribute to the ParA1-induced hypersensitive cell death (HCD). We have showed that trichomes could respond to ParA1, with ROS burst and chromatin condensation being detected. After localized treatment of trichomes, the leaves were excised at 6h post treatment (hpt) and stained with green fluorescence dye 2', 7'-dichlorofluorescein diacetate (DCFH-DA), apparently, ROS had spread from the trichome to leaf epidermal cells and the mesophyll in 6 hpt. Simultaneity, we proved that H2O2 occupies a prominent part of the ROS production that is induced by ParA1 by applying with diphenyleneiodonium (DPI) or catalase (Cat). Typical Cc was detected in trichomes and mesophylls following the use of ParA1 versus EVP. Nuclei in cells of control trichomes and in cells of ParAl-treated trichomes within 1 hpt had a clear central nucleolus surrounding by a uniform stained chromatin; whereas, in cells of ParA1-treated trichomes over 1 hpt, chromatin had a swollen aspect and nuclei were lobated. In one-way F tests (P< 0.01), trichomes significantly exceeded mesophylls in levels of cell death at each time point since 1 hpt. HCD marker genes PAL, hin1, and hsr203 were expressed evidently in trichomes 12 hpt with ParA1. Mesophylls were inferior to trichomes in time and extents of the gene expression. All these results suggested that HCD signal transduct from tobacco trichomes to mesophylls.
     4、Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis
     The harpin protein HrpNEa induces Arabidopsis resistance to the green peach aphid by activating the ethylene signaling pathway and by recruiting EIN2, an essential regulator of ethylene signaling, into defense response in the plant. Here we investigated 37 ethylene-inducible Arabidopsis transcription factor genes for effects on the activation of ethylene signaling and insect defense. In response to HrpNEa,22 genes increased in transcription levels with AtMYB44 being the most inducible,6 genes had decreased transcript levels, and 9 remained unchanged. When Arabidopsis mutants defected at the 37 genes were surveyed,24 mutants were similar to the wild-type (WT) plant while 4 mutants were more resistant and 9 mutants were more susceptible than WT to aphid infestation. The atmyb44 mutant with a defect in the AtMYB44 gene was most susceptible to aphid infestation and most compromised in HrpNEa-induced resistance. Resistance accompanied the expression of PDF 1.2, a an ethylene signaling marker gene that requires EIN2 for transcription, in WT but not in atmyb44 and other 4 aphid-susceptible mutants, suggesting a disruption of ethylene signaling in the five mutants. However, atmyb44 was an mutant with an abrogation in HrpNEa-induced EIN2 expression, suggesting a close relationship between AtMYB44 and EIN2.
     5、Analysis of the interaction between the transcription factor AtMYB44 and ethylene signaling regulator EIN2
     AtMYB44 is a transcription factor responsive to ethylene and implicated in Arabidopsis thaliana defense response. Plant defense is often subject to ethylene signaling that recruits EIN2 as a central regulator. Previously we have shown that EIN2 plays a critical role during the development of insect defense in Arabidopsis treated with HrpNEa, a harpin protein produced by bacterial plant pathogen. Regulatory targets of AtMYB44 and regulation of EIN2 activation have not been characterized. Through genetic, molecular, and pharmacological studies, we have shown that AtMYB44, EIN2, and ethylene are required for HrpNEa to induce Arabidopsis resistance against the green peach aphid. In this study, we testified that AtMYB44 could combine the specific consensus MYB recognition sequence 5'-TAACTG-3' in the promoter of EIN2 by gel mobility shift assay (GMSA) and chromatin immunoprecipitation assay (ChIP).
     6、Production and identification of the two transgenic double mutant ein2-1 atpp2-a1 and ein2-1 abi2-1
     AtPP2 class phloem protein belongs to a unique tissue-specific agglutinin combinating with chitin in Arabidopsis thaliana, and its amino acid sequence is highly conserved. It has a special defense capability on the invasion of sucking insects and plays an important role during the plant phloem-related defense (PRD) processes. Abscisic acid (ABA) as the stress hormone can modulate many important events in plant growth and development including stoma closing, resistance to stresses, promoting seeds maturity and dormancy. Ethylene is the most important endogenic signal in plant growth and development and mediate the basal plant defense and disease resistant signal pathways. EIN2 is a central regulator in ethylene signal pathway. The interaction between PRD and ethylene or ABA and ethylene in plant growth and development is not very clear at present. We constructed AtPP2-A1-silencing and ABI2-silencing AtPP2-A1vector, which could be able to silence AtPP2-A1 and ABI2 in ein2-1, and obtained the two transgenic double mutant ein2-1 atpp2-a1 and ein2-1 abi2-1. This study will provide further materials and evidences for research of relationship between PRD and ethylene or ABA and ethylene pathways in the plant development and signal transduction.
引文
1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D and Shinozaki K (1997). Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859-1868.
    2. Achard P, Baghour M, Chapple A, Hedden P, van Der Straeten D, Genschik P, Moritz T and Harberd NP (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl. Acad. Sci. USA 104: 6484-6489.
    3. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, van Der Straeten D, Peng J and Harberd NP (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94.
    4. Adie B, Chico JM, Rubio-Somoza I and Solano R (2007). Modulation of plant defenses by ethylene. J. Plant Growth Regul.26:160-177.
    5. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X and Zhu JK (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem.281:37636-37645.
    6. Ahn IP, Kim S, Lee YH and Suh SC (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol.143:838-848.
    7. Aloni R, Schwalm K, Langhans M, Ullrich CI (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841-853.
    8. Alonso JM, Hirayama T, Roman G, Nourizadeh S and Ecker JR (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152.
    9. Alonso JM and Stepanova NS (2004). The ethylene signaling pathway. Science 306:1513-1515.
    10. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR and Kazan K (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460-3479.
    11. Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J and Ausubel FM (2000). Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823-1836.
    12. Ashtamker C, Kiss V, Sagi, M, Davydov O and Fluhr R (2007). Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco Bright Yellow-2 cells. Plant Physiol.143:1817-1826.
    13. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD and Parker JE (2002). Regulatory role of SGT1 in early R gene-mediated plant detenses. Science 295:2077-2080.
    14. Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H and Koshita Y (2008). Genomic and genetic analysis of myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor. Appl. Genet.117:1009-1019.
    15. Balestrasse KB, Zilli CG and Tomaro ML (2008). Signal transduction pathways and haem oxygenase induction in soybean leaves subjected to salt stress. Redox Rep.13:255-262.
    16. Beattie GA and Lindow SE (1999). Bacterial colonization of leaves:a spectrum of strategies. Phytopathology 89:353-359.
    17. Benavente LM and Alonso JM (2006). Molecular mechanisms of ethylene signaling in Arabidopsis. Mol. Biosyst.2:165-173.
    18. Bleecker AB and Kende H (2000). Ethylene:a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol.16:1-18.
    19. Blein JP, Milat ML and Ricci P (1991). Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea:possible plasmalemma involvement. Plant Physiol.95:486-491.
    20. Bonnet P, Bourdon E, Ponchet M, Blein JP and Ricci P (1996). Acquired resistance triggered by elicitins in tobacco and other plants. Eur. J. Plant Pathol.102:181-192.
    21. Boulikas T (1994). Putative nuclear localization signals (NLS) in protein transcription factors. J. Cell Biochem.55:32-58.
    22. Bourque S, Binet MN, Ponchet M, Pugin A and Lebrun-Garcia A (1999). Characterization of the cryptogein binding sites on the plant plasma membranes. J. Biol. Chem.274:34699-34705.
    23. Bourque S, Ponchet M, Binet MN, Ricci P, Pugin A and Lebrun-Garcia A (1998). Comparison of binding properties and early biological effects of elicitins in tobacco cells. Plant Physiol.118: 1317-1326.
    24. Brewer CA and Smith WK (1997). Patterns of leaf surface wetness for montane and subalpine plants. Plant Cell & Environment 20:1-11.
    25. Brigitte M and Chretien F (2005). Correlation between structural element and infectivity of prion protein. Med. Sci. (Paris) 21:806-807.
    26. Calo L, Garcia I, Gotor C and Romero LC (2006). Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma a-1,3-glucanase. J. Exp. Bot.57:3911-3920.
    27. Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J and Oelmuller R (2010). Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol.185:1062-1073.
    28. Casaretto J and Ho TH (2003). The transcription factors HvABI5 and Hv-VP1 are require for the abscisic acid induction of gene expression in Barley aleurone cells. Plant Cell 15:271-284.
    29. Chai G Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H and Liu S. (2010). Brassica GLABRA2 genes:analysis of function related to seed oil content and development of functional markers. Theor. Appl. Genet. Feb,17.
    30. Chang C and Shockey JA (1999). The ethylene-response pathway:signal perception to gene regulation. Curr. Opin. Plant Biol.2:352-358.
    31. Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, Beer SV and Dong H (2008a). Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola that induce disease resistance and enhance growth in plants. Phytopathology 98:781-791.
    32. Chen L, Zhang S-S, Qu SP, Long JY, Yin Q, QianJ, Sun F, Zhang SJ, Zhang CL, Wang LX, Wu XJ, Wu TQ, Zhang ZK, Cheng ZQ and Dong HS (2008b). A selected fragment of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, affects disease reduction and grain yield of rice in extensive grower plantings. Phytopathology 98:792-802.
    33. Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY and Qu LJ (2006). The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol.60:107-124.
    34. Chiou CY and Yeh KW (2008). Differential expression of MYB gene(OgMYB1) determines color patterning in floral tissue of oncidium gower ramsey. Plant Mol. Biol.6:379-388.
    35. Chuang C and Meyerowite EM (2000). Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:4985-4990.
    36. Church GM and Gilbert W (1984). Genomic sequencing. Proc. Natl. Acad. Sci. USA 811: 1991-1995.
    37. Clark MS (1997). Plant Molecular Biology, A Laboratory Manual. Springer, Berlin.
    38. Cominelli E, Sala T, Calvi D, Gusmaroli G and Tonelli C (2008). Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J.53:53-64.
    39. Cooke DE, Drenth A, Duncan JM, Wagels G and Brasier CM (2000). A molercular phylogeny of Phytophthora and related Oomycetes. Fung. Genet. Biol.30:17-32.
    40. Davidian JC, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E and Rennenberg H (2003). Sulfur transport and assimilation in plants:regulation, interaction, signaling. Leiden:Backhuys Publishers.
    41. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM and Bowler C (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol.23:890-895.
    42. de Pater S, Greco V, Pham K, Memelink J and Kijne J (1996). Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic. Acids. Res.24:4624-4631.
    43. DeSilva TM, Veglia G, Porcelli F, Prantner AM and Opella SJ (2002). Selectivity in heavy metal-binding to peptides and proteins. Biopolymers 64:189-197.
    44. Deslande L, Oliver J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S and Marco Y (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100: 8024-8029.
    45. Devaiah BN, Karthikeyan AS and Raghothama KG (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol.143: 1789-1801.
    46. Ding Z, Li S, An X, Liu X, Qin H and Wang D (2009). Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J. Genet. Genomics 36:17-29.
    47. Dong H and Beer SV (2000). Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811.
    48. Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV and Dong H (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    49. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G and Dong H (2005). The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327
    50. Dong H, Delaney TP, Bauer DW and Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J.20:207-215.
    51. Dong X (2001). Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol.4: 309-314.
    52. Dorey S, Kopp M, Geoffroy P, Fritig B and Kauffmann S (1999). Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol.12:163-712.
    53. Dykxhoorn DM, Novina CD and Sharp PA (2003). Killing the messenger:short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4:457-467.
    54. Ecker JR (2004). Reentry of the ethylene MPK6 module. Plant Cell 16:3169-3173.
    55. Ehleringer JKS and Werk (1984). Modifications of solar-radiation absorption patterns and implications for carbon gain at the leaf level. In T. J. Givnish (Ed.). On the economy of plant form and function, Cambridge University Press, Cambridge, England.57-82.
    56. Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P and Smyth DR (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155-168.
    57. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S and Allan AC (2007). Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49:414-427.
    58. Eulgem T, Rushton PJ, Robatzek S and Somssich IE (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci.5:199-206.
    59. Fan W and Dong X (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377-1389.
    60. Fefeu S, Bovaziz S, Huet JC, Pernollet JC and Guittet E (1997). Three-dimensional solution structure of beta-cryptogein, a beta-elicitin secreted by a phytopathogenic fungus Phytophthora cryptogea. Protein Sci.6:2279-2284.
    61. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW and Zhu YX (2005). An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol. Biol.59:853-868.
    62. Fields S and Song O. (1989). A novel genetic system to detect protein-protein interactions. Nature. 340:245-246.
    63. Fire A, Xu SQ and Montgomery MK (1998). Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806-810.
    64. Fisher, AB (2009). Redox signaling across cell membranes. Antioxid. Redox Signal.11:1349-1356.
    65. Frankish H (2003). Consortium uses RNAi to uncover genes' function. Lancet 361:584-584.
    66. Frye CA, Tang D and Innes RW (2000). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98:373-378.
    67. Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y and Kobayashi A (2004). Flower color modulations of torenia hybrida by downregulation of chalcone synthaes genes with RNA interference. J. Biotechnol. 111:229-240.
    68. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ and Schaller GE (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J. Biol. Chem.278:34725-34732.
    69. Ghassemian M, Nambara EJ, Cutler S, Kawaide H, Kamiya Y and McCourt P (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126.
    70. Greenberg JT, Silverman FP and Liang H (2000). Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156: 341-350.
    71. Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K and Horak J (2008). Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1: 308-320.
    72. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y and Martin GB (2002). Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817-831.
    73. Gu YQ, Yang C, Thara VK, Zhou J and Martin GB (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-786.
    74. Guo H and Ecker JR (2004). The ethylene signaling pathway:new insights. Curr. Opin. Plant Biol. 7:40-49.
    75. Guo S and Kemphues K (1995). Par21, a gene required for establishing polarity in C. elegans embryos, encodes a putative SerPThr kinase that is asymmetrically distributed. Cell 81:611-620.
    76. Gupta S, Schoer RA, Egan JE, Hannon GJ and Mittal V (2004). Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101:1927-1932.
    77. Hall AE and Bleecker AB (2003). Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ersl etrl double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032-2041.
    78. Hall AE, Findell JL, Schaller GE, Sisler EC and Bleecker AB (2000). Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol.123:1449-1458.
    79. Hammond SM, Bernstein E, Beach D and Hannon GJ (2000). An RNA directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296.
    80. Hayes GD and Ruvkun G (2007). Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs. Cold Spring Harb. Symp. Quant. Biol.71:21-27.
    81. Hoffman T, Schmidt JS, Zheng X and Bent AF (1999). Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol.119:935-950.
    82. Holen T and Mobbs CV (2004). Lobotomy of genes:use of RNA interference in neuroscience. Neuroscience 126:1-7.
    83. Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR and Cutler AJ (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J.50: 414-428.
    84. Hulskamp M, Misera S and Jurgens G (1994). Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555-566.
    85. Ishiguro S and Nakamura K (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'up stream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol. Gen. Genet.244:563-571.
    86. Jebanathirajah JA, Peri S and Pandey A (2002). Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants:a genomic perspective. Trends Plant Sci.7:388-391.
    87. Jiang RHY, Tyler BM, Whisson SC, Hardham AR and Govers F (2006). Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Biol. Evol.23:338-351.
    88. Johnson HB (1975). Plant pubescence:an ecological perspective. Bot. Rev.41:233-258.
    89. Jordan T, Schornack S and Lahaye T (2002). Alternative splicing of transcript sencoding Toll-like plant resistance proteins-whats'the functional relevance to innateimmunity. Trends Plant Sci.7: 392-398.
    90. Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD and Cheong JJ (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep. 26:1053-1063.
    91. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD and Cheong JJ (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol.146:623-635.
    92. Jung C, Shim JS, Seo JS, Lee HY, Kim CH, Choi YD and Cheong JJ (2010). Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol. Cells 29:71-76.
    93. Kagaya Y, Hobo T, Murata M, Ban A and Hattori T (2002). Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14:3177-3189.
    94. Kamachi S, Mochizuki A, Nishiguchi M and Tabei Y (2007). Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. Plant Cell Rep.26: 1283-1288.
    95. Kamoun S (2001). Nonhost resistance to Phytophthora:Novelprospects fora classical problem. Curr. Opin. Plant Biol.4:295-300.
    96. Kamoun S, Honee G, Kamoun S, Honee G, Weide R, Lauge R, Kooman-Gersmann M, de Groot K, Govers F and de Wit PJGM (1999). The fungal gene Avr9 and the Oomycete gene infl conferavirulence to potato virus X on tobacco. Mol. Plant-Microbe Interact.12:459-462.
    97. Kamoun S, Klucher KM, Coffey M and Tyler BM (1993a). A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant-Microbe Interact.6:573-581.
    98. Kamoun S, Young M, Glascock CB and Tyler BM (1993b). Extra-cellular protein elicitors from Phytophthora:host-specificity and induction of resistance to bacterial and fungal phytopathogens. Mol. Plant-Microbe Interact.6:15-25.
    99. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas AJ, Zhu JK, Staskawicz BJ and Jin H (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. USA 103:18002-18007.
    100. Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet JG, Yazaki K and Sato F (2007). Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol.48:8-18.
    101. Keck E, McSteen P, Carpenter R and Coen E (2003). Separation of genetic functions controlling organ identity in flowers. EMBO J.22:1058-1066.
    102. Keller H, Bonnet P, Galiana E, Pruvot L, Friedrich L, Ryals J and Ricci P (1996). Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Mol. Plant-Microbe Interact.9:696-703.
    103. Kennedy GC, Matsuzaki H, Dong S, Liu W, Huang J, Liu G, Su X, Manqiu C, Chen W and Zhang J (2003). Large-scale genotyping of complex DNA. Nat. Biotechnol.21:1233-1237.
    104. Kennerdell JR and Carthew RW (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled1 and frizzled2 actin the wingless pathway. Cell 95:1017-1026.
    105. Kessler A and Baldwin IT (2002). Plant responses to insect herbivory:The emerging molecular analysis. Annu. Rev. Plant Biol.53:299-328.
    106. Kevin LC, Li WH and Ecker RE (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14:131-151.
    107. Kirik V, Kolle K, Misera S and Baumlein H (1998). Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol. Biol.37:819-827.
    108. Kirik V, Simon M, Huelskamp M and Schiefelbein J (2004a). The enhancer of TRY and CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol.268:506-513.
    109. Kirik V, Simon M, Wester K, Schiefelbein J and Hulskamp M (2004b). Ehancer of TRY and CPC2 (ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol. Biol.55:389-398.
    110. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M and Martin C (1998). Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J.16:263-276.
    111. Krizek BA (1999). Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev. Genet.25:224-236.
    112. Kunst L, Klenz JE, Martinez-Zapater J and Haughn GW (1989). AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell 1:1195-1208.
    113. Kupper H, Lombi E, Zhao FJ and McGrath SP (2000). Cellular compartmentalization of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212: 75-84.
    114. Lacourt I and Duncan JM (1997). Specific detection of Phytophthora nicotianae using the polymerase chain reaction and prim ersbased on the DNA sequence of its elicitin gene ParAl. Eur. J. Plant Pathol.103:73-83.
    115.Lagace M and Matton DP (2004). Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185-189.
    116. Lahaye T (2002). The Arabidopsis RRS1-R disease resistance gene-uncovering the plant's nucleus as the new battle field of plant defense. Trends Plant Sci.7:425-428.
    117. Lai Z, Vinod K, Zheng Z, Fan B and Chen Z (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol.8:68.
    118. Laue G, Preston CA and Baldwin IT (2000). Fast track to the trichome:induction of N-acyl nornicotines precedes nicotine induction in Nicotiana repanda. Planta 210:510-514.
    119. Leer C and Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862-864.
    120. LeNoble ME, Spollen WG and Sharp RE (2004). Maintenance of shoot growth by endogenous ABA:genetic assessment of the involvement of ethylene suppression. J. Exp. Bot.55:237-245.
    121. Lippold F, Sanchez DH, Musialak M, Schlereth AS, cheible WR, Hincha DK and Udvardi MK (2009). AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol. 149:1761-1772.
    122. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F and Dong H (2006). The internal glycine-rich motif and cysteine suppress several effects of HpaGXooc in plants. Phytopathology 96:1052-1059.
    123. Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP and Wang X (2003). R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921-1925.
    124. Liu Y and Zhang S (2004). Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386-3399.
    125. Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408.
    126. Lloyd MY (1995). Elicitins from Phytophthora and basic resistance in tobacco. Proc. Natl. Acad. Sci. USA 92:4088-4094.
    127. Loguerico LL, Zhang JQ and Wilkins TA (1999). Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol. Gen. Genet.261:660-671.
    128. Luo D and Oppenheimer DG (1999). Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci. Development.126:5547-5557.
    129. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP and Chen XY (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol.25:1307-1313.
    130. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R and Tuschl T (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563-574.
    131. Marzin S, Mihaly R, Pauk J and Schweizer P (2008). A transient assay system for the assessment of cell-autonomous gene function in dehydration-stressed barley. J. Exp. Bot.59:3359-3369.
    132. McGinnis K, Murphy N, Carlson AR, Akula A, Akula C, Basinger H, Carlson M, Hermanson P, Kovacevic N, McGill MA, Seshadri V, Yoyokie J, Cone K, Kaeppler HF, Kaeppler SM and Springer NM (2007). Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol.143:1441-1451.
    133. Menke FL, van Pelt JA, Pieterse CM and Klessig DF (2004). Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897-907.
    134. Miyagishi M and Taira K (2002). Development and application of siRNA expression vector. Nucleic. Acids Res. Suppl.2:113-114.
    135. Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M and Akada S (2003). Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol. Biol.53:237-245.
    136. Morohashi K, Zhao MZ, Yang ML, Read B, Lloyd A, Lamb R and Grotewold E (2007). Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol.145:736-746.
    137. Nagata T, Todoriki S, Hayashi T, Shibata Y, Mori M and Kanegae H (1999). Gamma radiation induces leaf trichome formation in Arabidopsis. Plant Physiol.120:113-120.
    138. Nehring RB, McGrath RB, Alonso JM and Ecker JR (2002). Analysis of ethylene insensitive6 and the enhancer of ethylene insensitivity.13th international conference on Arabidopsis research.
    139. Nemhauser JL, Hong F and Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467-475.
    140. Nespoulous C, Gaudemer O, Huet JC and Pernollet JC (1999). Charaterization of elicitin-like phospholipases isolated from Phytophyhora capsici culture filtrate. FEBS Lett.452:400-406.
    141.Nilsson L, Carlsbecker A, Sundas-Larsson A and Vahala T (2007). APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589-602.
    142. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO and Bowle DJ (1996). Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914-1917.
    143. Ogita S, Uefuji H, Yamaguchi Y, Koizumi N and Sano H (2003). Producing decaffeinated coffee plants. Nature 423:823.
    144. Ohme-Takagi M and Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1:173-182.
    145. Ouaked F, Rozhon W, Lecourieux D and Hirt H (2003). A MAPK pathway mediates ethylene signaling in plants. EMBO J.22:1282-1288.
    146. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ and Conklin DS (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16:948-958.
    147. Panabieres F and Le Berre JY (1999). A family of repeated DNA in the genome of the Oomycete plant pathogen Phytophhora cryptogea. Curr. Genet.36:105-112.
    148. Park JM, Park CJ, Lee SB, Ham BK, Shin R and Paek KH (2001). Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035-1046.
    149. Payne CT, Zhang F and Lloyd AM (2000). GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349-1362.
    150. Paz-Ares J, Ghosal D, Wienand U, Peterson PA and Saedler H (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J.6:3553-3558.
    151. Peng J, Bao Z, Dong H, Ren H and Wang J (2004). Expression of harpinxoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94: 1048-1055.
    152. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera BM and Beer SV (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62:317-326.
    153. Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux JP and Broekaert WF (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin. Plant Cell 10:2103-2113.
    154. Perazza D, Vachon G and Herzog M (1998). Gibberellins promote trichome formation by up-regulating GLABROUS 1 in Arabidopsis. Plant Physiol.117:375-383.
    155. Pesch M and Hulskamp M (2009). One, two, three models for trichome patterning in Arabidopsis. Curr. Opin. Plant Biol.12:587-592.
    156. Pieterse CM, van Pelt JTJ, Parchmann S, Mueller MJ, Buchala AJ, Metraux JP and van Loon LC (2000). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensibility to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol.57:123-134.
    157. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Lean R, Gerrits H, Weisbeek PJ and van Loon LC (1998). A novel signaling pathway controlling induced systemic in Arabidopsis. Plant Cell 10: 1571-1580.
    158. Plett JM, Mathur J and Regan S (2009). Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J. Exp. Bot.60:3923-3933.
    159. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C and Genschik P (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679-689.
    160. Powell G, Tosh CR and Hardie J (2006). Host plant selection by aphids:behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol.51:309-330.
    161. Price DR and Gatehouse JA (2008). RNAi-mediated crop protection against insects. Trends Biotechnol.26:393-400.
    162. Qin Y, Hu C, Pang Y, Kastaniotis AJ, Hiltunen JK and Zhu Y (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692-3704.
    163. Qu LJ and Zhu YX (2006). Transcription factor families in Arabidopsis:major progress and outstanding issues for future research. Curr. Opin. Plant Biol.9:544-549.
    164. Ramon M, Rolland F, Thevelein JM, Van Dijck P and Leyman B (2006). ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Mol. Biol.63:195-206.
    165. Ren H, Gu G, Long J, Qian J, Wu T, Song T, Zhang S, Chen Z and Dong H (2006a). Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci.31:617-627.
    166. Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen Z, Dong H (2006b). Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ⅲ effector. Ann. Microbiol. 56:281-287.
    167. Ren X, Liu F, Bao Z, Zhang C, Wu X, Chen L, Liu R and Dong H (2008). Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol. Biol. Rep.26:225-240.
    168. Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G and Pernollet JC (1989). Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem.183:555-563.
    169. Riechmann JL and Meyerowitz EM (1998). The AP2/EREBP family of plant transcription factors. Biol. Chem.379:633-646.
    170. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK and Yu G (2000). Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science.290:2105-2110.
    171.Riganti C, Gazzano E, Polimeni M, Costamagna C, Bosia A and Ghigo D (2004). Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J. Biol. Biochem.279:47726-47731.
    172. Robatzek S and Somssich IE (2001). A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J.28: 123-133.
    173. Robatzek S and Somssich IE (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Gene Dev.16:1139-1149.
    174. Rose JKC (2003). The plant cell wall. Oxford:CRC Press, ISBN 9781841273280.
    175. Rowland O and Jones JDG (2001). Unraveling regulatory networks in plant defense using microarrays. Genome Biol.2:10011-10013.
    176. Ruiz MT, Voinnet O and Baulcombe DC (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937-946.
    177. Rushton PJ, MacDonald H, Huttly AK, Lazarus CM and Hooley R (1995). Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy-genes. Plant Mol. Biol.29:691-702.
    178. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, and Somssich IE (1996). Interaction of elicitor induced DNA-binding proteins with licitor response elements in the promoters of parsley PR1 genes. EMBO J.15:5690-5700.
    179. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K and Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun.290: 998-1009.
    180. Schiefelbein J (2003). Cell-fate specification in the epidermis:a common patterning mechanism in the root and shoot. Curr. Opin. Plant Biol.6:74-78.
    181. Schnittger A, Jurgens G and Hulskamp M (1998). Tissue layer and organ specificity of trichome formation are regulated by GLABRA1 and TRIPTYCHON in Arabidopsis. Development 125: 2283-2289.
    182. Senthil S, Madge YG, Oliver Y and Terrence L (2005). RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and enhanced susceptibility to Phytophthora sojae. Plant Physiol.137:1345-1353.
    183. Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R and Terenzi H (2007). Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem. Biophys. Res. Commun. 361:1048-1053.
    184. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q and Chen SY (2003). An EREBP/AP2 type protein in Triticum aestivum was a DRE binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet.106:923-930.
    185. Shi Y, Zhu S, Mao X, Feng J, Qin Y, Zhang L, Cheng J, Wei L, Wang Z and Zhu Y. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fibercell elongation. Plant Cell 18:651-664.
    186. Shimizu T, Jikumaru Y, Okada A, Okada K, Koga J, Umemura K, Minami E, Shibuya N, Hasegawa M, Kodama O, Nojiri H and Yamane H (2008). Effects of a bile acid elicitor, cholic acid, on the biosynthesis of diterpenoid phytoalexins in suspension-cultured rice cells. Phytochemistry 69: 973-981.
    187. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ and Schachtman DP (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19: 2440-2453.
    188. Skibbe M, Qu N, Galis I and Baldwin IT (2008). Induced plant defenses in the natural environment: Nicotiana attenuate WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20: 1984-2000.
    189. Soler M, Serra O, Molinas M, Huguet G, Fluch S and Figueras M (2007). A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol.144:419-431.
    190. Stepanova AN and Ecker JR (2000). Ethylene signaling:from mutants to molecules. Curr, Opin. Plant Biol.3:353-360.
    191. Stocking EJ, Gilmour SJ and Thomashow MT (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acaid. Sci. USA 94:1035-1040.
    192. Stracke R, Werber M and Weisshaar B (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol.4:447-456.
    193. Sun P, Tian QY, Chen J and Zhang WH (2010). Aluminium-induced inhibition of root longation in Arabidopsis is mediated by ethylene and auxin. J. Exp. Bot.61:347-356.
    194. Szymanski DB, Lloyd AM and Marks MD (2000). Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci.5:214-219.
    195.Tabara H, Sarkissian M, Kelly WG, Fleenor J and Grishok A (1999). The rde21 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123-132.
    196. Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP and Walker AR (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol.142: 1216-1232.
    197. Taverniner E, Wendehenne D, Blein JP and Pugin A (1995). Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol. 109:1025-1031.
    198. Thompson GA and Goggin FL (2006). Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects. J. Exp. Bot.3:1-12.
    199. Tieman DM, Ciardi JA, Taylor MG and Klee HJ (2001). Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J.26:47-58.
    200. Timmons L and Fire A (1998). Specific interference by ingested dsRNA. Nature 395:854-863.
    201. Tjallingii F (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot.57:739-745.
    202. Traw MB and Bergelson J (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol.133:1367-1375.
    203. Traw MB and Feeny P (2008). Glucosinolates and trichome track tissue value in two sympatric mustards. Ecology 89:763-772.
    204. Tyler BM (2001). Genetics and genom ics of the Oomycete host interface. Trends Genet.17: 611-614.
    205. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K and Yamaguchi-Shinozaki K (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Pro. Natl. Acad. Sci. USA.97: 11632-11637.
    206. Uphof (1962). Plant hairs. Berlin. Genr. Borntrager.
    207. Urao T, Kazuko YS, Urao S and Shinozaki K (1993). An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529-1539.
    208. van der Fits L and Memelink J (2001). The jasmonate-inducible AP2/ERF-domain transcription factors ORCA3 activates gene expression via interaction with a jasmonate responsive promotor element. Plant J.25:43-53.
    209. van Loon LC, Bakker PAHM and Pieterse CMJ (1998). Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol.36:453-483.
    210. van Verk MC, Pappaioannou D, Neeleman L, Bol JF and Linthorst HJ (2008). A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol.146:1983-1995.
    211. Vance V and Vaucheret H (2001). RNA silencing in plants-defense and counter defense. Science 292:2277-2280.
    212. Varagona MJ, Schmidt RJ and Raikhel NV (1992). Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2. Plant cell 4:1213-1227.
    213. Vauthrin S, Mikes V, Milat ML, Ponchet M, Maume B, Osman H and Blein JP (1999). Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochem. Biophys. Acta. 1419:335-342.
    214. Wagner GJ, Wang E and Shepherd RW (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot.293:3-11.
    215. Waites R, Selvadurai HR, Oliver IR and Hudson A (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779-789.
    216. Wang B, Boulter D and Gatehouse JA (1994). Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol. Biol.24:159-170.
    217. Wang KL, Li H and Ecker JR (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151.
    218. Wang S, Hubbard L, Chang Y, Guo J, Schiefelbein J and Chen JG (2008). Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biol.8:81.
    219. Wang W, Hall AE, O'Malley R and Bleecker AB (2003). Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl. Acad. Sci. USA 100:352-357.
    220. Wang Z, Yang P, Fan B and Chen Z (1998). An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defence response. Plant J.16: 515-522.
    221. Wang KL, Li H, and Ecker JR (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151.
    222. Wassenegger M, Heroes S and Riedel L (1994). RNA-directed denovo methylation of genom is sequences in plants. Cell 76:567-576.
    223. Wei ZM, Beer S (1996). Harpin from Erwinia amylovora induces plant resistance. Acta. Hortic.411: 223-225.
    224. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A and Beer SV (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88.
    225. Werker E (2000). Trichome diversity and development. Adv. Bot. Res.31:1-35.
    226. Wester K, Digiuni S, Geier F, Timmer J, Fleck C and Hulskamp M (2009). Functional diversity of R3 single-repeat genes in trichome development. Development 136:1487-1496.
    227. Wianny F. and Zernicka-Goetz M (2000). Specific interference with gene function by double-stranded RNA in early move development. Nat. Cell Biol.2:70-75.
    228. Winer J, Jung CK, Shackel I and Williams PM. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem.270:41-49.
    229. Wollenweber E and Schneider H (2000). Lipophilic exudates of pteridaceae-chemistry and chemotaxonomy. Biochem. Syst. Ecol.28:751-777.
    230. Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T and Dong H (2007). Productivity and biochemical properties of green tea in response to the intact molecule and functional fragments of HpaGXooc. a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J. Biosci.32:1119-1131.
    231. Xiang X, Cao JS, Ye WZ, Cui HM and Yu JN (2007). Molecular cloning and characterization of BcMYBogu, a novel member of the MYB family involved in OguCMS in Brassiac campestris ssp. Chinensis Yi Chuan 29:621-628.
    232. Yamada T (1993). The role of auxin in plant-disease development. Annu. Rev. Phytopathol.31: 253-273.
    233. Yanagisawa S and Sheen J (1998). Involvemen to fmaize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10:75-90.
    234. Yanagisawa S, Yoo SD and Sheen J (2003). Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521-525.
    235. Yang XE, Kong H, Guo AP and He LK (2005). RNAi and it s application in plant molecular biology. Molecular Plant Breeding 3:571-574.
    236. Yang XY, Li JG, Pei M, Gu H, Chen ZL and Qu LJ (2007). Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep.26: 219-228.
    237. Yoshida Y, Sano R, Wada T, Takabayashi J and Okada K (2009). Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136: 1039-1048.
    238. Yu LM (1995). Elicitins from Phytophthora and basic resistance in tobacco. Proc. Natl. Sci. USA 92: 4088-4094.
    239. Zhang C, Qian J. Bao Z, Hong X and Dong H (2007). The Induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a harpin protein. Plant Mol. Biol. Rep.25:98-114.
    240. Zhang FGA, Zhao M, Payne CT and Lloyd A (2003). A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859-4869.
    241. Zhang SJ, Yang X, Sun MW, Sun F, Deng S and Dong H (2008). Riboflavin induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol.51:167-174.
    242. Zhao M, Morohashi K, Hatlestad G, Grotewold E and Lloyd A (2008). The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991-1999.
    243. Zhou J, Lee C, Zhong R and Ye ZH (2009). MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248-266.
    244. Zipfel C, Robatzek S, Navarro L, Oakelev EJ, Jones JD, Felix G and Boller T (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767.
    245. Zou MG, Ren Y, Zhang H and Chen F (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol.66:675-683.
    246.陈蕾(2009)Harpin蛋白HpaG功能片段鉴定及植物诱导抗虫性的一种转录调控机制研究.博士学位论文,南京农业大学.
    247.董汉松(1995).植物诱导抗病性原理和研究.科学出版社.
    248.梁元存(2002).寄生疫霉Elicitin基因克隆、表达及Elicitin诱导植物抗病防卫的机制研究.博士学位论文,山东农业大学.
    249.刘良式(1998).植物分子遗传学[M].北京,科学出版社.
    250.刘强,赵南明,Yamaguch-Shinozaki K (2000). DREB转录因子在提高植物抗逆性中的作用.科学通报,45:11-16.
    251.王颖(2004).中华鳖核黄素受体基因的克隆和在转基因植物中的表达.硕士学位论文,南京农业大学.
    252.王云鹏(2008).烟草控制表皮毛发育因子NtTTG1和控制营养生长的因子NtARP1对过敏反应与抗病性的调控作用.博士学位论文,南京农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700