表面修饰矿物填料改性尼龙1010的摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基复合材料的界面结合状况往往是影响其摩擦学性能的关键。本论文选择针状硬质的硅灰石和片状软质的石墨两种矿物填料,用湿化学法对硅灰石表面进行纳米TiO_2和SiO_2包覆处理,对石墨表面进行SiO_2包覆处理,考察纳米包覆处理对矿物填充尼龙1010复合材料的界面结合性能的影响,探讨纳米包覆处理对复合材料摩擦学性能的影响机理。
     本实验用扫描电子显微镜(SEM),透射电子显微镜(TEM),能谱仪(EDS),傅立叶红外光谱(FTIR),X射线衍射(XRD),X光电子能谱(XPS)等手段对包覆层进行表征。并结合XRD对包覆后颗粒填充尼龙1010复合材料进行的聚集态结构分析, DSC/TG对复合材料热稳定性的分析,以及SEM和光学显微镜对拉伸断口和磨损表面形貌进行的分析,探讨纳米包覆层对聚合物基复合材料结构的影响及其对材料摩擦学性能的作用机理,得到了如下主要结论:
     实验制备的TiO_2包覆硅灰石、SiO_2包覆硅灰石和SiO_2包覆石墨三种包覆颗粒,填充尼龙1010制成复合材料时,均具有诱导结晶作用,并因此获得高的界面结合强度。
     由于TiO_2包覆层对尼龙基体的热分解具有催化活化作用,导致化学磨损,因此虽然TiO_2包覆硅灰石填充尼龙1010可获得摩擦系数的降低,但磨损率却比未处理硅灰石填充尼龙1010复合材料的高。然而经硬脂酸处理,促进了结晶,并降低了包覆层的催化活性,抑制了化学磨损,使摩擦系数和磨损率均获得降低。SiO_2包覆处理后的石墨具有良好的诱导结晶性,使尼龙1010复合材料的界面结合强度提高,易获得转移膜。同时SiO_2包覆石墨可提高尼龙1010基体的热稳定性,因此摩擦系数和磨损率均低于未处理石墨。硅烷偶联处理SiO_2包覆处理石墨使诱导结晶作用减弱,复合材料磨损率进一步降低,但摩擦系数提高。但由于石墨的抗剪切能力差,在30%含量时,各种处理石墨颗粒填充的复合材料的均比纯尼龙1010的耐磨性差。
     硅灰石表面包覆的SiO_2膜,既具有对尼龙1010的诱导结晶作用,又可提高基体尼龙的热稳定性,在本实验的成分范围内(10%~30%),均比未处理硅灰石填充的复合材料的摩擦系数和磨损率降低。在含量为20%时,比硅灰石填充尼龙复合材料的摩擦系数和磨损率分别降低了43.3%和81.2%。硅烷改性处理后,复合材料的摩擦系数和磨损率进一步降低。在含量20%时,摩擦系数和磨损率比未经硅烷处理的分别降低了28.1%和41.7%。
     本文认为纳米包覆处理提高尼龙1010复合材料摩擦学性能的作用机理是:纳米包覆层诱导尼龙1010基体结晶,结晶层既提高界面结合强度,又易于发生向对偶面的转移,因此使摩擦系数降低。而磨损率的变化受包覆层对基体尼龙热稳定性作用的影响。偶联剂处理提高了包覆颗粒与尼龙1010的界面结合强度的,使磨损率进一步降低。而对摩擦系数影响取决于其对结晶状况的影响。
The interface bonding of polymer matrix composite was considered as the key factor of tribological properties. In this paper three kinds of polymer composites were prepared, by filling hard spiculate wollastonite with SiO_2 and TiO_2 nano-coating and soft flaky graphite with SiO_2 nano-coating into nylon 1010 respectively. The effect of nano-coated layer on interface bonding was investigated, as well as the mechanism of effects on tribological behaviors of the composites was discussed.
     The nano-coatings were characterized by scanning electron microscope(SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The mechanical and tribological properties of composite containing different filling amount were investigated. Furthermore, the aggregate state structure, thermal stability, topography of wear surface and cross section were analyzed by XRD, differential scanning calorimeter (DSC)、thermogravimetry(TG), SEM and microscopy, respectively. The main conclusions were drawed as following.
     The composites obtained high interface bonding strength after filled with TiO_2-coated wollastonite、SiO_2-coated wollastonite, and SiO_2-coated graphite, which induce nylon 1010 crystallization.
     Although nylon 1010 filled with TiO_2-coated wollastonite could decrease the friction coefficient, the wear rate of composite is still higher than that of nylon 1010 filled with wollastonite, because of chemical wear due to the catalysis activation of TiO_2 coating layer during thermal decomposition of nylon substrate. However, further stearic acid treatment of TiO_2-coated wollastonite surface could help to increase crystallization of nylon 1010, decrease the catalysis activation of coated layer, thus restrain chemical wear and decrease both friction coefficient and wear rate. Graphite with SiO_2 coating could increase the interface bonding strength, help to the formation of transfer film and increase the thermal stability, resulting in the smaller coefficient and lower wear rate of composite. Graphite with SiO_2 coating by silicone coupling could further decrease the wear rate of composite, but increase the friction coefficient. The composite with 30% graphite under different treatments has worse wear resistance than nylon 1010, due to bad shear resistance of graphite.
     Wollastonite with SiO_2 coating could induce the crystallization of nylon and increase the thermal stability of nylon matrix, thus resulted in low friction coefficient and wear rate. In comparison with being filled wollastonite, friction coefficient and wear rate of composite filled with 20% SiO_2-coated wollastonite decreased by 43.3% and 81.2% respectively. And friction coefficient and wear rate of composite filled with 20% wollastonite with SiO_2-coated after silicone coupling decreased by 28.1% and 41.7% further.
     All of the results suggested that the tribological mechanism of nylon 1010 filled with nano-coating was as following. Nano-coating could induce crystallization of nylon 1010. On the one hand, improved crystallization increases the interface bonding strength and is beneficial to the formation of transfer film, which resulted in the decrease of friction coefficient. The other hand, coating has effect on the thermal stability of nylon matrix, which could significantly affect the wear rate. Futhermore, coupling treatment increased interface bonding strength of nylon 1010 filled with coated particles and decreased the wear rate. And the friction coefficient depends on the crystallinity of nylon matrix in the composite.
引文
[1]曾汉民,材料表面与界面.北京:清华大学出版社,1990.
    [2] Dral L.T. The role of the polymer substrate interphase in structureal adhesion. RML- TR- 77- 129, 1977.
    [3] Drzal L.T.Composite interphase characterization.SAMPEJ,1983,19(Sep/Oct):7-13.
    [4] Kardos J.L,Cheng F.S.and Tolbent T.L.Tailoring the Interface in Craphite Reinforced Polycarbonates. [J].Polym.Eng and Sci,1973,13(60):455-461.
    [5] Brady R.L,Poter R.S. and D’Onovan J.A. A buckled plate test to measure interfacial toughness in composites. [J]..Mater.Sci,1989,24:4138-4143.
    [6] Brady R.L,Poter R.S. Interfacial adsorption and crystallization of polycarbonate in carbon fiber composion.In:Fuller J,et al,Eds.Dev.sci.Techn.Compos.Mater.London:Elsevier, 1990. 1873- 1885.
    [7] Moginger B,Muller U.and Eyerer P.Morphological investigation of injection molded Fiber-reinforced thermoplastic polymers. [J].Compos,1991,22:432-436.
    [8]曾汉民,张志毅.结晶性高聚物基体复合材料的界面结晶效应[J].材料工程,1992(1):6-10.
    [9] Barriault,R.J.et al.J.Polym.Sci,1995,18.
    [10] Zeng Hanmin, He Guoren, Investigations on the Crystalline Morphologys of Polyphenylene Sulfide and the Carbon Fibre Surface Effects [J].SCIENTIA SINICA(seriesB) 1984(4), 334-340
    [11] Bessell T.and Shortall J.B.The Crystallization and Interfacial Bond Strength of Nylon 6 at Carbon and Glass Fiber Surfaces. [J]..Mater.Sci,1975,10:2035.
    [12] Thomason J.L and Van Rooyen A.A.Transcrystallized interphase in thermoplastic composites. [J]..Mater.Sci,1992,27:897-907.
    [13] Chen E.Jand Hsiao B.S.The effects of transcrystalline interphase in advanced polymer composites. [J].Polym.Eng.Sci,1992,32:2280-2286.
    [14]曾汉民,孔柏林.碳纤维-尼龙1010界面的研究.高分子学报,1989,(1):75-80.
    [15] Zhang Z.and Zeng H.Nucleation and crystal growth of PEEK on carbon fiber. [J].Appl.Polym.Sci,1993,48:1987-1995.
    [16]曾汉民,陈海宁,陈海阳.尼龙1010盐与碳纤维复合-固态缩聚的研究.复合材料学报,1985,12(2):49-56.
    [17]阮吉敏,潘泳康,陈其.GMA固相接枝PP的研究.高分子材料科学与工程,1999,15(1):80-83.
    [18] Zeng H,Zhang Z,Peng W. and Pu T.Transcrystalline structure of PEEK. [J]. Euro.Polym.,1994,30:2354-2357.
    [19]曾汉民,何国仁.聚苯硫醚的结晶形态及碳纤维的界面效应研究.中国科学(B辑),1983,(4):289-294(中文版)
    [20]郑玉婴. Kevlar纤维增强尼龙6复合材料界面层的设计及其结构性能研究[D].福州大学:2004.
    [21] Tregun A,Harel H. and Marom G. Thermal treatment effects on crystallinity and the mechanical behaxior of carbon fiber-PEEEK composites. [J].Mater.Sci,Lett,1994,13(5):329-339.
    [22]曾汉民,孔柏岭.短纤维增强尼龙1010的摩擦磨损性能的研究[J].工程塑料应用,1998(1):8-13.
    [23]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:1-6.
    [24]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007:20-24.
    [25] K.Tanaka,T.Miyata.Study on the friction and transfer of semi-crystalline polymers[J].Wear, 1977(41):383-398.
    [26] F.P.Bowden,D.Tabor.The friction and lubrication of solids[M].London : Clarendon Press ,1954,1-23.
    [27] D.C.Evans,J.K.Lancaster.The wear of polymers[M].Academic Press,1979:80-142.
    [28] M.Nobuo,N H Chen,M.Tirrell,J.N.Israelachvili.Adhesion an friction mechanisms of Polymer–on-polymer surface[J].Science,2002,297:379-382.
    [29] N H Chen, M.Nobuo, J.N.Israelachvili.Adhesion an friction of Polymer polymer surface:The effect of chain ends[J].Macromol,2005,38:3491-3503.
    [30] A.I.Sviridynok,V.A.belly,V.A.Smurugov,V.G.Savkin.A study of transfer in frictional interaction of polymers[J].Wear,1973,25:301-308.
    [31] Jr.N.S.Eiss,H.Czichos.Tribological studies on rubber-modified epoxies:influence of material properties and operating conditions[J].Wear,1986,111(4):347-361.
    [32]谢友柏.摩擦学的三个公理[J].摩擦学学报,2001,21(3):161-166.
    [33] R.W.Hertzherg,J.A.Manson.Fatigue of Engineering Plastics[J].New York,Acadmic Press , 1980:83.
    [34] B.J.Briscoe,Wear of polymers:an essay on fundamental aspects[J].Tribol.Int.1981,14(4):231-243.
    [35] B.J.Briscoe,and D.Tabor.The sliding wear of polymers:abrief review in Fundamentals of Tribology[J].N.P.Sun and N.Saka,MIT Press,Cambridge,1980, 733-765.
    [36] Y.Yamaguchi.Tribology of Plastic Materials,Tribology series 16[M].Elsevier New Yorkm1990, 27-51.
    [37]王琪,孔样安,朱露山等.聚乙烯材料特性与摩擦系数的关系[J].高分子材料科学与工程,1995,11(6):53-56.
    [38] K.Tanaka and T.Miyata.Studies on the friction and transfer of semi-crystalline polymers[J].Wear,1977,41:383-398.
    [39] G.Srinath, R Gnanamoorthy.Sliding Wear Performance of Polyamide 6-clay Nanocomposites in Water [J].Composites Science and Technology,2007,67:399-405.
    [40] J.F.Lontz and M.C.Kumnick.Wear studies on moldings of PTEF resin:Considerations of crystallinity and graphite content[J].ASLE Trans.1963,6:76-285.
    [41] M.Kobayashi et.al.Preprint of Symposium on wear of Plastic[J].Japanese:1968,59.
    [42] Alfery T.The Mechanical Properties of High Polymers[J].Moscow:1963.
    [43] Y.Yamada and Tanaka.Effect of degree of Crystallinity on friction and wear of poly in Polymer wear and Its Control[J].ACS:1985,363-374.
    [44]任杰,黄岳元.PTFE复合材料填料与性能[J].有机氟工业,1996 (1):14-26.
    [45] Hooke C.J.Kukureka S.Liao N.K,et al .The growth and bonding of transfer film and the role of CuS and PTFE in the tribological behavior of PEEK [J].Wear,1996,194:115-122.
    [46]张招柱,薛群基,刘维民.纤维及晶须增强PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程,2001,17(4):90-93,97.
    [47] Yu L G,Yang S R.Investigation of the transfer film characteristics and tribochemical changes of Kevlar fiber reinforced polyphenylene sulfide composites insliding against a tool steel counterface [J].Thin Solid Films,2002,3(1-2):98-103.
    [48] Bahadur S.The effect of reinforcement and the synergism berween cus and carbon fiber on the wea of nylon[J].Wear,1994,178:123-130.
    [49]徐卫兵,朱世旺,改性聚甲醛摩擦磨损性能的研究[J].现代塑料加工应用,1994,6(3):6.
    [50] J.H.Chen and P.E.Gage.Tribology characteristics of MoS2 and PTEF filler Polymeric bearings[C]. American Society of Lubrication Engineerings,1984:302-327.
    [51] T.J.Rsidon,D.C.Richard.Effect of molybdenum disulfide on the wear rate of polymer composites[C]. American Society of Lubrication Engineerings, 1978:230-238.
    [52] J.K.Lancaster.Dry bearing a survey of materials and factors affecting their performance[J]. Tribology, 1973,6:219-225.
    [53] R.T.Steinbuch.Nyon 6 as a bearing material[J].Wear,1962,5:458-466.
    [54]贾均红,周惠娣,高生强等.聚酰亚胺复合材料的摩擦性能及其机理研究[J].摩擦学学报, 2002,22(4):273-276.
    [55] West G.H, Seniort J.M. High temperature plastics bearing compositions[J]. Tribology, 1973, 5:269-27.
    [56] Fei Li,Fengyuan Yan,Laigui Yu,Weimin Liu. Morphology and microstructure of polyamide 46 wear debris and transfer film: In relation to wear mechanisms [J].Wear,2000,237:33-38
    [57] Gong D, ZhangB, Xue Q,et al.The effect of reinforcement and the synergism between CuS and carbon fiber on the wear of nylon [J].Wear,1990,137:25-39.
    [58] Gong D,Xue Q,Wang H,Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance [J].Wear,1991,148:161-169.
    [59] Yu Laigui,Yang Shengrong,Wang Hongtao,et al. Investigation of the friction and wear behaviors of micrometer copper particle- and nanometer copper particle-filled polyoxymethylene composites [J].Journal of Applied Polymer Sicnence, 2000,77:2404-241.
    [60] D Gong,B Zhang,Q Xue,et al.Investigation of adhensive wear of filled polytetra- fluoroethylene by ESCA AES and XRD[J].Wear,1990,137:25-39.
    [61]S.Bahadur,A.Kapoor.The effect of ZnF2,ZnS,PbS fillers on the tribological Behavior of Nylon 11[J].Wear,1992,155:49-61.
    [62]S.Bahadur,D.L.Gong.The transfer and wear of nylon and CuS-nylon composites:filler proportion and counterface characteristics[J].Wear,1993,162-164:397-406.
    [63]S.Bahadur,D.L.Gong.Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance,in K.C.Ludema and R.G.Bayer(eds.)[J].Wear of Materials 1991, ASME, New York,1991,177-185.
    [64]S.Bahadur,D.Gong and J. W. Anderegg, The role of copper compounds as fillers in transfer film formation and wear of nylon[J].Wear,1992,154(1):207-223.
    [65] K.Tnaka.Effect of various fillers on friction and wear of PTEF-based composites[C]. K.Friedrich,Friction and wear of Polymer Composites,Elserier,Amsterdam,1986:137-174.
    [66] S.Bahadur,D.Tabor.Role of fillers in the friction and wear behavior of high-desity polyethylene,in Lieng-Huang Lee,Polymer Wear and its control[J].ACS symposium Series 287,Washington DC,1985:253-568.
    [67] D.Gong,B.Zhang,Q.J.Xue,et al.Study on tribolichemical interaction of metals or metal oxides with polytetrafluoroethylene by x-ray photoelectron spectroscopy[J].J.Appl.Polym.Sci, 1990,41 (11-12):2587-2593.
    [68] S.Bahadur,D.Gong.The role of copper compounds as fillers in transfer and wear of polyetheretherketone[J].Wear,1992,154(1):151-165.
    [69] S.Bahadur,L.Zhang,J.W.Anderegg.The effect of zinc and copper oxides and other zinc compounds as fillers on tribological behavior of thermosetting polyester[J].Wear,1997, 203-204:464-473.
    [70] S.Bahadur,L.Yu.An investigation of transfer film characteristics and the tribological behaciors of polyphenylend sulfide composites in sliding[J].Wear,1998,214(2):245-251.
    [71] S.Bahadur,Q.Zhao.A study of the modification of the friction and wear behavior of polyphenylene sulfide by particaulate AgS and PbTe fillers[J].Wear,1998,217(1):62-72.
    [72] C.J.Schwartz,S.Bahadur.The role of filler deformability,filler-polymer bonding,and counterface material on tribological behacior of polyphenylene sulfide[J].Wear,2001, 245(1-2):92-99.
    [73] Q.Zhao,S.Bahadur.The mechanism of filler action and the criterion of filler selection for reducing wear[J].Wear,1999.225-229(2):660-668.
    [74]潘宝柱,余乃梅.尼龙6自润滑材料的物理改性[J].工程塑料应用,1995,23(5):1-4.
    [75]张招柱,薛群基,沈维长等.金属填充PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程1999,15:68-72.
    [76]李飞,胡克鳌.纳米ZnO填充PTFE基复合材料摩擦学性能研究[J].润滑与密封, 2000(6):37-39.
    [77] G Theiler,T Grad.Tet al·Friction and wear of PTFE composites at cryogentic temperatures [J]. Tribological International,2002, 35:449-458.
    [78] Yu Laigui,Yang Shengrong,Wang Hongtao,et al.An Investigation of the Friction and Wear Behavior of Micrometer Copper Particle-and Nanometer Copper Particle Filled Polyoxymethylene Composites[J].Journal of Applied Polymer Science,2000,77:2 402-2 405.
    [79]王齐华,薛群基,沈维长.纳米SiC和微米SiC填充聚醚醚酮的磨损机理研究[J].功能材料, 1998,29(5):558-560.
    [80]何春霞.不同纳米材料与石墨混合填充PTFE复合材料摩擦磨损性能[J].复合材料学报, 2002,19(5):111-115.
    [81]克拉克D T,费斯特W J.聚合物表面[M].张开译.北京:化学工业出版社,1985.
    [82] Wang Qihua, Xue Qunji, Liu Weimin, et al. Tribological Characteristics of Nameter Si3N4 Filled Poly(ether ether ke-tone) under Distilled Water Lubrication[J].Journal of Applied Polymer Science,2001,79(8):1 394-1 400.
    [83] Wang Qihua, Xue Qunji,Liu Weimin,et al.The Friction and Wear Characteristics of Nanometer SiC and Polytetrafluoroethylene Filled Polyetheretherketone [J].Wear,2000, 243:140-146.
    [84] Wang Qihua,Xue Qunji,Liu Huiwen,et al. The Effect of Particle Size of Nanometer ZrO2 on the Tribological Behaviour of PEEK[J].Wear,1996,198:216-219.
    [85]颜红侠,宁荣昌,马晓燕等.纳米Si3N4填充聚双马来酰亚胺树脂摩擦磨损性能研究[J].摩擦学学报,2001,21(6):452-455.
    [86]邵鑫,田军,刘维民等.纳米TiO2填充聚醚砜酮复合材料的摩擦学性能[J].高分子材料科学与工程,2003,19(3):208-211.
    [87]樊世民.矿物粉体表面纳米化修饰技术研究与应用[D].清华大学,2004,4.
    [88]王军祥,顾明元.碳纤维增强尼龙1010复合材料的摩擦磨损性能及磨损机理研究[J].机械工程材料,2003,27(7):14-17.
    [89]王军祥,葛世荣,李凌.偶件表面粗糙度对碳纤维增强尼龙复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(2):107-109.
    [90]王军祥,李凌,葛世荣.表面处理碳纤维对增强尼龙复合材料性能影响[J].中国矿业大学学报,2002,31(2):158-161.
    [91]王军祥,顾明元,朱真才.碳纤维和氧化铜增强尼龙1010复合材料的摩擦学性能及磨损机理[J].摩擦学学报,2002,22(4):277-280.
    [92]王军祥,顾明元,朱真才,等.碳纤维和二硫化钼混杂增强尼龙复合材料的摩擦学性能研究[J].复合材料学报,2003,20(2):13-18.
    [93]葛世荣,王军祥.GF增强尼龙1010复合材料的摩擦学性能研究[J].中国矿业大学学报, 2001, 30(2):114-117.
    [94]王世博,葛世荣,朱华等. ZnO填充尼龙1010的摩擦磨损行为研究[J].润滑与密封, 2005, 5(3):20-25.
    [95]狄西岩,赵峰等.短纤维增强尼龙1010耐磨性复合材料性能的研究[J].塑料工业, 2001, 29(4):14-15.
    [96]刘利国,葛世荣,韩东太等.玻璃粉/尼龙1 01 0复合材料摩擦学性能研究[J].中国矿业大学学报,2006,35(1):66-69.
    [97]韩东太,葛世荣,刘利国.半金属尼龙1010复合材料的热学性能研究[J].工业加热2006,35 (4):6-11.
    [98]熊党生,陈磊,王振中.La2O3填充PAl010复合材料的摩擦磨损性能[J].中国有色金属学报,2001,11(4):611-615.
    [99]熊党生,陈磊,张德坤.稀土化合物填充PA1010复合材料的摩擦学特性[J].中国矿业大学学报, 2001,30(5):476-47.
    [100]王伟华,葛世荣.填料特性对尼龙摩擦学性能的影响及作用机理[J].中国矿业大学学报, 2000,20(5):519-523.
    [101]葛世荣,王庆良,李凌等.纳米TiO2和SiO2填充尼龙的摩擦磨损行为[J].摩擦学学报, 2004, 24(2):152-155.
    [102]李凌,江传力,刘守山等.润滑条件对纳米SiO2填充尼龙复合材料摩擦学性能的影响[J].润滑与密封2005,168(2):75-77.
    [103] Papirer E,Schultz,Turchi C. Use of spray techniques to synthesize particulate-reinforced metal-matrix composites [J].Eur Polym,1984,20(2):1155-1158.
    [104] Marmo M J, Mostafa M A,Jinnai H,et al. Ind Eng Chem Prod Res Dev[J].1976, 15(3):206~211.
    [105]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2001.22-46.
    [106]樊世民.矿物粉体表面纳米化修饰技术研究与应用[D].清华大学,2004,4.
    [107] Okubo M,Yamada A,Matsumoto T.J.Polym.Sci[J].Polym.Chem.Ed,1980,18:3219-3228.
    [108] Okubo M,Audo M,Yamada A.J.Polym.Sci[J]Polym.Lett Ed,1981,19:143-147.
    [109]田中贵将,菊池雄二,小野宪次.高速气流冲击式粉体表面改性装置-YBRIDIZATION系统及应用[J].化工进展.1993,4:10-20.
    [110]王亭杰,堤敦司,金涌.超临界流体快速膨胀用于细颗粒包覆技术[J].化工进展,2000,4:42-48.
    [111]龚雪冰,李溪滨.MoS2颗粒表面均匀包覆Ni的研究[J].湖南有色金属,2000,5:28-30
    [112]赵旭,杨少凤,赵敬哲等.氧化锌包覆超细二氧化钛的制备及其紫外屏蔽性能[J].高等学校化学学报,2000,21(11):1617-1620.
    [113] Shih W H,Pwu L L and Tseng A A.Boehmite coating as a consolidation and forming aid in aqueous silicon-nitride processing[J].J.Am.Ceram.Soc,1995,78:1252-1260.
    [114] Han K R,Lin C S,et al.Surface modification of silicon nitride powder ithaluminum[J]. J.Am. Ceram.Soc,1996,79:574-576.
    [115] Luther E P,Lange F F and Pearson D S.Alumina surface modification of silicon-nitride for colloidal processing[J].J.Am.Ceram.Soc,1995,78:2009-2014.
    [116]池波,沈上越,李珍等.硅灰石表面改性实验研究[J].岩矿测试,2001,20(1):57-58.
    [117]李珍,彭继荣,沈上越等.机械力化学改性硅灰石/聚丙烯性能的研究[J].塑料工业,2003,31(9):35-36.
    [118]吴伟端,潘兆撸,赵煌等.机械力化学改性硅灰石机理研究[J].矿物岩石地球化学通报, 1999, 18(4):274-275.
    [119]吴学明,王兰,黄建忠等.硅灰石填充改性硬质聚氯乙烯的研究[J].中国塑料,2002,16(1):28-32.
    [120]周新木,赵光好,李包友等.硅灰石粉改性及其在建筑塑料中的应用[J].新型建筑材料, 2005,(12):57-58.
    [121]袁世平,袁斌,丁国伟等.硅灰石粉的改性研究及其在内胎中的应用[J].橡胶工业,1997,44:657-660.
    [122]张文治,章文贡,汤永艳等.硅灰石粉的偶联活化改性研究[J].塑料,2005,34(1):69-72.
    [123]康文,周春为,葛金龙.硅灰石改性研究[J].东华理工学院学报,2006,29(2):146-149.
    [124]沈健,稽根定,胡伯兴等.填充聚乙二醇包覆硅灰石对聚丙烯性能的影响[J].功能材料,1992,23(6):367-371.
    [125]黄佳木,吴美升,盖国胜.纳米SiO2包覆硅灰石粉填充改性聚丙烯的研究[J].化学建材, 2003,(3):30-32.
    [126]赵宇龙,苏芳,盖国胜.硅灰石复合颗粒填充聚丙烯性能研究[J].非金属矿,2005,28(1):28-29.
    [127]郝增恒,孙群领,王运川.纳米碳酸钙包覆微米硅灰石复合粒子的改性研究[J].化工矿物与加工,2004, (5):19-20.
    [128] Buqa H,Golob,winter M.Modified carbons for improved anodes in lithium ion cell[J].J Power Sources 2001.97-98:122-125.
    [129]杨瑞枝,张东煜,张红波等.树脂炭包覆石墨作为锂离子电池负电极的研究[J].无机材料学报,2000,16(4):711-716.
    [130] Tossici R,Berrelloni M,el al.Electrochemistry of KC8 in lithium containing electrolytes and its use in lithium ion cells[J].J Electrochem Soc,1997,144(1):186-192.
    [131] T.P.D.RAJAN,et al.Review reinforcement coatings and inter-faces in aluminium metal matrix composites[J].Journal of Matertals Science,1998,33:3491-3503.
    [132] Jingkun Yu.Modification of rawrefractories materialsby TiO2 coating [A].UNITECR'97 [C]. 1997:1019-1027.
    [133]王周福,庞业华,孙加林等.表面包覆Al(OH)3改性石墨的研究[J].耐火材料,2002,36(5):266-267,272.
    [134]坂本敏.含石墨不定型耐火材料[J].耐火物,1992,44(4):95-98.
    [135]杨少凤,王子忱,赵敬哲等.不同粒度硅灰石的纳米TiO2/硅灰石复合体结构及性能对比[J].吉林大学自然科学学报,2000,7.No.3:73-76
    [136]顾永琴.高岭石基光催化活性纳米TiO2的制备及表征[D].武汉:武汉理工大学,2004..
    [137]刘彦.纳米TiO2的溶胶-凝胶法的凝胶机理及晶相转化[D].北京:北京化工大学, 2005.
    [138]唐培松.高活性纳米TiO2的合成、表征及可见光催化性能研究[D].浙江:浙江大学,2006.
    [139]祖庸,李晓娥,卫志贤.超细TiO2的合成研究溶胶-凝胶法[J].西北大学学报自然科学版,1998,28(1):51-56.
    [140]欧雪梅,吴静晰,赵宇龙等.纳米SiO2包覆硅灰石填充改性尼龙1010的摩擦学性能[J].润滑与密封,2007,32(11),51-54.
    [141]黄佳木,吴美升,盖国胜.纳米SiO2包覆硅灰石粉填充改性聚丙烯的研究[J].化学建材, 2003(6) ,30-32.
    [142]苏芳,盖国胜,魏启荣.二氧化硅/硅灰石复合颗粒的制备研究[J].中国粉体技术,2003,9(5),18-20.
    [143]赵文俞,张清杰,彭长琪.硅灰石分子结构的FTIR谱[J].硅酸盐学报2006,Vol.34,No.9:1137-1139.
    [144]朱诚身,牟忠诚,杨宝泉,等.X-射线衍射法测定尼龙1010结晶度[J].高分子学报,1993(6):655.
    [145]王正辉,萧翼之.高结晶性聚酯型水性聚氨酯的制备及表征[J].高分子材料科学与工程, 2005,4.
    [146]曾汉民,张志毅.结晶性高聚物基体复合材料的界面结晶效应.高分子学报,1992(1):6-10.
    [147]朱诚身,王经武,王友文.不同分子量尼龙1010的结晶与熔融[J].高分子学报,1996,6.
    [148]莫志深,张宏放,孟庆波等.尼龙-1010结晶结构[J].高分子学报,1990,6:2-6.
    [149]岳林海,蔡菊香,华益苗.SiO2包覆超细CaCO3的结构和机理分析[J].浙江大学学报(理学),2002,29(1) ,134-138.
    [150]付廷明,李凤生.包覆式超细复合粒子的制备[J].火炸药学报,2000,12(6):33-35.
    [151]曾汉民,孔柏岭.碳纤维一尼龙1010界面形态的研究[J].高分子学报,1998,1.
    [152]莫志深,张宏放,孟庆波.尼龙-1010结晶结构[J].高分子学报,1990,6.
    [153] Barriault,R.J.et al. J.Polym.Sci,1955,18.
    [154] Zeng Hanmin, He Guoren, Investigations on the Crystalline Morphologys of Polyphenylene Sulfide and the Carbon Fibre Surface Effects [J].SCIENTIA SINICA(seriesB) 1984(4), 334-340
    [155] Tubull.D.et al.Ind.Eng.Chem,1952(44),129.
    [156] Campbell.D.et al.J.Polym.Sci:Plym.Phys.Ed,1980(18),83.
    [157] Brandup J.et al.Polym Handbeek.Second ED.Awiley Interscience Publication.1974.
    [158]王琪,孔样安,朱露山等.聚乙烯材料特性与摩擦系数的关系[J].高分子材料科学与工程,1995, No.6:119-123
    [159]李亚东,马亿珠,白宝丰.火焰喷涂尼龙1010/纳米SiO2复合涂层结构与性能研究[J].材料保护,2007,Vol.40,No.12.25-28
    [160] G.Srinath, R Gnanamoorthy, Sliding Wear Performance of Polyamide 6-clay Nanocomposites in Water [J]. Composites Science and Technology, 2007, 67: 399 -405.
    [161] Tanaka K, Uchiyama Toyooka Y. S. The mechanism of wear of polytetra- fluoroethylene. Wear [J].1973, 23(2): 153-172.
    [162]咸贵军,沈烈,益小苏.聚丙烯/玻璃纤维复合材料界面区的结晶行为[J].材料研究学报,1999(13):5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700