腙类衍生物金属离子荧光探针及单核苷酸多态性荧光检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本文设计合成了新型腙类衍生物金属离子荧光探针,实现了对溶液中铜离子、锌离子和镁离子的荧光增强型或双波长比率型检测。根据荧光探针与金属离子的结合方式不同本文研究了两类不同类别的金属离子荧光探针,即:金属离子诱导的反应型荧光探针和络合型荧光探针。7-二乙胺基香豆素-3-(2-羟基苯胺)希弗碱是本论文设计合成的一种新型高效的反应型铜离子荧光探针,其香豆素内酯结构在铜离子的诱导下能够发生水解反应,生成荧光产物。基于此原理,该探针能够在水溶液中对铜离子进行荧光增强型检测,其检测限可达20 nM。由于只有铜离子能够诱导水解反应的发生,所以该探针对铜离子具有很高的选择性,其它金属离子均不干扰测定。本文进而设计合成了两种针对锌离子的络合型荧光探针1-芘基丁酰基水杨醛腙和罗丹明B酰4-N,N-二乙胺基水杨醛腙,它们均可对锌离子产生双波长比率型的荧光响应。其中1-芘基丁酰基水杨醛腙至少可以在0~5μM锌离子浓度范围内对其进行检测,检测限为80 nM锌;罗丹明B酰4-N,N-二乙胺基水杨醛腙至少可以在0~10μM锌离子浓度范围内对其进行检测,检测限为50 nM锌。由于该探针与锌离子络合前后溶液的荧光颜色由蓝绿色到黄绿色产生明显的变化,因此可以实现紫外灯下锌离子的裸眼检测。这两种锌离子荧光探针均已用于实际水样中锌离子浓度的测定。本文还合成了镁离子的络合型荧光探针α-(喹啉-8-氧基)-乙酰水杨醛腙,探针在与镁离子络合前后显示显著的吸收光谱和荧光光谱变化。
     其次,本文设计了检测单核苷酸多态性的新方法——双探针法和突起法。与传统的荧光团或有机小分子共价标记DNA链的检测方法不同,双探针法和突起法采用了不加任何标记的DNA链,通过将对不同碱基具有选择性识别作用的荧光探针引入互补DNA双链提供的疏水性微环境中产生的荧光淬灭作用,实现了中性水溶液中单核苷酸多态性的荧光检测,并且成功用于实际基因序列中的C碱基突变检测。双探针法和突起法的优点是方法简单,成本低廉,在高通量单核苷酸多态性检测领域具有潜在的应用价值。
A series of hydrazone derivatives were synthesized and their potential application as fluorescent probes for Cu~(2+), Zn~(2+) and Mg~(2+) was investigated in this dissertation. The interaction between these fluorescent probes and metal ions could be divided into two different mechanisms, i.e., metal ion-induced reaction and metal ion-ligand chelation. In the former case, 7-diethylamino-3-[(2-hydroxy-phenylimino) -methyl]-coumarin was designed and synthesized as a fluorescence“turn-on”probe for Cu~(2+) via Cu~(2+)-promoted hydrolysis of the lactone moiety in coumarin. The probe showed high sensitivity to Cu~(2+) in water solution with a detection limit of 20 nM. Fluorescence response of the probe to Cu~(2+) was also highly selective, because other metal ions could neither promote nor interfere the hydrolysis reaction. In the latter case, novel fluorescence probes salicylaldehyde 4-pyren-1-yl-butyric hydrazone and 4-N,N-diethylamino-salicylaldehyde rhodamine B hydrazone for Zn~(2+) were developed. They exhibited selective and ratiometric fluorescent response toward Zn~(2+) over other metal ions in aqueous ethanol. Salicylaldehyde 4-pyren-1-yl-butyric hydrazone exhibited a linear range of 0~5.0μM and detection limit of 80 nM for Zn~(2+) in optimal condition. 4-N,N-diethylamino-salicylaldehyde rhodamine B hydrazone exhibited a linear range of 0~10.0μM and the detection limit was found to be 50 nM for Zn~(2+). When 4-N,N-diethylamino-salicylaldehyde rhodamine B hydrazone was used, fluorescence emission color changed from dark cyan to green yellow by formation of a 1:1 metal-to-ligand complex and the color change could be easily recognized by naked eye. Detection of Zn~(2+) in real water samples using the two probes was successfully carried out. In addition,α-(quinlin-8-yloxy)-acetyl salicyl hydrazone was proposed as a fluorescent probe for Mg~(2+). Significant absorption spectra changes and fluorescence enhancement were observed upon chelation of the probe with Mg~(2+).
     In this dissertation, a double-probe method and a bulge form method were also proposed for the detection of single-nucleotide polymorphisms (SNPs) by coupling with a small fluorescent dye 2-amino-5, 7-dimethyl-1, 8-naphthyridine (ADMND). Since the methods required no labeling of DNA strands and thus simple, economic and cost-effective SNPs detection was realized. Using the double-probe method and bulge form method, ADMND was successfully applied to the detection of C/G and C/A mutations in the estrogen receptor 2 gene and the progesterone receptor genes.
引文
[1] Allbritton N L, Meyer T, Stryer L. Range of messenger action of calcium-ion and inositol 1,4,5-trisphosphate. Science, 1992, 258: 1812-1815.
    [2] Taylor C W, Prole D L, Rahman T. Ca2+ channels on the move. Biochemistry, 48, 12062-12080.
    [3] Sigel H. Metal ions in biological systems, Vol. 12: Properties of copper, CRC Press, 1981.
    [4] Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease. Neurobiol. Dis., 1999, 6: 221-230.
    [5] Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations. Environ. Res., 1998, 77: 68-72.
    [6] Richard F, Bourg A. Aqueous geochemistry of chromium: A review. Water Resour., 1991, 25: 807-816.
    [7] Sigel A, Sigel H, Sigel R K O, Nickel and its surprising impact in nature, Vol. 2, Wiley, 2007.
    [8] Wolfbeis O S. Fibre Optic Chemical sensors and biosensors. Boca Raton: CRC Press, 1991, Vol. 1 and 2.
    [9] Cammann G G, Guilbault E A, Hal H, et al. The Cambridge definition of chemical sensors, Cambridge workshop on chemical sensors and biosensors. New York: Cambridge University Press, 1996.
    [10] Thomas S W III, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev., 2007, 107: 1339-1386.
    [11] Callan J F, de Silva A P, Magri D C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61: 8551-8588.
    [12] Kim J S, Quang D T. Calixarene-derived fluorescent probes. Chem. Rev., 2007, 107: 3780-3799.
    [13] McDonagh C, Burke C S, MacCraith B D. Optical chemical sensors. Chem. Rev., 2008, 108: 400-422.
    [14] Otsuki J, Akasaka T, Araki K. Molecular switches for electron and energy transfer processes based on metal complexes. Coord. Chem. Rev., 2008, 252: 32-56.
    [15] Kiyose K, Kojima H, Nagano T. Functional near-infrared fluorescent probes. Chem. Asian. J., 2008, 3: 506-515.
    [16] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc., 1997, 119: 7386-7387.
    [17] Kovács J, Mokhir A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2+ detection. Inorg. Chem., 2008, 47: 1880-1882.
    [18] Kim M H, Jang H H, Yi S, et al. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem. Commun., 2009, 4838-4840.
    [19] Fife T H, Przystas T J. Divalent metal ion catalysis in the hydrolysis of esters of picolinic acid. Metal ion promoted hydroxide ion and water catalyzed reactions. J. Am. Chem. Soc., 1985, 107: 1041-1047.
    [20] Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). J. Am. Chem. Soc., 2004, 126: 14682-14683.
    [21] Kovács J, R?dler T, Mokhir A. Chemodosimeter for CuII detection based on cyclic peptide nucleic acids. Angew. Chem. Int. Ed., 2006, 45: 7815-7817.
    [22] Mokhir A, Kraemer R. Double discrimination by binding and reactivity in fluorescent metal ion detection. Chem. Commun., 2005, 2244-2246.
    [23] Kierat R M, Kraemer R. A fluorogenic and chromogenic probe that detects the esterase activity of trace copper(II). Bioorg. Med. Chem. Lett., 2005, 15: 4824-4827.
    [24] Graf N, Goeritz M, Kraemer R. A metal-ion-releasing probe for DNA detection by catalytic signal amplification. Angew. Chem. Int. Ed., 2006, 45: 4013-4015.
    [25] Qi X, Jun E J, Xu L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J. Org. Chem., 2006, 71: 2881-2884.
    [26] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc., 2005, 127: 16760-16761.
    [27] Ko S K, Yang Y K, Tae J, et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc., 2006, 128: 14150-14155.
    [28] Song F L, Watanabe S, Floreancig P E, et al. Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc., 2008, 130: 16460-16461.
    [29] Santra M, Ryu D, Chatterjee A, et al. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem. Commun., 2009, 2115-2117.
    [30] Lee D N, Kim G J, Kim H J. A fluorescent coumarinylalkyne probe for the selective detection of mercury(II) ion in water. Tetrahedron Lett., 2009, 50: 4766-4768.
    [31] Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc., 1992, 114: 9704-9705.
    [32] Hennrich G, Walther W, Resch-Genger U, et al. Cu(II)- and Hg(II)-induced modulation ofthe fluorescence behavior of a redox-active sensor molecule. Inorg. Chem., 2001, 40: 641-644.
    [33] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun., 2005, 3156-3158.
    [34] Zhang G X, Zhang D Q, Yin S W, et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion. Chem. Commun., 2005, 2161-2163.
    [35] Ros-Lis J, Marcos M D, Martínez-Má?ez R, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew. Chem. Int. Ed., 2005, 44: 4405-4407.
    [36] Song K C, Kim J S, Park S M, et al. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Org. Lett., 2006, 8: 3413-3416.
    [37] Zhao Y G, Lin Z H, He C, et al. A“turn-on”fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation. Inorg. Chem. 2006, 45: 10013-10015.
    [38] Lee M H, Cho B K, Yoon J, et al. Selectively chemodosimetric detection of Hg(II) in aqueous media. Org. Lett., 2007, 9: 4515-4518.
    [39] Boeglin D, Cantel S, Heitz A, et al. Solution and solid-supported synthesis of 3,4,5-trisubstituted 1,2,4-triazole-based peptidomimetics. Org. Lett., 2003, 5: 4465-4468.
    [40] Wu J S, Hwang I C, Kim K S, et al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF-ON. Org. Lett., 2007, 9: 907-910.
    [41] Lee M H, Van Giap T, Kim S H, et al. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem. Commun., 2010, 1407-1409.
    [42] Lin W Y, Yuan L, Feng J B, et al. A Fluorescence-enhanced chemodosimeter for Fe3+ based on hydrolysis of bis(coumarinyl) schiff base. Eur. J. Org. Chem., 2008, 2689-2692.
    [43] Sadler N P, Chuang C C, Milburn R M. Iron(III)-promoted hydrolysis of 4-nitrophenyl phosphate. Inorg. Chem., 1995, 34: 402-404.
    [44] Bera M, Mukhopadhyay U, Ray D. Iron(III) induced 2-phenyl imidazolidine ring hydrolysis of a new binucleating Schiff base ligand: X-ray structure of the mononuclear FeIII(NNO)2 end product. Inorg. Chim. Acta., 2005, 358: 437-443.
    [45] Guo X, Qian X, Jia L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc., 2004, 126: 2272-2273.
    [46] Wang J B, Xiao Y, Zhang Z C, et al. A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide design, synthesis and intracellular applications. J. Mater. Chem., 2005, 15: 2836-3839.
    [47] Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc., 2003, 125: 14270-14271.
    [48] Burdette S C, Walkup G K, Spingler B, et al. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. J. Am. Chem. Soc., 2001, 123: 7831-7841.
    [49] Nolan E M, Jaworski J, Okamoto K I, et al. QZ1 and QZ2 Rapid reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). J. Am. Chem. Soc., 2005, 127: 16812-16823.
    [50] Nakahara Y, Kida T, Nakatsuji Y, et al. A novel fluorescent indicator for Ba2+ in aqueous micellar solutions. Chem. Commun., 2004, 224-225.
    [51] Gunnlaugsson T, Bichell B, Nolan C. Fluorescent PET chemosensors for lithium. Tetrahedron, 2004, 60: 5799-5806.
    [52] Chang C J, Nolan E M, Jaworski J, et al. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol., 2004, 11: 203-210.
    [53] Cha N R, Moon S Y, Chang S K. New on-off type Ca2+-selective fluoroionophore having boron-dipyrromethene fluorophores. Tetrahedron Lett., 2003, 44: 8265-8268.
    [54] Clapham B, Sutherland A J. Scintillation-based potassium signalling using 2,5-diphenyloxazole-tagged aza-18-crown-6. Chem. Commun., 2003, 84-85.
    [55] Gunnlaugsson T, Lee T C, Parkesh R. Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett., 2003, 5: 4065-4068.
    [56] Kollmannsberger M, Rurack K, Resch-Genger U, et al. Design of an efficient charge-transfer processing molecular system containing a weak electron donor: spectroscopic and redox properties and cation-induced fluorescence enhancement. Chem. Phys. Lett., 2000, 329: 363-369.
    [57] Hirano T, Kikuchi K, Urano Y, et al. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J. Am. Chem. Soc., 2002, 124: 6555-6562.
    [58] Bhattacharya S, Gulyani A. First report of Zn2+ sensing exclusively at mesoscopic interfaces. Chem. Commun., 2003, 1158-1159.
    [59] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chem. Commun., 2004, 1094-1095.
    [60] Gunnlaugsson T, Lee T C, Parkesh R. A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(II). Org. Biomol. Chem., 2003, 1: 3265-3267.
    [61] Gunnlaugsson T, Lee T C, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron, 2004, 60: 11239-11249.
    [62] Zheng Y J, Cao X H, Orbulescu J, et al. Peptidyl fluorescent chemosensors for the detection of divalent copper. Anal. Chem., 2003, 75: 1706-1712.
    [63] Cao Y D, Zheng Q Y, Chen C F, et al. A new fluorescent chemosensor for transition metal cations and on/off molecular switch controlled by pH. Tetrahedron Lett., 2003, 44: 4751-4755.
    [64] Kumar S, Kaur S, Singh G. Photoactive chemosensors 2: 8-hydroxyquinoline based Cu(II) selective fluorescent tripod. Supramol. Chem., 2003, 15: 65-67.
    [65] Brasola E, Mancin F, Rampazzo E, et al. A fluorescence nanosensor for Cu2+ on silica particles. Chem. Commun., 2003, 3026-3027.
    [66] Burdette S C, Frederickson C J, Bu W M, et al. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. J. Am. Chem. Soc., 2003, 125: 1778-1787.
    [67] Prodi L, Bargossi C, Montalti M, et al. An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc., 2000, 122: 6769-6770.
    [68] Nolan E M, Racine M E, Lippard S J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorg. Chem., 2006, 45: 2742-2749.
    [69] Sarkar M, Banthia S, Samanta A. A highly selective‘o?–on’?uorescence chemosensor for Cr(III). Tetrahedron Lett., 2006, 47: 7575-7578.
    [70] Wang J B, Qian X H. Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor. Chem. Commun., 2006, 109-111.
    [71] Martínez R, Zapata F, Caballero A, et al. 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org. Lett., 2006, 8: 3235-3238.
    [72] Shiraishi Y, Ichimura C, Hirai T. A quinoline–polyamine conjugate as a ?uorescent chemosensor for quantitative detection of Zn(II) in water. Tetrahedron Lett., 2007, 48: 7769-7773.
    [73] Aoki S, Sakurama K, Matsuo N, et al. A new fluorescent probe for Zinc(II): an 8-hydroxy-5-N,N-dimethylaminosulfonylquinoline-pendant 1,4,7,10-tetra- azacyclododecane. Chem. Eur. J., 2006, 12: 9066-9080.
    [74] Kim J, Morozumi T, Nakamura H. Discriminating detection between Mg2+ and Ca2+ by fluorescent signal from anthracene aromatic amide moiety. Org. Lett., 2007, 9: 4419-4422.
    [75] Bhardwaj V K, Pannu A P S, Singh N, et al. Synthesis of new tripodal receptorsda‘PET’based‘off–on’recognition of Ag+. Tetrahedron, 2008, 64: 5384-5391.
    [76] Mashraqui S H, Sundaram S, Khan T, et al. Zn2+ selective luminescent‘off–on’probes derived from diaryl oxadiazole and aza-15-crown-5. Tetrahedron, 2007, 63: 11093-11100.
    [77] Tang B, Cui L J, Xu K H, et al. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications. ChemBioChem, 2008, 9: 1159-1164.
    [78] Lee H N, Kim H N, Swamy K M K, et al. New acridine derivatives bearing immobilized azacrown or azathiacrown ligand as ?uorescent chemosensors for Hg2+ and Cd2+. Tetrahedron Lett., 2008, 49: 1261-1265.
    [79] Li G K, Xu Z X, Chen C F, et al. A highly e?cient and selective turn-on ?uorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim. Chem. Commun., 2008, 1774-1776.
    [80] Iyoshi S, Taki M, Yamamoto Y. Rosamine-based fluorescent chemosensor for selective detection of Silver(I) in an aqueous solution. Inorg. Chem., 2008, 47: 3946-3948.
    [81] Xue L, Wang H H, Wang X J, et al. Modulating affinities of di-2-picolylamine (DPA)-substituted quinoline sensors for zinc ions by varying pendant ligands. Inorg. Chem., 2008, 47: 4310-4318.
    [82] Xu Z C, Xiao Y, Qian X H, et al. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett., 2005, 7: 889-892.
    [83] Xu Z C, Qian X H, Cui J N. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. Org. Lett., 2005, 7: 3029-3032.
    [84] Xu Z C, Baek K H, Kim H N, et al. Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J. Am. Chem. Soc., 2010, 132: 601-610.
    [85] Barigelletti F, Flamigni L, Calogero G, et al. A functionalized ruthenium(II)-bis-terpyridine complex as a rod-like luminescent sensor of zinc(II). Chem. Commun., 1998, 2333-2334.
    [86] Yang J S, Lin Y D, Chang Y H, et al. Synthesis, dual fluorescence, and fluoroionophoric behavior of dipyridylaminomethylstilbenes. J. Org. Chem., 2005, 70: 6066-6073.
    [87] Descalzo A B, Martínez-Má?ez R, Radeglia R, et al. Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg(2+)-responsive probe, operating above 500 nm. J. Am. Chem. Soc., 2003, 125: 3418-3419.
    [88] Wang J B, Qian X H, Cui J N. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J. Org. Chem., 2006, 71, 4308-4311.
    [89] Malval J P, Lapouyade R, Léger J M, et al. Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photoinduced electron transfer. Photochem. Photobiol. Sci., 2003, 2: 259-266.
    [90] Benniston A C, Harriman A, Lawrie D J, et al. A general purpose reporter for cations: absorption, fluorescence and electrochemical sensing of zinc(II). Dalton Trans., 2003, 4762-4769.
    [91] Morozumi T, Hiraga H, Nakamura H. Intramolecular charge-transfer behavior of 1-pyrenyl aromatic amides and its control through the complexation with metal ions. Chem. Lett., 2003, 32: 146-147.
    [92] Kiyose K, Kojima H, Urano Y, et al. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J. Am. Chem. Soc., 2006, 128: 6548-6549.
    [93] Wu D Y, Xie L X, Zhang C L, et al. Quinoline-based molecular clips for selective ?uorescent detection of Zn2+. Dalton Trans., 2006, 3528-3533.
    [94] Mei Y J, Bentley P A. A ratiometric ?uorescent sensor for Zn2+ based on internal charge transfer (ICT). Bioorg. Med. Chem. Lett., 2006, 16: 3131-3134.
    [95] Dennis A E, Smith R C.“Turn-on”fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor. Chem. Commun., 2007, 4641-4643.
    [96] Komatsu K, Urano Y, Kojima H, et al. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J. Am. Chem. Soc., 2007, 129: 13447-13454.
    [97] Yang H, Zhou Z G, Xu J, et al. A highly selective ratiometric chemosensor for Hg2+ based on the anthraquinone derivative with urea groups. Tetrahedron, 2007, 63: 6732-6736.
    [98] Kim J, Morozumi T, Kurumatani N, et al. Novel chemosensor for alkaline earth metal ion based on 9-anthryl aromatic amide using a naphthalene as a TICT control site and intramolecular energy transfer donor. Tetrahedron Lett., 2008, 49: 1984-1987.
    [99] Jung H J, Singh N, Jang D O. Highly Fe3+ selective ratiometric ?uorescent probe based on imine-linked benzimidazole. Tetrahedron Lett., 2008, 49: 2960-2964.
    [100] Zhang Y, Guo X F, Si W X, et al. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org. Lett., 2008, 10: 473-476.
    [101] Kim H J, Hong J, Hong A, et al. Cu2+-induced intermolecular static excimer formation of pyrenealkylamine. Org. Lett., 2008, 10: 1963-1966.
    [102] Park S Y, Yoon J H, Hong C S, et al. A pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd2+ and Zn2+. J. Org. Chem., 2008, 73: 8212-8218.
    [103] Liu L, Zhang D Q, Zhang G X, et al. Highly selective ratiometric fluorescence determination of Ag+ based on a molecular motif with one pyrene and two adenine moieties. Org. Lett., 2008, 10: 2271-2274.
    [104] Che Y, Yang X M, Zang L. Ultraselective ?uorescent sensing of Hg2+ through metal coordination-induced molecular aggregation. Chem. Commun., 2008, 1413-1415.
    [105] Chen J A, Lai J L, Lee G H, et al. Cooperative and selective lithium complexation of 2,11,13,22-tetraaza-5,8,16,19-tetraoxa-1,12- dioxocyclodocosanes. Org. Lett., 2001, 3: 3999-4002.
    [106] Xie J, Ménand M, Maisonneuve S, et al. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J. Org. Chem., 2007, 72: 5980-5985.
    [107] Kim S K, Kim S H, Kim H J, et al. Indium(III)-induced fluorescent excimer formation and extinction in calix[4]arene-fluoroionophores. Inorg. Chem., 2005, 44: 7866-7875.
    [108] Kim S K, Lee S H, Lee J Y, et al. An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor. J. Am. Chem. Soc., 2004, 126: 16499-16506.
    [109] Jung H S, Park M, Han D Y, et al. Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org. Lett., 2009, 11: 3378-3381.
    [110] Hamdi A, Kim S H, Rym A, et al. A dipyrenyl calixazacrown chemosensor for Mg2+. Tetrahedron, 2009, 65: 2818-2823.
    [111] Shiraishi Y, Ishizumi K, Nishimura G, et al. Effects of metal cation coordination on fluorescence properties of a diethylenetriamine bearing two end pyrene fragments. J. Phys. Chem. B, 2007, 111:8812-8822.
    [112] Zhou Z G, Yu M X, Yang H, et al. FRET-based sensor for imaging chromium(III) in living cells. Chem. Commun., 2008, 3387-3389.
    [113] Wu F Y, Bae S W, Hong J I. A selective ?uorescent sensor for Pb(II) in water. Tetrahedron Lett., 2006, 47: 8851-8854.
    [114] Othman A B, Lee J W, Wu J S, et al. Calix[4]arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor. J. Org. Chem., 2007, 72: 7634-7640.
    [115] Kim H J, Park S Y, Yoon S, et al. FRET-derived ratiometric ?uorescence sensor for Cu2+. Tetrahedron, 2008, 64: 1294-1300.
    [116] Lee M H, Kim H J, Yoon S, et al. Metal ion induced FRET OFF?ON in tren/dansyl-appended rhodamine. Org. Lett., 2008, 10: 213-216.
    [117] Jisha V S, Thomas A J, Ramaiah D. Fluorescence ratiometric selective recognition of Cu2+ ions by dansyl?naphthalimide dyads. J. Org. Chem., 2009, 74: 6667-6673.
    [118] Bojinov V B, Venkova A I, Georgiev N I. Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1,8-naphthalimide. Sens. Actuator B-Chem., 2009, 143: 42-49.
    [119] Suresh M, Mishra S, Mishra S K, et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism. Org. Lett., 2009, 11: 2740-2743.
    [120] Zhang X L, Xiao Y, Qian X H, A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem. Int. Edit. 2008, 47, 8025-8029.
    [121] Pennisi E. Genome research - A closer look at SNPs suggests difficulties. Science, 1998, 281: 1787-1789.
    [122] Twist C R, Winson M K, Rowland J J, et al. Single-nucleotide polymorphism detection using nanomolar nucleotides and single-molecule fluorescence. Anal. Biochem., 2004, 327: 35-44.
    [123] Zhang S B, Wu Z S, Shen G L, et al. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens. Bioelectron., 2009, 24: 3201-3207.
    [124] York J, Spetzler D, Xiong F S, et al. Single-molecule detection of DNA via sequence-specific links between F-1-ATPase motors and gold nanorod sensors. Lab Chip, 2008, 8: 415-419.
    [125] Li Z P, Kambara H. Single nucleotide polymorphism analysis based on minisequencing coupled with a fluorescence microsphere technology. J. Nanosci. Nanotechnol., 2005, 5: 1256-1260.
    [126] Tong A K, Ju J Y. Single nucleotide polymorphism detection by combinatorial fluorescence energy transfer tags and biotinylated dideoxynucleotides. Nucleic Acids Res., 2002, 30: e19
    [127] Papp A C, Pinsonneault J K, Cooke G, Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves, Biotechniques, 2003, 34: 1068-1072.
    [128] Livak K J, Marmaro J, Todd J A. Towards fully automated genome-wide polymorphism screening. Nature Genet., 1995, 9: 341-342.
    [129] XuY, Brereton R G, Automated single-nucleotide polymorphism analysis using fluorescence excitation-emission spectroscopy and one-class classifiers. Anal. Bioanal. Chem., 2007, 388: 655-664.
    [130] Tyagi S, Bratu D P, Kramer F R, Multicolor molecular beacons for allele discrimination. Nature Biotechnol., 1998, 16: 49-53.
    [131] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Molecular beacons-spectral genotyping of human alleles. Science, 1998, 279: 1228-1229.
    [132] Kashida H, Takatsu T, Fujii T, et al. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew. Chem. Int. Ed., 2009, 48: 7044-7047
    [133] Howell W M, Jobs M, Brookes A J. iFRET: an improved fluorescence system for DNA-melting analysis. Genome Res., 2002, 12: 1401-1407.
    [134] Nakayama H, Arakaki A, Maruyama K, et al. Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol. Bioeng., 2003, 84, 96-102.
    [135] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol., 2001, 19: 365-370.
    [136] Jeng E S, Nelson J D, Prather K L J, et al. Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence. Small, 2010, 6: 40-43.
    [137] Halpern M D, Ballantyne J. A single nucleotide polymorphism melt curve assay employing an intercalating dye probe fluorescence resonance energy transfer for forensic analysis. Anal. Biochem., 2009, 391:1-10.
    [138] Liu C H, Li Z P, Du B A, et al. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Anal. Chem.,2006, 78, 3738-3744.
    [139] Simeonov A, Nikiforov T T. Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res.,2002, 30: e17
    [140] Twist C R, Winson M K, Rowland J J, et al. Single-nucleotide polymorphism detection using nanomolar nucleotides and single-molecule fluorescence. Anal. Biochem.,2004, 327: 35-44.
    [141] Yoshimoto K, Nishizawa S, Minagawa M, et al. Use of abasic site-containing DNA strands for nucleobase recognition in water. J. Am. Chem. Soc., 2003, 125: 8982-8983.
    [142] Thiagarajan V, Rajendran A, Satake H, et al. NBD-based green fluorescent ligands for typing of thymine-related SNPs by using an abasic site-containing probe DNA. ChemBioChem, 2010, 11: 94-100.
    [143] Xu Z A, Morita K, Sato Y, et al. Label-free aptamer-based sensor using abasic site-containing DNA and a nucleobase-specific fluorescent ligand. Chem. Commun., 2009, 6445-6447.
    [144] Rajendar B, Nishizawa S, Teramae N. Alloxazine as a ligand for selective binding to adenine opposite AP sites in DNA duplexes and analysis of single-nucleotide polymorphisms. Org. Biomol. Chem., 2008, 6: 670-673.
    [145] Zhao C X, Rajendran A, Dai Q, et al. A pyrazine-based fluorescence-enhancing ligand with a high selectivity for thymine in AP site-containing DNA duplexes. Anal. Sci., 2008, 24, 693-695.
    [146] Sankaran N B, Sato Y, Sato F, et al. Small-molecule binding at an abasic site of DNA: strong binding of lumiflavin for improved recognition of thymine-related single nucleotide polymorphisms. J. Phys. Chem. B, 2009, 113: 1522-1529.
    [147] Ye Z, Rajendar B, Qing D, et al. 6,7-Dimethyllumazine as a potential ligand for selective recognition of adenine opposite an abasic site in DNA duplexes. Chem. Commun., 2008, 6588-6590.
    [148] Sato Y, Nishizawa S, Yoshimoto K, et al. Influence of substituent modifications on the binding of 2-amino-1,8-naphthyridines to cytosine opposite an AP site in DNA duplexes: thermodynamic characterization. Nucleic Acids Res., 2009, 37, 1411-1422.
    [149] Ihara T, Uemura A, Futamura A, et al. Cooperative DNA probing using a beta-cyclodextrin-DNA conjugate and a nucleobase-specific fluorescent ligand. J. Am. Chem. Soc., 2009, 131: 1386-1387.
    [150] Nakatani K, Sando S, Kumasawa H, et al. Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine. J. Am. Chem. Soc., 2001, 123: 12650-12657.
    [151] High B, Bruce D, Richter M M. Determining copper ions in water using electrochemiluminescence. Anal. Chim. Acta, 2001, 449:17-22.
    [152] Tapia L, Suazo M, Hodar C, et al. Copper exposure modifies the content and distribution of trace metals in mammalian cultured cells. Biometals, 2003, 16: 169-174.
    [153] http://www.envir.gov.cn/law/standard/6.htm.
    [154] Wen Z C, Yang R, He H, et al. A highly selective charge transfer fluoroionophore for Cu2+. Chem. Commun., 2006, 106-108.
    [155] Xiang Y, Tong A J, Jin P Y, et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Org. Lett., 2006, 8: 2863-2866.
    [156] Xiang Y, Li Z F, Chen X T, et al. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta, 2008, 74: 1148-1153.
    [157] Breuer W, Epsztejn S, Millgram P, et al. Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am. J. Physiol.-Cell Physiol., 1995, 268:1354-1361.
    [158] McCall K A, Fierke C A. Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals. Anal. Biochem., 2000, 284: 307-315.
    [159] Chavez-Crooker P, Garrido N, Ahearn G A. Copper transport by lobster hepatopancreatic epithelial cells separated by centrifugal elutriation: measurements with the fluorescent dye Phen Green. J. Exp. Biol., 2001, 204: 1433-1444.
    [160] Zhou Y, Wang F, Kim Y, et al. Cu2+-selective ratiometric and“off-on”sensor based on the rhodamine derivative bearing pyrene group. Org. Lett., 2009, 11: 4442-4445.
    [161] Zhao Y, Zhang X B, Han Z X, et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal. Chem., 2009, 81: 7022-7030.
    [162] Rurack K, Kollmannsberger M, Resch-Genger U, et al. A selective and sensitive fluoroionophore for Hg-II, Ag-I, and Cu-II with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc., 2000, 122: 968-969.
    [163] Zhang H, Han L F, Zachariasse K A, et al. 8-Hydroxyquinoline benzoates as highly sensitive fluorescent chemosensors for transition metal ions. Org. Lett., 2005, 7: 4217-4220.
    [164] Kim S H, Kim J S, Park S M, et al. Hg2+-selective off-on and Cu2+-selective on-off type fluoroionophore based upon cyclam. Org. Lett., 2006, 8: 371-374.
    [165] Goswami S, Sen D, Das N K, A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption andemission spectra based on internal charge transfer. Org. Lett., 2010, 12: 856-859.
    [166] Li N, Xiang Y, Tong A. Highly sensitive and selective“turn-on”fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem. Commun., 2010, DOI: 10.1039/c001408g.
    [167] Wu J S, Liu W M, Zhuang X Q, et al. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org. Lett., 2007, 9: 33-36.
    [168] Irving H M N H, Freiser H, West T S. IUPAC compendium of analytical nomenclature, definitive rules. Oxford: Pergamon Press, 1981.
    [169] Roat-Malone R M. Bioinorganic chemistry: a short course. John Wiley & Sons, New Jersey, 2002.
    [170] Berg J M, Shi Y G. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085.
    [171] Weiss J H, Sensi S L, Koh J Y. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci., 2000, 21: 395-401.
    [172] deSilva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97: 1515-1566.
    [173] Prodi L, Bolletta F, Montalti M, et al. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev., 2000, 205: 59-83.
    [174] Beer P D, Gale P A. Anion recognition and sensing: the state of the art and future perspectives. Chem. Int. Ed. 2001, 40: 486-516.
    [175] Pu L. Fluorescence of organic molecules in chiral recognition. Chem. Rev., 2004, 104:1687-1716.
    [176] Gokel G W, Leevy W M, Weber M E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev., 2004, 104: 2723-2750.
    [177] Amendola V, Fabbrizzi L, Foti F, et al. Light-emitting molecular devices based on transition metals. Coord. Chem. Rev., 2006, 250: 273-299.
    [178] Hirano T, Kikuchi K, Urano Y, et al. Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J. Am. Chem. Soc. 2000, 122: 12399-12400.
    [179] Komatsu K, Kikuchi K, Kojima H, et al. Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc. 2005, 127: 10197-10204.
    [180] Zapata F, Caballero A, Espinosa A, et al. A simple but effective ferrocene derivative as a redox, colorimetric, and fluorescent receptor for highly selective recognition of Zn2+ ions. Org. Lett., 2007, 9: 2385-2388.
    [181] Wang H H, Gan Q, Wang X J, et al. A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion. Org. Lett., 2007, 9: 4995-4998.
    [182] Liu Y, Zhang N, Chen Y, et al. Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-beta-cyclodextrin to Zn2+. Org. Lett., 2007, 9: 315-318.
    [183] Tang B, Huang H, Xu K. Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells. Chem. Commun., 2006, 3609-3611.
    [184] Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn2+. J. Am. Chem. Soc. 2003, 125: 11458-11459.
    [185] Chang C J, Jaworski J, Nolan E M, et al. A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci., USA, 2004, 101: 1129-1134.
    [186] Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn2+. J. Am. Chem. Soc. 2005, 127: 14962-14963.
    [187] Taki M, Wolford J L, O'Halloran T V. Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy J. Am. Chem. Soc., 2004, 126: 712-713.
    [188] Ito H, Matsuoka M, Ueda Y, et al. Quinolinecarboxylic acid based fluorescent molecules: ratiometric response to Zn2+. Tetrahedron, 2009, 65: 4235-4238.
    [189] Taki M, Watanabe Y, Yamamoto Y. Development of ratiometric fluorescent probe for zinc ion based on indole fluorophore. Tetrahedron Lett., 2009, 50: 1345-1347.
    [190] Xue L, Liu C, Jiang H, A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. Chem. Commun., 2009, 1061-1063.
    [191] Liu Z P, Zhang C L, Li Y L, et al. A Zn2+ fluorescent sensor derived from 2-(Pyridin-2-yl)benzoimidazole with ratiometric sensing potential Org. Lett., 2009, 11: 795-798.
    [192] Jiang X, Park B G, Riddle J A, et al. Torsionally restricted tetradentate fluorophore: a swivelling ligand platform for ratiometric sensing of metal ions. Chem. Commun., 2008, 6028-6030.
    [193] Atilgan S, Ozdemir T, Akkaya E U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl?bodipy fluorophore. Org. Lett., 2008, 10: 4065-4067.
    [194] Chen H L, Wu Y B, Cheng Y F, et al. A ratiometric fluorescent sensor for zinc(II) with high selectivity. Inorg. Chem. Commun., 2007, 1413-1415.
    [195] Huang S, Clark R J, Zhu L. Highly sensitive fluorescent probes for zinc ion based on triazolyl-containing tetradentate coordination motifs. Org. Lett., 2007, 9: 4999-5002.
    [196] Yu M M, Li Z X, Wei L H, et al. A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org. Lett., 2008, 10: 5115-5118.
    [197] Grynkiewicz G, Poenie M, Tsien R Y, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 1985, 260:3440-3450.
    [198] Germain M E, Knapp M J. Discrimination of nitroaromatics and explosives mimics by a fluorescent Zn(salicylaidimine) sensor array. J. Am. Chem. Soc. 2008, 130: 5422-5423.
    [199] Gao L, Wang Y, Wang J Q, et al. A novel Zn-II-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous SBA-15. Inorg. Chem., 2006, 45: 6844-6850.
    [200] Germain M E, Vargo T R, Khalifah P G, et al. Fluorescent detection of nitroaromatics and 2,3-dimethyl 2,3-dinitrobutane (DMNB) by a zinc complex: (salophen)Zn. Inorg. Chem., 2007, 46: 4422-4429.
    [201] Li N, Xiang Y, Chen X, Tong A. Salicylaldehyde hydrazones as fluorescent probes for zinc ion in aqueous solution of physiological pH. Talanta, 2009, 79: 327-332.
    [202] Chan S C, Koh L L, Leung P H. Copper(Ⅱ) complexes of the antitumor-related ligand salicylaldehyde acetylhydrazone (H(2)L) and the single-crystal X-ray structures of [(CuHL)H2O(2)]center-dot-2(NO3) and [(Cu(HL)pyridine(NO3))(2)]. Inorg. Chim. Acta, 1995, 236: 101-108.
    [203] Conlon P, Yang C Y J, Wu Y R, et al. Pyrene excimer signaling molecular beacons for probing nucleic acids. J. Am. Chem. Soc., 2008, 130: 336-342.
    [204] Banthia S, Samanta A, A new strategy for ratiometric fluorescence detection of transition metal ions. J. Phys. Chem. B, 2006, 110: 6437-6440.
    [205] Mello J V, Finney N S. Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer. Chem. Int. Ed., 2001, 40: 1536-1538.
    [206] Xiang Y, Tong A J. A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org. Lett., 2006, 8: 1549-1552.
    [207] Xiang Y, Mei L, Li N, et al. Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement. Anal. Chim. Acta, 2007, 581: 132-136.
    [208] Xiang Y, Tong A J. Ratiometric and selective fluorescent chemodosimeter for Cu(II) by Cu(II)-induced oxidation. Luminescence, 2008, 23: 28-31.
    [209] Li N, Tang W, Xiang Y, Tong A, Jin P, Ju Y. Fluorescent salicylaldehyde hydrazone as selective chemosensor for Zn2+ in aqueous ethanol: a ratiometric approach. Luminescence, DOI 10.1002/bio.1175.
    [210] Maguire M E, Cowan J A. magnesium chemistry and biochemistry. Biometals, 2002, 15: 203-210.
    [211] Saris N E L, Mervaala E, Karppanen H, et al. Magnesium - An update on physiological, clinical and analytical aspects. Clin. Chim. Acta, 2000, 294: 1-26.
    [212] Hama H, Morozumi T, Nakamura H. Novel Mg2+-responsive fluorescent chemosensor based on benzo-15-crown-5 possessing 1-naphthaleneacetamide moiety. Tetrahedron Lett., 2007, 48: 1895-1861.
    [213] Farruggia G, Iotti S, Prodi L, et al. 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J. Am. Chem. Soc., 2006, 128: 344-350.
    [214] Suzuki Y, Komatsu H, Ikeda T, et al. Design and synthesis of Mg2+-selective fluoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living Cell. Anal. Chem., 2002, 74: 1423-1428.
    [215] Capitan-Vallvey L F, Fernandez-Ramos M D, Lapresta-Fernandez A, et al. Magnesium optical one-shot sensor based on a coumarin chromoionophore. Talanta, 2006, 68: 1663-1670.
    [216] Watanabe S, Ikishima S, Matsuo T, et al. A luminescent metalloreceptor exhibiting remarkably high selectivity for Mg2+ over Ca2+. J. Am. Chem. Soc., 2001, 123: 8402-8403.
    [217]张灯青.镁离子荧光探针.化学进展, 2009, 21: 715-723.
    [218] Komatsu H, Iwasawa N, Citterio D, et al. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg2+ imaging. J. Am. Chem. Soc, 2004, 126: 16353-16360.
    [219] Song K C, Choi M G, Ryu D H, et al. Ratiometric chemosensing of Mg2+ ions by a calix[4]arene diamide derivative. Tetrahedron Lett., 2007, 48: 5397-5400.
    [220] Prodi L, Bolletta F, Montalti M, et al. A fluorescent sensor for magnesium ions. Tetrahedron Lett., 1998, 39: 5451-5454.
    [221] Mashraqui S H, Sundaram S, Bhasikuttan A C, et al. Novel fluoroionophores incorporating diaryl-1,3,4-oxadiazole and aza-crown ring. potentially sensitive Mg2+ ion sensor. Sens. Actuator B-Chem., 2007, 122: 347-350.
    [222] Yang Q Z, Wu L Z, Zhang H, et al. A luminescent chemosensor with specific response for Mg2+. Inorg. Chem., 2004, 43: 5195-5197.
    [223] Bronson R T, Montalti M, Prodi L, et al. Origins of‘on–off’fluorescent behavior of 8-hydroxyquinoline containing chemosensors. Tetrahedron, 2004, 60: 11139-11144.
    [224] Popov L D, Tupolova Y P, Levehenkov S I, et al. Magnetic properties of copper(II) complexes with some hydrazones of substituted salicylaldehydes. Russ. J. Coord. Chem., 2007, 33: 208-212.
    [225] Chandrasekhare, Bhat A R. Synthesis of derivatives of oxine and benzimidazoles for antiamoebic and other biological profiles. Indian J. Heterocycl. Chem., 1995, 5: 111-114.
    [226] Collins F S, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res., 1998, 8: 1229-1231.
    [227] Brookes A J. The essence of SNPs. Gene, 1999, 234: 177.
    [228] Ye S, Dhillon S, Ke X Y, et al. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res., 2001, 29: e88.
    [229] Cyranoski D. Japan speeds up mission to unravel genetic diseases. Nature, 2001, 410: 1013-1013.
    [230] Lu M C, Hall J G, Shortreed M R, et al. Structure-specific DNA cleavage on surfaces. J. Am. Chem. Soc., 2002, 124: 7924-7931.
    [231] Li N, Mei L, Xiang Y, Tong A, Nishizawa S, Teramae N. Fluorescence detection of single-nucleotide polymorphisms with two simple and low cost methods: A double-DNA-probe method and a bulge form method. Anal. Chim. Acta, 2007, 597: 97-102.
    [232] Bernstein J, Stearns B, Shaw E, et al. Derivatives of 2,6-diaminopyridine. 2. J. Am. Chem. Soc., 1947, 69: 1151-1158.
    [233] Xiang Y, Tong A J. Simple and efficient ratiometric fluorescent probes for near-neutral pH in aqueous solutions. Chem. Lett., 2005, 34: 926-927.
    [234] Puglisi J D, Tinoco I. Absorbency melting curves of RNA. Method enzymol., 1989, 180: 304-325.
    [235] Gold B, Kalush F, Bergeron J, et al. Estrogen receptor genotypes and haplotypes associated with breast cancer risk. Cancer Res., 2004, 64: 8891-8900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700