牙胚微环境诱导真皮和牙龈来源成体干细胞分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程化牙齿研究的关键在于:获取来源丰富且具有成牙潜能的种子细胞,使其在适宜的成牙微环境下发育、分化。牙齿器官的发育需要釉质形成所需的牙源性上皮细胞和形成牙髓牙本质复合体的牙源性间充质细胞共同来完成,而牙源性种子细胞在成体中来源十分有限,因此,寻找取材方便、扩增容易、特性稳定且符合伦理道德的成体干细胞作为种子细胞是目前牙齿再生研究的热点之一。本实验分离培养了SD大鼠掌趾部皮肤真皮多能干细胞和牙龈粘膜上皮干细胞,并对其干细胞生物学特性进行了鉴定,在此基础上利用同种属发育早期牙胚细胞分泌的信号分子在体外模拟牙胚发育的微环境,探讨皮肤真皮多能干细胞向牙源性间充质细胞分化的能力,以及牙龈粘膜上皮干细胞向牙源性上皮细胞方向分化的可行性,并为非牙源性成体干细胞向成牙细胞分化所需的微环境提供实验方案,为筛选和诱导组织工程牙齿种子细胞提供研究参考。取得的主要研究结果如下:
     1.不同时期牙齿胚基发育能力和微环境变化的研究
     观察SD大鼠胚胎帽状期和出生后钟状末期牙胚及其各部分解离组织块在肾被膜下的生长发育情况,初步明确不同发育时期牙胚在肾被膜下的发育能力,结果表明发育早期牙胚的碎组织具有更强的牙齿形成能力,所形成的牙齿结构较完整正确。进一步将原代培养后帽状期和钟状末期牙胚离散细胞植入肾被膜下发育,结果显示帽状期牙胚离散细胞可形成组织工程化牙胚样结构,帽状期牙间充质离散细胞可形成牙本质牙髓复合体结构,其组织结构和形态均较钟状末期牙胚离散细胞和牙间充质离散细胞所形成的牙齿结构规则、完整。
     由此得出,离散的牙上皮细胞和间充质细胞之间信号网络所提供的微环境可完善和充分地指导牙齿的继续发育,提示来自这两种发育时期牙胚的成牙微环境所包含的特异性信息可由单个细胞携带并发挥作用。
     2.牙胚细胞微环境诱导皮肤真皮多能干细胞分化的研究
     为了探讨牙胚细胞构建的微环境对于非牙源性间充质干细胞的诱导能力,本实验采用贴壁细胞培养法和有限稀释法培养SD大鼠皮肤真皮多能干细胞,利用发育早期牙胚细胞分泌的信号分子在体外模拟成牙微环境,观察对皮肤真皮多能干细胞增殖分化的影响。结果显示,以出生1d的SD仔鼠掌趾部皮肤为组织来源,可培养获得具有间充质干细胞生物学特性的皮肤真皮多能干细胞。在此基础上,体外利用牙胚细胞条件培养液诱导培养皮肤真皮多能干细胞,可促进其增殖和矿化,并实现了向牙源性间充质细胞方向的表型转化。为进一步观察诱导后细胞的体内分化能力,使用牙胚细胞条件培养液预处理煅烧牙本质管支架材料后,再将皮肤真皮多能干细胞复合于支架材料内部移植于裸鼠皮下,培养6w后观察到帽状期牙胚细胞条件培养液诱导组移植物在材料内部可形成一些质地均匀的矿化组织,进一步免疫组织化学染色显示矿化组织可表达BSP、DSP,具有类似牙本质样矿化的特性。钟状末期牙胚细胞条件培养液诱导组移植物中仅有少量矿化组织生成,BSP表达阳性,DSP表达阴性提示为骨样组织。
     以上结果提示,帽状期牙胚细胞条件培养液所提供的成牙微环境可在体外和体内促进皮肤真皮多能干细胞的牙向分化,经帽状期牙胚细胞条件培养液预处理的煅烧牙本质管具有一定的诱导分化作用,可促进皮肤真皮多能干细胞向牙本质样矿化方向分化;而钟状末期牙胚细胞条件培养液仅可诱导细胞发生表型的暂时转化,诱导后的细胞在体内不能继续分化为具有功能的牙源性细胞,同时也说明仅仅依靠支架材料上负载的牙胚发育信号分子不能完全实现皮肤真皮多能干细胞向成牙本质细胞有序分化并构建牙髓牙本质复合体。非牙源性干细胞在体内牙向分化更需要持续且稳定存在的成牙微环境,如何将种子细胞、微环境和支架材料三者有效结合来构建组织工程化牙齿还需进一步研究。
     3.牙胚细胞微环境诱导牙龈上皮干细胞分化的研究
     利用出生4w SD大鼠牙龈粘膜培养牙龈上皮细胞,结果显示其中部分细胞呈克隆样生长,细胞增殖较缓、大部分细胞处于静止期,且CK14和β1-整合素表达阳性,具有典型的上皮干细胞特征。在此基础上,利用第二部分实验结果确定的帽状期牙胚细胞微环境构建细胞间相互诱导模式,体外诱导培养牙龈上皮干细胞,结果表明牙胚细胞与牙龈上皮干细胞有序接触共培养后可促进牙龈上皮干细胞增殖,在表型和基因水平表达特异的成釉相关蛋白;而牙胚细胞条件培养液和混合接触共培养诱导后的牙龈上皮细胞表型改变不明显。将诱导后的细胞以细胞团的形式移植同种异体鼠肾被膜下观察,结果显示诱导后的细胞在体内不能形成典型的釉质样矿化结构。
     本研究结果显示,分离培养的牙龈上皮干细胞可在体外牙胚细胞提供的成牙微环境中向牙源性上皮细胞方向分化,同时进一步肯定了帽状期牙胚细胞所分泌的可溶性信号分子在成体干细胞牙向分化过程中的重要诱导作用。体内结果提示建立良好的上皮-间充质接触从而使上皮和间充质之间形成储存信号与介导信号传递的基底膜是牙上皮结构发育的重要条件。
The crucial point of tooth engineering is to obtain plenty candidate cells that have odontogenic potential and capable of development and differentiation in suitable microenvironment. Tooth development follows the concept of epithelial–mesenchymal interactions which require dental epithelial cells to differentiate into enamel as well as dental mesenchymal cells to develop into dentin-pulp complex. However, the limitation of dental-derived stem cells obscured the approach of the tooth regeneration. What is evident is that work in this field is urgently needed as the ability to isolate large numbers of adult stem cells which biopsied easily, proliferate efficiently, and have distinct identity without ethic conflicts would be of great interest scientifically particularly with respect to future therapeutic applications and the developing discipline of tooth engineering. In this paper, the recombined microenvironment from developmental teeth was used to provide odontogenic niche for candidate cells. Using the mimic odontogenic environment, the potential of the differentiation and morphogenesis of skin dermal-derived multipotent stem cells (DMSCs) and gingival epithelial stem cells (GESCs) was assessed. Meanwhile, the results provide an effective strategy for the odontogenic induction of non-dental adult stem cells and present evidences of sorting candidate cells for tooth regeneration research.
     Part 1. Potential of tooth germ tissues from different development stages
     We investigated the ectopic growth and development of 14-day embryonic and one-day postnatal molar germ-related tissues from Sprague-Dawley rats in renal capsules. The HE results demonstrated that the tooth germ-related tissues at cap stage that could form regular tooth structures developed much better than those at late bell stage. To further confirm the development potential of dissociated cells of tooth germs at the two stages, we implanted tooth cells and dental mesenchymal cells of the two stages of molar germs in renal capsules, respectively. The results shows that dissociated tooth germ cells at cap stage formed better tooth structures than those at late bell stage; and the mesenchymal cells at cap stage produced dentin-pulp complex. However, tooth germ cells and papilla cells at late bell stage generated irregular bone-dental-like structures.
     In conclusion, dissociated dental epithelial and mesenchymal cells could recapitulate the embryonic tooth germ environment to favour normal tooth development, indicating that the dissociated single dental cell retained genetic signaling network which is necessary for odontogenesis.
     Part 2. Differentiation of tooth germ microenvironment induced skin dermal multipotent stem cells
     In present study we sought to explore the possibility of utilizing DMSCs easily available from skin tissue for odontogenic induction. Using the limiting-dilution technique, colony-forming cell population was isolated and characterized by proliferative activity and multilineage differentiation potential. By in vitro exposure to conditioned medium of embryonic and neonatal tooth germ cells in culture, the proliferation and mineralization activity of DMSCs was elevated while the embryonic tooth germ cell conditioned medium (ETGC-CM) produced more significant effects. Meanwhile, TGC-CM treated DMSCs phenocopied the odontoblasts as indicated by specific lineage markers. To further examine the in vivo development potential of induced DMSCs, TGC-CM pretreated scaffolds were loaded with treated DMSCs. Following in vivo subcutaneous transplantation, ETGC-CM treated DMSCs were capable of producing blocks of dentin-like matrix as proved by positive staining of BSP and DSP. While NTGC-CM treated DMSCs formed fewer mineral nodules inside the scaffolds which were morphologically and immunochemically identified as bone-like tissues.
     These observations suggest that under the sufficiently potent inductive microenvironment, DMSCs can be directed into odontoblast-like lineage cells. Our results further posit that the extrinsic niche where cells reside in is continuously required to maintain odontogenic differentiation. More suitable and optimal odontogenic microenvironment need to be further exploited and will be of substantial utility in the context of choosing non-dental adult stem cells for tooth regeneration. Our work highlights the potential utility of DMSCs as an alternative candidate cell source in hopes of developing more practical strategy of tooth regeneration research and offering promising opportunities for therapeutic approach.
     Part 3. Differentiation of tooth germ microenvironment induced gingival epithelial stem cells
     In this study, we isolated and characterized gingival epithelial cell population, from which existed a subpopulation that have stem cell properties, such as colony forming ability, slow cell cycle, capacity for self-renewal, and undifferentiated state as indicated by positive staining ofβ1-Integrin and CK14. To evaluate their odontogenic differentiation potential, cap stage tooth germ development niche was chosen to establish different patterns of cell interaction including TGC-CM, ordered and mixed contact co-culture. The data accumulated here showed that the ordered contact co-culture systems can effectively induce GESCs toward the ameloblasts phenotype, while the TGC-CM and mixed contact co-culture could not effectively initiate the odontogenic differentiation of GESCs. Following in vivo transplantation as cell pellets, there was no sufficient experimental evidence showed that induced GESCs could form enamel-like tissues.
     Taken together, it confirms the critical role of molecular signals in the microenvironment of cap stage tooth germ. Furthermore, the results also indicate that in order to accomplish tooth regeneration, it will be best if the natural process of epithelial–mesenchymal interactions of teeth embryonic development can be reiterated in vitro or in vivo. Accordingly, growth factors and their reservation and transmission through a substrate to anchor the candidate cells could be achieved as natural tooth initiation and morphogenesis.
引文
[1] Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001;414(6859):118-21.
    [2] Duailibi SE, Duailibi MT, Vacanti JP, Yelick PC. Prospects for tooth regeneration. Periodontol 2000 2006;41:177-87.
    [3] Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999;17(2):149-55.
    [4] Chai Y, Slavkin HC. Prospects for tooth regeneration in the 21st century: a perspective. Microsc Res Tech 2003;60(5):469-79.
    [5] Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004;5(7):499-508.
    [6] Ruch JV. Determinisms of odontogenesis. Revis Biol Celular 1987;14:1-99.
    [7] Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 2001;15:14-8.
    [8] Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science 1998;282(5391): 1136-8.
    [9] Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development 2003;130(6):1049-57.
    [10] Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig'sepithelial root sheath. Dev Dyn 2006;235(5):1167-80.
    [11] Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997;67(2):111-23.
    [12] Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res 1999;78(4):826-34.
    [13] Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987;32(2):123-7.
    [14] Sarkar L, Cobourne M, Naylor S, Smalley M, T. D, Sharpe PT. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A 2000;97(9):4520-4524.
    [15] Grigoriou M, Tucker AS, Sharpe PT, Pachnis V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 1998;125(11):2063-74.
    [16] Mandler M, Neubuser A. FGF signaling is necessary for the specification of the odontogenic mesenchyme. Dev Biol 2001;240(2):548-59.
    [17] Buckland RA, Collinson JM, Graham E, Davidson DR, Hill RE. Antagonistic effects of FGF4 on BMP induction of apoptosis and chondrogenesis in the chick limb bud. Mech Dev 1998;71(1-2):143-50.
    [18] Niswander L, Martin GR. FGF-4 and BMP-2 have opposite effects on limb growth. Nature 1993;361(6407):68-71.
    [19] Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J Embryol Exp Morphol 1970;24(1):159-71.
    [20] Peters H, Neubuser A, Balling R. Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci 1998;106 Suppl 1:38-43.
    [21] Keranen SV, Kettunen P, Aberg T, Thesleff I, Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol 1999;209(8):495-506.
    [22] Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res 1995;32(1-4):17-25.
    [23] Thomas BL, Sharpe PT. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci 1998;106 Suppl 1:48-54.
    [24] Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000;92(1):19-29.
    [25] Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006;12(11):3097-105.
    [26] Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res 2008.
    [27] Wu G, Deng Z, Fan X, Ma Z, Sun Y, Ma D, Wu J, Shi J, Jin Y. Odontogenic Potential of Mesenchymal Cells from Hair Follicle Dermal Papilla. Stem Cells Dev 2008.
    [28] Hu B, Unda F, Bopp-Kuchler S, Jimenez L, Wang XJ, Haikel Y, Wang SL, Lesot H. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res 2006;85(5):416-21.
    [29] Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC.Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 2004;83(7):523-8.
    [30] Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004;83(7):518-22.
    [31] Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007;99(8):465-74.
    [32] Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. Tissue Eng Part B Rev 2008;14(3):307-319.
    [33] Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002;81(10):695-700.
    [34] Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 2007;28(4):680-689.
    [35] Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods 2007;4(3):227-30.
    [36] Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97(25):13625-30.
    [37] Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100(10):5807-12.
    [38] Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Shi S and others. Mesenchymal stemcell-mediated functional tooth regeneration in swine. PLoS ONE 2006;1:e79.
    [39] Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 2006;12(8):2069-75.
    [40] Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A. Cementum matrix formation in vivo by cultured dental follicle cells. Bone 2002;31(5):606-11.
    [41] Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005;24(2):155-65.
    [42] Morsczeck C, Moehl C, Gotz W, Heredia A, Schaffer TE, Eckstein N, Sippel C, Hoffmann KH. In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int 2005;29(7):567-75.
    [43] Zhao M, Xiao G, Berry JE, Franceschi RT, Reddi A, Somerman MJ. Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J Bone Miner Res 2002;17(8):1441-51.
    [44] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004;364(9429): 149-55.
    [45] Kramer PR, Nares S, Kramer SF, Grogan D, Kaiser M. Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res 2004;83(1):27-34.
    [46] Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H,Takata T, Kato Y, Kurihara H. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 2004;75(9):1281-7.
    [47] Carmona-Rodriguez B, Alvarez-Perez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, Molina-Guarneros J, Garcia- Hernandez AL, Suarez-Franco JL, Chavarria IG, Villarreal-Ramirez E and others. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Commun 2007;358(3):763-9.
    [48] Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol 2003;74(2):202-13.
    [49] Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res 2008;43(3):364-71.
    [50] Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T, Ishikawa I. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 2009;30(14):2716-23.
    [51] Richman JM, Kollar EJ. Tooth induction and temporal patterning in palatal epithelium of fetal mice. Am J Anat 1986;175(4):493-505.
    [52] Mitsiadis TA, Cheraud Y, Sharpe P, Fontaine-Perus J. Development of teeth in chick embryos after mouse neural crest transplantations. Proc Natl Acad Sci U S A 2003;100(11):6541-5.
    [53] Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered toothregeneration. Biomaterials 2007;28(4):680-9.
    [54] Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Lesot H. Dental Epithelial Histomorphogenesis in vitro. J Dent Res 2005;84(6):521-5.
    [55] Yu JH, Deng ZH, Shi JN, Zhai HH, Nie X, Zhuang H, Li YC, Jin Y. Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 2006;12(11):3097-3105.
    [56] Yu JH, Shi JN, Deng ZH, Zhuang H, Nie X, Wang RN, Jin Y. Cell pellets from dental papillae can reexhibit dental morphogenesis and dentinogenesis. Biochem Biophys Res Commun 2006;346(1):116-124.
    [57] Yen AH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther 2006;6(1):9-16.
    [58] Rachel Sartaj PS. Biological tooth replacement. J. Anat. 2006;209:7.
    [59] Otto F TA, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:7.
    [60] Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100(1):157-68.
    [61] Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K and others. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 2002;418(6893):50-6.
    [62] Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292(5520):1389-94.
    [63] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ,Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7.
    [64] Gage FH. Mammalian neural stem cells. Science 2000;287(5457): 1433-8.
    [65] McKay R. Stem cells in the central nervous system. Science 1997;276(5309):66-71.
    [66] Young HE, Black AC, Jr. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol 2004;276(1):75-102.
    [67] SVEEN OB HR. Differentiation of new odontoblasts and dentine bridge formation in rat molar teeth after tooth grinding. Archs. Oral Biol. 1968;13:14.
    [68] About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res 2000;258(1):33-41.
    [69] Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81(8):531-5.
    [70] Senzaki H. A Histological study of reparative dentinogenesis in the rat incisor after colchicines. Arch Oral Biol 1989;25:737-743.
    [71] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18:696-704.
    [72] Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005;50(2):103-8.
    [73] Harada H, Ohshima H. New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol 2004;67(1):1-11.
    [74] Slavkin H, Bringas PJ, Bessem C. Hertwig’s epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium. J Period Res 1989;24:28-40.
    [75] Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999;147(1):105-20.
    [76] Grzesik WJ, Cheng H, Oh JS, Kuznetsov SA, Mankani MH, Uzawa K, Robey PG, Yamauchi M. Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res 2000;15(1):52-9.
    [77] Modino SA, Sharpe PT. Tissue engineering of teeth using adult stem cells. Arch Oral Biol 2005;50(2):255-8.
    [78] Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6(11):1229-34.
    [79] Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290(5497):1779-82.
    [80] Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM and others. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410(6829):701-5.
    [81] Strem BM, Hedrick MH. The growing importance of fat in regenerative medicine. Trends Biotechnol 2005;23(2):64-6.
    [82] Zuk PA, Zhu M, Ashjian P. Humanadiposetissue is a source ofmultipotent stem cells. Mol Biol Cell 2002(13):4279-4295.
    [83] Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109(10):1292-8.
    [84] Wu L, Zhu F, Wu Y, Lin Y, Nie X, Jing W, Qiao J, Liu L, Tang W, Zheng X and others. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs 2008;187(2):103-12.
    [85] Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 2001;20(6):1215-22.
    [86] Watt FM. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 1998;353(1370): 831-7.
    [87] Akiyama M, Smith LT, Shimizu H. Changing patterns of localization of putative stem cells in developing human hair follicles. J Invest Dermatol 2000;114(2):321-7.
    [88] Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000;102(4):451-61.
    [89] Limat A, Mauri D, Hunziker T. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. J Invest Dermatol 1996;107(1):128-35.
    [90] Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 2002;20(1):21-31.
    [91] Artuc M, Steckelings UM, Henz BM. Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J Invest Dermatol 2002;118(3):391-5.
    [92] Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007;127(5):998-1008.
    [93] Stark HJ, Willhauck MJ, Mirancea N, Boehnke K, Nord I, Breitkreutz D, Pavesio A, Boukamp P, Fusenig NE. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur J Cell Biol 2004;83(11-12):631-45.
    [94] Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001;3(9):778-84.
    [95] Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005;23(6):727-37.
    [96] Bartsch G, Yoo JJ, De Coppi P, Siddiqui MM, Schuch G, Pohl HG, Fuhr J, Perin L, Soker S, Atala A. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev 2005;14(3):337-48.
    [97] Jeney F, Bazso-Dombi E, Oravecz K, Szabo J, Nagy IZ. Cytochemical studies on the fibroblast-preadipocyte relationships in cultured fibroblast cell lines. Acta Histochem 2000;102(4):381-9.
    [98] Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2002;8(3):441-52.
    [99] Mizuno S, Glowacki J. Low oxygen tension enhances chondroinduction by demineralized bone matrix in human dermal fibroblasts in vitro. Cells Tissues Organs 2005;180(3):151-8.
    [100] Chen FG, Zhang WJ, Bi D, Liu W, Wei X, Chen FF, Zhu L, Cui L, Cao Y. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. J Cell Sci 2007;120(Pt 16):2875-83.
    [101] Lavker RM, Sun TT. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 1982;215(4537): 1239-41.
    [102] Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach JR. Epithelial stem cells in the skin: definition, markers, location and functions. Exp Dermatol 1999;8(1):80-88.
    [103] Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 1987;84(8): 2302-6.
    [104] Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 1999;145(4):769-82.
    [105] Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell 1994;76(6):1063-73.
    [106] Izumi K, Tobita T, Feinberg SE. Isolation of human oral keratinocyte progenitor/stem cells. J Dent Res 2007;86(4):341-6.
    [107] Nakamura T, Endo K, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2007;25(3):628-38.
    [108] de Luca M, Albanese E, Megna M, Cancedda R, Mangiante PE, Cadoni A, Franzi AT. Evidence that human oral epithelium reconstituted in vitro and transplanted onto patients with defects in the oral mucosa retains properties of the original donor site. Transplantation 1990;50(3):454-9.
    [109] Hata K, Ueda M. Fabrication of cultured epithelium using oral mucosal cells and its clinical applications. Hum Cell 1996;9(1):91-6.
    [110] Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 2006;141(2):267-275.
    [111] Potten CS, Schofield R, Lajtha LG. A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochim Biophys Acta 1979;560(2):281-299.
    [112] Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol 1970;24(1):173-86.
    [113] Stephens P, Hiscox S, Cook H, Jiang WG, Zhiquiang W, Thomas DW. Phenotypic variation in the production of bioactive hepatocyte growth factor/scatter factor by oral mucosal and skin fibroblasts. Wound Repair Regen;9:34-43.
    [114] Gruber R, Kandler B, Fuerst G, Fischer MB, Watzek G. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Implants Res 2004;15(5):575-80.
    [115] Yang GP, Lim IJ, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: molecular studies in wound healing. Wound RepairRegen 2003;11(6):411-8.
    [116] Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 2003;82:621-626.
    [117] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76.
    [118] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448(7151):313-7.
    [119] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72.
    [120] Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008;283(46):31601-7.
    [121] Sulzbacher S, Schroeder IS, Truong TT, Wobus AM. Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors-The Influence of Differentiation Factors and Culture Conditions. Stem Cell Rev 2009.
    [122] Glasstone S. The development of halved tooth germs; a study in experimental embryology. J Anat 1952;86(1):12-5.
    [123] Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development 1996;122(1):121-9.
    [124] Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, George A. Dual functional roles of dentin matrix protein 1. Implications inbiomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem 2003;278(19):17500-8.
    [125] Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A. Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 2006;281(28): 19064-71.
    [126] Grinnell KL, Bickenbach JR. Skin keratinocytes pre-treated with embryonic stem cell-conditioned medium or BMP4 can be directed to an alternative cell lineage. Cell Prolif 2007;40(5):685-705.
    [127] Krenning G, van der Strate B, Schipper M, Gallego YvSX, Fernandes B, van Luyn M, Harmsen M. CD34(+) Cells Augment Endothelial Cell Differentiation of CD14(+) Endothelial Progenitor Cells in vitro. J Cell Mol Med 2008.
    [128] Nikolova T, Wu M, Brumbarov K, Alt R, Opitz H, Boheler KR, Cross M, Wobus AM. WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD133+ cells in vitro. Differentiation 2007;75(2):100-11.
    [129] Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 2008;17(3):463-73.
    [130] da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006;119(Pt 11):2204-13.
    [131] Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Jr., Reagan CR, Lucas PA. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995;202(2):137-44.
    [132] Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 2006;44(4):215-30.
    [133] Fernandes KJ, Toma JG, Miller FD. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci 2008;363(1489):185-98.
    [134] Valenzuela MJ, Dean SK, Sachdev P, Tuch BE, Sidhu KS. Neural precursors from canine skin: a new direction for testing autologous cell replacement in the brain. Stem Cells Dev 2008;17(6):1087-94.
    [135] Crigler L, Kazhanie A, Yoon TJ, Zakhari J, Anders J, Taylor B, Virador VM. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007;21(9): 2050-63.
    [136] Papini S, Cecchetti D, Campani D, Fitzgerald W, Grivel JC, Chen S, Margolis L, Revoltella RP. Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells 2003;21(4):481-94.
    [137] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284 (5411):143-7.
    [138] Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13(12):4279-95.
    [139] Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stem cells and the ageing process. Exp Gerontol 2008;43(11):986-97.
    [140] Sumita Y, Honda MJ, Ohara T, Tsuchiya S, Sagara H, Kagami H, Ueda M. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 2006;27(17):3238-48.
    [141] Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature 2006;441(7097):1061-7.
    [142] Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell 2008;3(4):382-8.
    [143] MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 1997;272(2):835-42.
    [144] Thesleff I, Lehtonen E, Saxen L. Basement membrane formation in transfilter tooth culture and its relation to odontoblast differentiation. Differentiation 1978;10(2):71-9.
    [145] Dunnwald M, Chinnathambi S, Alexandrunas D, Bickenbach JR. Mouse epidermal stem cells proceed through the cell cycle. J Cell Physiol 2003;195(2):194-201.
    [146] Lesot H, Peterkova R, Schmitt R, Meyer JM, Viriot L, Vonesch JL, Senger B, Peterka M, Ruch JV. Initial features of the inner dental epithelium histo-morphogenesis in the first lower molar in mouse. Int J Dev Biol 1999;43(3):245-54.
    [147] DenBesten PK, Machule D, Zhang Y, Yan Q, Li W. Characterization of human primary enamel organ epithelial cells in vitro. Arch Oral Biol 2005;50(8):689-94.
    [148] Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, HubnerK, Scholer HR. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 1996;122(3):881-894.
    [149] Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A 1978;75(11):5565-5569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700