水体中的重金属镉和锌对鲫鱼金属硫蛋白的诱导
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫蛋白(metallothionein,MT)是一类相对低分子质量(6~7kDa)、富含半胱氨酸、能够结合金属的蛋白或多肽。水体中的重金属可以诱导鱼体内金属硫蛋白的表达。本研究以鲫鱼(Carassius auratus)为试验材料,通过体外静态染毒,采用血红蛋白饱和分析法,研究了在一定环境条件下,经不同浓度重金属镉和锌的连续暴露后,鲫鱼肝脏、肾脏、鳃丝和肌肉中MT含量的动态变化,为建立以金属硫蛋白作为评判淡水生态系统中重金属镉和锌污染的生物标志物提供理论依据。研究结果表明:
     1.平均体长为16.32±0.63cm,平均体重为320.6±6.19g的鲫鱼不同组织中的MT本底值存在着显著差异(P<0.05),含量顺序为肝脏>肾脏>鳃丝>肌肉,鳃丝、肌肉、肝脏和肾脏中MT含量范围分别为1.506~2.014、1.367~1.868、3.018~4.169和2.582~3.602μg·g~(-1)。在相同试验条件下,受试鲫鱼组织中的MT本底值稳定在同一水平,差异不显著(P>0.05);水温16.5±1℃和26±1℃时鲫鱼同一组织中MT含量差异显著(P<0.01),但组织间MT含量顺序不变。
     2.在水温为16.5±1℃时,与对照组相比,在0.005、0.05、0.10、0.25和0.5 mg·L~(-1)浓度下镉胁迫对鲫鱼4种组织中MT的表达产生了诱导作用。鲫鱼的4种组织在12h内MT的增加量与镉的浓度表现出一定的剂量.效应关系其中肝脏MT的诱导量最大,变化规律也最明显。鲫鱼各组织中MT含量的总体变化趋势较为一致,均为先升高后略微下降并趋于稳定,其中鲫鱼鳃丝、肝脏和肾脏三种组织中MT的含量在12h时达到峰值,随后略有下降并趋于稳定,而肌肉中的MT含量在12h时没有出现峰值,其随着作用时间的延长逐渐到达峰值。试验水温为26.5±1℃时,在其它试验条件不变的情况下,鲫鱼组织中MT的合成表达表现出相同的规律,但此时鲫鱼组织中MT诱导的峰值比16.5±1℃时鲫鱼组织中MT的峰值高,二者差异显著(P<0.01),表明温度的升高可以增强重金属镉对鲫鱼组织中MT的诱导。
     3.水温为26±1℃时,与对照组相比,在0.1、0.5、1.0和10 mg·L~(-1)浓度下锌的胁迫对鲫鱼4种组织中MT的表达产生了诱导作用,但低剂量锌诱导效果不明显,高剂量的锌可以诱导鲫鱼组织中MT的大量合成。鲫鱼的4种组织在24h内MT的增加量与锌的浓度表现出一定的剂量-效应关系,其中肾脏MT的诱导量最大,变化规律也最明显。鲫鱼的4种组织中MT含量的总体变化趋势与重金属镉诱导规律较为一致,均为先升高后略微下降并趋于稳定,但组织中MT含量峰值的出现时间推迟到了染毒后的24h。试验结果显示锌对鲫鱼组织中MT含量的诱导能力弱于镉的诱导能力
     4.环境中锌的存在可以加强重金属镉对鲫鱼组织中MT的诱导能力。试验结果表明,暴露在不同镉、锌浓度比的染毒液中,鲫鱼肝脏和肾脏组织中MT含量的总体变化趋势较为一致,均呈先升高后降低然后再升高的趋势,肝脏中MT在12h时增加速率最大,而肾脏中MT在6h时增加速率最快。鲫鱼组织肝脏和肾脏MT在12h内的增加量、12-48h内MT的减少量和48-96hMT的增加量都与镉的浓度表现出一定的剂量-效应关系,12h时鲫鱼组织中MT含量达到高峰,表明水体中的镉、锌联合可诱导鲫鱼组织中MT的合成与表达,且主要诱导时间在12h之内。鲫鱼组织肝脏和肾脏中MT含量均高于单独暴露于镉和锌时组织中MT的含量(P<0.01)。在锌浓度一定的条件下,随着镉浓度的逐渐增加,肝脏和肾脏组织中MT含量也逐渐升高,呈现出一定剂量-效应关系。
     研究结果显示,在一定的试验条件下,鲫鱼鱼体组织中的MT,尤其是肝脏和肾脏中的MT含量可以作为指示水体中重金属镉、锌过度暴露的生物标志物。
Metallothionein is a kind of protein which is low molecular weight,rich in cysteine, can combine heavy metal.Heavy metal in water could induce MT synthesize in fish.This research investigated the impact of waterborne heavy metal on the content of metallothionein(MT) in different tissues of Carassius auratus in experimental condition,in order to give some theoretical basis for applying MT as a biomarker of waterborne cadmium and zinc pollution.
     The water temperature was 16.5±1℃,the average length of the Carassius auratus was 16.32±0.63cm and the middleweight was 320.6±6.19g.The result indicates that MT background value is significantly different in different Carassius auratus tissues(P<0.05). The order is liver>kidney>gill>muscle.Respective concentrations of MT in gill,muscle, liver and kidney is 1.523±0.017~1.623±0.009,1.432±0.011~1.474±0.005,3.018±0.023~3.226±0.010 and 2.6625±0.009~2.8516±0.003μg·g~(-1).In the same experimental condition, MT background values of Carassius auratus tissues are relatively stable.In different temperature 16.5±1℃and 26.5±1℃,The MT concentration in the same tissues is significantly different(P<0.01).However the MT concentration in different tissues is in the same order.
     At 16.5±1℃,cadmium(0.005,0.05,0.10,0.25,0.5 mg·L~(-1))induced the synthesis of MT in four Carassius auratus tissues.The comparative MT concentrations in four tissues general followed the same changing curvilinear trend,had a positive relativity with the concentration of cadmium in water,and showed dose-response relationship.The results indicates that the comparative MT concentrations were quite different according to Cadmium concentration and exposure time and the inducement mainly appeared in 12h,the peak values in gill,liver and kidney appeared in the 12th hour,but in muscle it did not peaked in the first 12hs but appeared latter.At 26.5±1℃,the comparative MT concentrations in four tissues also followed the same changing curvilinear trend,the peak values were extremely significantly higher than that in 16.5±1℃temperature groups (P<0.01).It said that temperature may impact on MT concentration in Carassius auratus tissues.
     At the water temperature of 26.5±1℃,0.1,0.5,1.0 and 10 mg·L~(-1) Zinc induced the synthesis of MT in four Carassius auratus tissues.MT concentration in high dose group were greatly induced,while low dose group had no significant different with control.The comparative MT concentrations in four tissues general followed the same changing curvilinear trend,had a positive relativity with the concentration of zinc in water,and showed dose-response relationship within 24h.MT concentration in kidney was induced by the largest amount,changed of the most obvious.MT concentrates changed according to exposure time and four tissues showed the same curvilinear trend with that in Cadmium groups:first increase then declining slightly and stabilizing.But the peak values of MT concentration appeared in the 24th hour.The induce potency of Zinc was not as big as Cadmium.
     Heavy metal Zinc can enhance Cadmiums' induce potency to MT synthesis in Carassius auratus tissues.After exposure in Cadmium & Zinc solution,MT concentration in liver and kidney changed in the same curvilinear trend,which can be generally described as increase-decrease-increase.The peak value of MT content appeared at 12h after exposure.The comparative MT concentrations had a significantly relativity with the concentration of Cadmium & Zinc solution,showed a dose-effect relation.The results indicate that Cadmium & Zinc can induce the synthesis of MT in Carassius auratus tissues and this inducing mainly happened during the first 12hs.The comparative MT concentration in liver and kidney of Carassius auratus in Cadmium & Zinc treatment groups were higher than that in Cadmium groups or Zinc groups.It indicates that Zinc can enhance Cadmium inducing effect on Carassius auratus MT and liver and kidney tissue MT does not mean that the content of individual exposure to Cadmium and separate when exposed to Zinc MT combined(P<0.01).Zinc concentration in certain circumstances The MT content in the liver and kidney gradually increased along with the increase of the Cadmium concentration,showed a certain dose-effect relationship.
     The results indicate that MT content in Carassius auratus liver and kidney can be used as a biomarker of waterborne cadmium and zinc pollution.
引文
1. Baudrimont M, Andres S, Dultieu G, et al. The key role of metallothioneim in the bivalve Corbicula fluminea during the depuration phase after in situ exposure to Cd and Zn[J].AquatToxieol, 2003, 63(2):89-102
    
    2.Beattie JH, Blaek DJ, Wood AM, et al. Cold-induced expression of the Metallothionei-1 gene in brown adipose tissue of rats[J]. Am J Physiol, 1996, 270(5): 971-977
    
    3.Bordin G, Papono FC, Rodriguex AR. Characterization of metallothionein isoforms by reverse phase high Performance liquid chromatography with on-line UV and electrochemical detection[J]. liq chrum&Rel Technol, 1996, 19(19): 3085-3104
    
    4.Binz PA, Kagi JHR, Metalothionein: molecular evolution and classification in metallothionein[C]. 4th International Metallothionein Meeting (MT-97). Basel: Birkhauster 1999, 27: 7-13
    
    5.Braeken WM, Klaassen CD. Induction of hepatic metallothionein by alcohols, Evidence for in direct mechanism[J].Toxicol appl Pharmacol, 1987, 87(2): 257-263
    
    6.Coyle P, Philcox J C, Rofe A M .Metallothionein-null mice absorb less Zn from an egg-white diet, but a similar amount from solutions,although site altered intertissue Zn distribution[J]. J Nutr, 1999, 129:372-379
    
    7. Cousins RJ, Lee-Ambrose LM. Nuclear zinc uptake and Interactions and metallothionein gene expression are influenced by dietary zinc in rats[J]. JNutr, 1992, 122(1): 56-64
    
    8.Dziegiel p, Jelen M, Muszczynska B, et al. Role of metallothionein expression in non-small cell lung carcinomas[J]. Rocz Akad Med Bialymst, 2004, 49(1): 43-45
    
    9. Eaton PL, Toal BF. Evaluation of the CD/hemoglobin offinity assay for the lupid dermination of metallothionein in biological tissues[J].Toxicol Appl pharmacol, 1982, 66: 1341-1342
    
    10. Gunnar. Separate of two forms of rabbits MT by isoeleetric focusing[J]. Biocheml. 1972, 126(7):491-498
    
    11. Geesey GG, P Bremer, J Smith M, et al. Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica[J]. Can Microbiol. 1992, 38: 785-793
    
    12. Haq F, Mahoney M, Koropatnick J. Signaling events for metallothionein induction[J]. Mutat Res,2003, 533(1/2): 211-226
    
    13. HemPe. Cysteine-rich intestinal protein binds Zinc during transnnucosal Zinc transport Roc Natl [J].Acd Sci USA, 1999, 58 (21): 9671-9675
    
    14. Hidalgo J. Liver brain and beart MT induction by stress[J]. Nourochem, 1990, 55(2): 651-654
    
    15. Jin N, Kimura M, Yokoi K, et al. A gelfiltration highPerformance liquid chromatographic method for determination of hepatic and renal MT of rat and in compariaon with the Cd-nuturition method[J].Biol Trace Elem Res, 1993, 362: 183-190
    
    16. Kaji J H R, Nordberg M. Metallothionein[J], Basel:Birkhauser Verlag, 1979, 31-74
    
    17. Klaassen CD. Metallothionein induction[J], Foreign Medical Health Science volumes. 1992, 1: 26-28
    
    18. Karshaw WC, Hepatic isometallothioneins in mice: Induction in adults and postnatal ontogeny [J].Toxicol Appl, 1990, 104(2): 267-275
    
    19. Kagi JHR, Schaffer A. Biochemistry of Metallothionein[J]. Biochemistry, 1988, 27: 8509-8515
    
    20. Kagi JHR. Overview of metallothionein[J] .Method En-zymology, 1991, 20(5): 3460-3465
    
    21. Kowk LL, Po Wai Ko, Judy KaYee, et al. Metal toxicity and metallothionein gene expression studies in common Carp and Tilapia[J]. Marine Environmental Reseach, 1998, 46(1-5): 563-566
    
    22. Kameo S, Nakai K, Kurokawa N, et al. Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapor with HPLC/ICP-MS[J]. Anal Bioanal Chem, 2005, 381(8): 1514-1519
    
    23. Leite C M, Botelho A S, Oliveira J R, et al. Immunolocalization of HLA-DR and metallothionein on amalgamtattoos[J]. BrazDent J, 2004, 15(2): 99-103
    
    24. Liu Y P. Liu J, Marcus B. et al. Transgenic mice that overexpress metallothionein I are protected from cadmium lethality and hepatoxicity[J].Toxicol Appl Pharmacol, 1995, 13(5): 222-225
    
    25. Mulder T P J, Janssens A R, Werspaget H W, et al. Plasma metallothionein concentration in pations with liver disorders: special emphasis on relation with primary biliary cirrhosis[J]. Hepatology, 1991, 14:1008-1012
    
    26. Michele J, Hein H, Preez D, et al.The fresh water river crab Potamonautes warreni as a bioaccumul-ative indicator of iron and manganese pollution in two aquatic systems[J]. Ecotoxi lnvir on Safety, 1998,41:203-214
    
    27. Michael P. Waalkes, Jerry J. Transient induction of hepatic metallothionein following oral ethanol administration[J]. Toxicology and Applied Pharmacology, 1984, 74(2): 230-236
    
    28. Norio M, Hong-Weiren.Induction of two major infusions of metallothionein in carp[J], Camparative Bio chem. And physiology.Part C, 1999, 122: 75-82
    
    29. Nolan CV, Shaikh ZA. Determinaftion of MT in tissues by radioimmunoassay and by exlmium saturation method[J]. Analytical biochemistry, 1986, 154: 213-223
    
    30. Norberg M.Metallothionein: Historical Review and state of knowledge[J], Talanta, 1998, 46:243-254
    
    31. Ostrofsky LM, Zetter RE. Chemical defences in aquatic plants[J]. JEcol, 1986, 74: 279-287
    32. Ovemell J, Abdullah M I. Metallothionein and Metal Levels in flounder Platichthys flesus from Four Field Sites and in Flounder Dosed with Water Brone Copper[J]. Marine Ecology-Progress series, 1988,46: 71-74
    
    33. PalmiterRD.The elusive function of mellothioneins[J]. ProcNatl Acad Sci USA, 1998, 95: 8428 -8430
    
    34. Patierno S R, Rellis NR. Evana RM et aL. Application of Modified ~(203)Hg kinding assay for MT[J] life SCI, 1983, 32: 1629-1636
    
    35. Romero-Isart N, Vasak M. Advances in the structure and chemistry of metallothioneins[J].Journal of Inorganic Biochemistry, 2002, 88(3): 388-396
    
    36. Schm idt C, Beyersm D.Transient peaks in zinc and metalliothionein levels during differentiation of cells[J]. Arch Biochem Biophys, 1999, 364: 91-98
    
    37. Satoh M, Kaji T, Tohyama C. Low dose exposure to cadmium and its healthdffdcts (3): toxicity in laboratory animals and cultured cells[J]. Nippon Eiseigaku Zasshi, 2003, 57(4): 615-623
    
    38. Sato M, Sasaki M. Enhanced lipid Per oxidation is not neeessary for induction for induction of MT-I by oxidative stress[J].Chem.Biol.Interact, 1991, 78: 143-154
    
    39. Sato M, Apostolova M D, Hamaya M, el al. Susceptibity of metallothionein-nuUmice to paraquat [J]. Environ ToxicolPharmacol, 1996, (1):221-225
    
    40. Scheuhammer A M, Cherian M G Quantification of Metallothioneins by a silver-saturation method [J]. Toxicol Appl Pharmacol, 1986, 82(3): 417-425
    
    41. Thomas J C, Davies E C, Maliek F K.Yeast metallothionein in transgenic tobacco promotes copper up take from contaminated soils[J].Bioteehnol Prog, 2003, 19(2): 273-280
    
    42. Tanaka K, Andrew RW. Role of superoxide dismutase in defense against SO_2 toxicity and an increase in superoxide dismutase activity with SO_2 fumigation[J]. Plant & Cell Physiol, 1980, 21:601-611
    
    43. Vallee BL, Introduction to metallothionein[J]. Methods in Enzymology, 1991, 205: 3-7
    
    44. VarshneyU, GedamuH. Human metallothionein in M-I and MT-II Processed genes[J] .Gene, 1984,31: 135-145
    
    45. Waalbes MP.Traqnsient induction of hepatic metallothionein following[J].Toxicol Appl Pharmacol.1984 74(2): 230-236
    
    46. Wan M. Regulation of metallothionein gene expression in Cd or Zn adapted RK-13 cells[J].Experientia, 1995, 511(6): 606-610
    
    47. Zangger K, Goz, H aslinger E, el al.N itricoxide selectively releases metals from the Nterminal domain of metallothioneins: potential role at inflammatory sites[J]. Fasebj, 2001, 15: 1303-1305
    48.Zafarullah M,KBonhan,LGedamu Endogenous and heavy-metal-ion-induced metallothionein gene expression in salmonid tissues and cell lines[J].Gene,1990,83(1):85-93
    49.Zafarullah M,Olsson PE,Gedamu L.Endogenous and heavy-metal-ion-induced metallothionein gene expression in salmonid tissues and cell lines[J].Gene,1989,15,83(1):85-93
    50.艾华,周先碗,茹炳根等.运动训练对大鼠骨骼肌和肝脏金属硫蛋白诱导和金属离子代谢的影响[J].中国运动杂志,2000,19(2):138-141
    51.柴春彦,刘国艳,石发庆.铜缺乏对奶牛肝脏MT代谢影响[J].畜牧兽医,2002,34(3):14-16
    52.陈家长,董在杰,胡庚东等.运用RAPD技术检测除草剂对草鱼的致突变作用[J].农业环境科学学报,2004,23(5):1037-1038
    53.常秀丽.金属硫蛋白及其在镉接触评价中的应用[J].国外医学卫生学分册,2004,35(1):32-36
    54.程义勇,王冬兰.不同应激反应对金属硫蛋白和矿物元素代谢的影响[J].营养学报,1996,18(3):317-321
    55.曹志华,高贵琴.鱼类对微量元素的需要研究现状[J].淡水渔业,1999,29(11):9-11
    56.陈正佳,李晓凡,施定基等.集胞藻类金属硫蛋白的纯化、性质和溶液构象的研究[J].植物学报,1999,41(2):150-155
    57.戴建国,陈景衡,杨森.镉饱和法测定小白鼠肝中金属硫蛋白[J].南京医科大学学报,1995,15(3):722-724
    58.党秀丽,陈彬,虞娜等.温度对外源性重金属镉在土-水界面间形态转化的影响[J].生态环境,2007,16(3):794-798
    59.范才,叶飞,刘德庆等.锌对小鼠组织金属硫蛋白表达的影响[J].中国病理生理杂志,2002,18(6):682-685
    60.郭祥学,陈正佳,但春涛等.聚球藻类金属硫蛋白的纯化及部分性能的研究[J].生物化学杂志,1997,13(6):699-703
    61.郭祥学,赵晖,施定基等.小鼠MT在聚胞藻中的金属诱导表达与纯化[J].生物工程学报,1998,14(4):405-411
    62.何红珍,朱春明,吕暾等.植物类金属硫蛋白半胱氨酸富含区结构的建模[J],中国植物学报,2002,44(10):1155-1159
    63.何裕高,郑楚玉.金属硫蛋白在原发食管癌和转移淋巴结的表达及其意义[J].汕头大学医学院学报.2001,14(1):17-19
    64.胡颖,孙志伟.金属硫蛋白对甲基汞致小鼠生殖细胞损伤的拮抗作用[J].中国公共卫生,2002,18(2):175-176
    65.韩照祥,胡喜兰,王庆祝.重金属在鱼体内的蓄积及其防御机制研究[J].水利渔业,2006,26(5):76-91
    66.黄仲贤,郑起,顾伟强.银诱导大鼠肝金属硫蛋白的提纯和鉴定[J].高等学校化学学报,1996,17(9):1349-1352
    67.金慧英,李法清.金属硫蛋白在心肌细胞保护中与抗氧化酶的关系[J].中国应用生理学杂志,2001,17(1):61-62
    68.蒋与刚.微量元素对金属硫蛋白基因表达的调控[J].国外医学地理.2001,12(22):145-147
    69.蒋与刚,冯宇,郭长江等.不完全饥饿对大鼠组织中微量元素及MT代谢改变的影响[J].微量元素与健康研究,1999,16(4):3-5
    70.季清洲,康巧华.神经生长抑制因子的功能结构域双体[J].生物化学与生物物理学报,2002,34(2):248-252
    71.李侠,茹炳根.金属硫蛋白与肿瘤[J].卫生研究,1999,28(3):155-187
    72.李春娣,颜文,龙爱民等.CU暴露条件下翡翠贻贝消化腺内金属和类金属硫蛋白的变化[J].环境科学,2007,28(8):1789-1794
    73.林艽,茹炳根,任宏伟.鱼体内金属硫蛋白与水环境关系的研究[J].北京大学学报(自然科学版),2001,37(6):779-784
    74.林芃,茹炳根,任宏伟.用酶联免疫吸附法测定鱼体内金属硫蛋白[J].环境污染与防治,2001,23(5):265-267
    75.林雅兰,常立梅.酿酒酵母BD101诱导产生的MT的分离纯化及鉴定[J].微生物学报,1998,38(4):289-294
    76.李令媛,马宏宝.金属诱导条件下刺猬各组织器官金属硫蛋白含量的比较分析[J].兽类学报,1995,15(1):65-70
    77.李宁,董进,梁光宁等.锌化物的毒性研究[J].中国公共卫生学报,1991,10(5):299-302
    78.雷衍之.养殖水环境化学[M].北京:中国农业出版社.2004.1
    79.毛莹,崔光红,黄璐琦等.铜、锌离子影响丹参金属硫蛋白MT2基因表达[J].分子植物育种,2007,3(5):389-392
    80.孟紫强.环境毒理学基础[M].北京:高等教育出版社,2005,3
    81.潘爱华,茹炳根,李令援等.锌诱导家兔肝肝金属硫蛋白的分离纯化鉴定[J].生物化学杂志,1991,7(3):284-289
    82.茹炳根.金属硫蛋白[J].生物化学与生物物理进展,1991,18(4):254-259
    83.茹炳根,潘爱华,黄秉乾等.金属硫蛋白[J].生物化学与生物物理进展.1991,18(4):254-289
    84.任宏伟,茹炳根.金属硫蛋白基因在转基因领域的应用[J].生物工程进展.2004(20):35-39
    85.任宏伟,王文清,茹炳根等.鲫鱼金属硫蛋白的提纯及性质研究生物化学与生物物理进展[J].1993,20(4):281-285
    86.任宏伟,李崎.金属硫蛋白抗D-半乳糖衰老效应的研究[J].中国老年医学杂志,2002,21(4): 278-280
    87.任绪义,周雍,张建鹏等.镉中毒大鼠辜丸与肝脏金属硫蛋白表达研究[J].生物化学与生物物理进展,2002,29(5);49-53
    88.萨仁娜,冯京海.微量元素锌的营养研究[J].饲料研究,1997,23(3):6-8
    89.田晓丽,唐欣,左刚等.硒与金属硫蛋白对小鼠肝损伤的防护作用[J].中国生物工程杂志,2006,26(6):23-29
    90.田晓丽,郭军华.金属硫蛋白的研究进[J].国外医学药学杂志,2005,32(2):119-124.
    91.帖建科,李令缓,茹炳根等.金属硫蛋白清除自由基及其对自由基引起的核酸损伤的研究[J].生物物理学报,1995,11(2):276-282
    92.铁锋,茹刚.金属鳌合物亲合层析纯化金属硫蛋白[J].生物化学与生物物理进展,1994,21(5):447-450
    93.吴峙山,黄金屏主编.环境保护与环境卫生标准规范实施手册[M].北京:中国建筑工业出版社,1998.378-394
    94.吴端生,王宗保.鱼类试验动物开发与应用研究的现状及展望[J].中国试验动物学杂志,2000,10(2):103-109
    95.王焕校.污染生态学[M].北京:高等教育出版社,2002,7
    96.王洁,王明山,唐思贤等.镉和铅对鹌鹑肝脏金属硫蛋白的诱导[J].华东师范大学学报(自然科学版),2007,3(2):80-86
    97.王翔,张大成,李婷.金属硫蛋白(MT)分离纯化技术进展[J]_微纳电子技术,2003,7:335-337
    98.王海黎,陶澍.生物标志物在水环境研究中的应用[J].中国环境科学,1999,19(5):421-426
    99.王银秋,张迎梅,赵东芹.重金属镉铅、锌对鲫鱼和泥鳅的毒性[J].甘肃科学学报,2003,15(1):35-38
    100.谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):376-381
    101.修瑞琴,许永香,郑静等.镉与锌离子对斑马鱼的联合毒理[J].卫生研究,1996,25(2):101-102
    102.杨丰,陈荣忠,徐洵.褐莒鲷金属硫蛋白的分离提纯及免疫测定[J].环境科学学报,1996,16(4):469-474
    103.张桂春.金属硫蛋白的功能及应用前景[J]烟台师范学院学报,2005,21(2):142-145
    104.周义军,曹玉广.乙醇对大鼠脑、肝金属硫蛋白浓度的影响[J].中国公共卫生,2002,18(6):679-680
    105.郑军恒,李海洋,茹刚等.金属硫蛋白清除羟自由基功能的研究[J].北京大学学报(自然科学版),1999,35(4):573-576
    106.张铣,薛彬,魏雪涛等.镉免疫毒性机理的初步探讨[J].中国环境科学,1999,19(6):530-535
    107.周启星,孔繁翔,朱琳.生态毒理学[M].科学出版社.2004:4-182,334-343
    108.周新文,孔锦荷.用3H-TDR研究混合重金属对鲫鱼DNA合成的影响[J].核农学报,2001,15(2):115-119
    109.张冰艳,蔺玉华,关海虹等.铜、锌双因子对幼鲤鱼及草鱼胚胎的毒性影响[J].水产学杂志,1996,9(1):58-61
    110.张建鹏,仲燕,任诸义等.镉诱导大鼠肝脏MT基因表达研究[J].第二军医大学学报.2003,24(2):184-187
    111.郑军恒,茹刚,茹炳根.人胎肝金属硫蛋白的分离纯化及酶联免疫吸附检测[J].北京大学学报(自然科学版),1999,35(2):225-229
    112.周杰,施定基.小鼠金属硫蛋白-I鱼腥藻7120融合表达纯化[J].植物学报,2003,45(1):98-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700