壳聚糖诱导植物抗病反应及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Plant's Defense Responses and It's Mechanism Induced by Chitosan
  • 作者:廖春燕
  • 论文级别:博士
  • 学科专业名称:植物营养学
  • 学位年度:2002
  • 导师:马国瑞
  • 学科代码:090302
  • 学位授予单位:浙江大学
  • 论文提交日期:2002-05-01
摘要
1.在马铃薯蔗糖培养基(PDA)上测定了两种酸溶性壳聚糖(C-1和C-2)和一种水溶性壳聚糖(C-3)对17种植物病原真菌的拮抗作用,初步探索了壳聚糖分子量及浓度对其抗菌性能的影响,水溶性壳聚糖C-3的抗菌能力最佳且随着浓度增大而增强,酸溶性壳聚糖C-1和C-2的抑菌强度差异不显著,但两者的最佳抑菌浓度对不同病原真菌表现不一致。不同分子量的壳聚糖对病原真菌的抗性机制不同。
     2.用含毒介质法测定了壳聚糖对番茄枯萎病菌、早疫病菌菌丝生长和孢子萌发的抑制作用,浓度大于1mg/ml的壳聚糖能明显地抑制菌丝生长,各设定浓度均可在一定程度上抑制孢子萌发,而且抑制效果随着处理浓度的增大而增强;浓度大于0.1mg/ml的壳聚糖处理可诱导初生菌丝发生菌丝肿胀、分枝增多且菌体分隔增加及体细胞变短等形态学变化。壳聚糖的抑菌作用机制与其增加菌丝细胞膜的透性有关。
     3.不同浓度壳聚糖喷施对番茄幼苗株高、茎粗、叶绿素含量、地上部鲜重、地上部干重、地下部鲜重及磷的含量均无明显影响,而显著的增加地下部干重、根冠比及地上和地下部氮钾含量,适当的壳聚糖浓度(1mg/ml)还可调节番茄幼苗氮磷钾比例。根冠比值的增加有利于提高幼苗的抗逆能力,植株体内钾含量的提高与抗病能力有关。
     4.在番茄四叶期用1mg/ml的壳聚糖进行诱导接种,可诱导番茄植株产生对早疫病的抗病性。经壳聚糖诱导后,番茄高抗、中抗、敏感品种的病叶率和病情指数均显著地低于接种对照,相对防效分别为39.8%、49.9%和56.4%;壳聚糖诱导番茄叶片过氧化物酶(POD)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)、几丁质酶、β-1,3葡聚糖酶活性提高,诱导活性在不同抗性品种中表现不同,不同酶的时序变化也有所不同。
     5.POD和PPO在接种早疫病病菌或喷施壳聚糖后,接种早疫病病菌组的POD和PPO活性均高于壳聚糖处理组。壳聚糖对PAL、几丁质酶和β-1,3-葡聚糖酶活性的诱导能力更强,在处理早期,壳聚糖处理组的活性均高于接种早疫病病菌组。喷施壳聚糖提高植株POD和PPO的活性可能是植株的应激反
    
     应,而提高 PAL、几丁质酶和 P1,3-葡聚糖酶的活性是壳聚糖的直接诱导机
     制。
     6.壳聚糖处理、早疫病病菌接种处理下番茄叶片*OD同工酶带谱与未接种基本
     相同,只是带的强弱与测定的酶活一致,此结果表明早疫病和壳聚糖诱导
     POD活性主要是增加原有POD同工酶的酶分子数日,而不是诱导新的同工
     酶的表达。
     7t 根扼同源序列设计特异性引物,以CTS处理后for、4hr、61。r的p A混合样
     品作为反转录的膜板,合成CDNA,再以此CDNA作为PCR扩增的膜板,通
     过RT PCR扩增出番仙卜1,}葡聚糖酶*in c**A的一个片段,测序结果在
     NCBI网站上进行blastn比较,其序列与番茄p刁,3-葡聚糖酶某囚同源性很高,
     表明通过RTPCR扩增出的片段为番茄pl,3-葡聚糖酶GI[J CDNA的一个片
     段。通过NOrthefflblottiflg分析表明,壳聚糖确实能够诱导卜1,3-葡聚糖酶的
     快速表达,在壳聚糖处理l’J山,6-1,3-葡聚糖酶的表达很快增强,并在12
     小时内保持在较高水平,接种处理卜1,3-葡聚糖酶的表达与对照相比略有提
     高,但远低于壳聚糖诱导处理。可见壳聚糖诱导番茄对’I疫病的抗性机制是
     在转率水平诱导了抗性基1习的表达,而非组成性酶的活性增强。
     8.不同分于量不同浓度的壳聚糖在接种iiJ一天D-l。面喷雾处理对诱导玉米小斑病
     的抗性均有一定效果,其中以低分子量壳聚糖 C上 mg/ml浓度最好。壳聚糖
     *-1和*-2随着处理浓度的增人,其防病效果呈下降趋势。接种后一天、接
     种后三天壳聚栅喷施处理,川W1队效叨显下1籽,说叨)’c聚糖仪只有较灯的
     防病效果,而非抗病效果。
     9.壳聚糖处理番茄种子后接种枯萎病菌与对照相比发芽数增多,成活率提高,
     发病数减少。在同一接种量条件下,壳聚糖对枯萎病菌引起的番茄苗期狩倒
     病具有较好的防效,特别是较大接种量时,成活率差异更加明显但随着病原
     菌接种最的增大,壳聚糖防病的总体趋势逐渐下降。
     川.壳聚糖对玫瑰白粉病的防效低于甲基拖布津,高于对照和氨基寡糖。施用甲
     基拖介津后三大基本控制住了白粉病的发病率,府情指数与对照相比有极显
     著地下降,喷施后第10天川对阶效达79.5%。壳聚糖施J-IJ后玫瑰白粉病的发
     病率及病情指数均显著地低于对照,而且处理后第10天发病率厂始下降,但
     *
     !2
    
     所要求的浓度较大,成本过高,直接大规模应川于生产有待于进一?
1. The effects of three kinds of chitosan on radial growth seventeen phytopathogenic fungi was investigated in vitro. Except 2 fungi, the radial growth of 15 fungi tested was inhibited by three kinds of chitosan. The inhibit effect to fungi of water-soluble chitosan C-3 was the most effective, and it's antifungal activity was increased when it's concentration increased. The antifungal activity of chitosan C-l and chitosan C-2 had no significant difference, but the most effective concentration was related to the kind of phytopathogenic fungi. The main antifungal mechanism of different molecular weight chitosan was different.
    2. Chitosan was effective in inhibiting radial growth and sporogensis of F. oxysporum. f. sp. lycopersici and Alternaria solani(E. et M.) Jans et Grout in vitro. The inhibiting activity of chitosan was increased when its concentration increased. Light microscope observations showed that chitosan at concentration greater than Img/ml induced morphological changes, including hyphal swelling, distortion, excessive branching, shortening of hyphal segments in new hyphal of F. oxysporum. f. sp. Lycopersii and Alternaria solani(E. et M.) Jans et Grout. The resistance mechanism of chitosan is related to its ability to increase the permeability of the fungal plasma membrane.
    3. It's no significant relationship between seedling weight, stem diameter, chlorophyll content, FW of top, DW of top, FW of root and P content in tomatoes with spraying different concentrations of chitosan. It could make tomato's DW of root, root/top, and N, K content of top and root to increase significantly. Img/ml chitosan can adjust the ratio of N: P: K in top of tomato. The plant's response to stress will increase with the increased root/ top. The increasing K content in plant has the relationship to resistance to disease.
    
    
    
    4. It could make the tomato plants resistance to early blight when the tomato seedlings were induced by chitosan (Img/ml) at the stage of the forth leaf. Chitosan treatment of tomato leaves before inoculation reduced the rates of diseased leaf and disease index, the rates of diseased leaf of resistant and susceptible tomato cultivars were 35.9% > 34.2%$I 34.9% respectively and lower than inoculation control significantly. The relative immunization efficiencies of the three tomato cultivars were 39.8%, 49.9%fll 56.4%, respectively. Chitosan-treated leaves induced an increase in POD, PPO, PAL, chitinase, (3-1,3- glucanase activities. The activity of these enzymes induced by chitosan in difference tomato cultivars showed different. Different enzymes vary differently after chitosan.
    5. Both of activities of POD and PPO in the tomato inoculated with Alternaria solani(E. et M.) Jam et Grout arc higher than those treated with chitosan. However, chitosan can induce the activities of PAL, chitinase andfi-1,3- glucanase more strongly. At early stage of treatment, these activities in tomato treated with chitosan are higher than those in plants inoculated with Alternaria solani(E. et M.) Jans et Grout. It shows that the inducation of POD and PPO by chitosan is the plant's response to stress, hut that chitosan can induce of PAL, chitinase and p-1 ,3- glucanase specially.
    6. Enzyme activity staining showed that no new isoforms of peroxidase were found in the leaves of plants treated with chitosan or inoculated with Alternaria so!ani(E. et M.) Jans et Grout. But the densities of bands are relevance with the results of enzyme activities. Our data indicates that early blight and chitosan do not induce new isoforms of POD, but improve the level of POD protein.
    7. We designed the PCR primer according to the homology sequence of P~l,3- glucanase induced by fungi and amplified a cDNA fragment by RT-PCR. The blast result showed that it was a gene P-1,3- glucanase of tomato. Chitosan can induce the expression of this gene strongly. In an hour of treatment of chitosan, the expression of P-1,3- glucanase was improved by sever
引文
1.宾金华,姜胜,黄胜琴等.茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系.植物生理学报,2000,26(1):1-6.
    2.陈宇,令永爱.壳降糖法制果汁乳蔬菜汁乳的研究.食品科学,1995,16(8):35-39.
    3.陈子涛等.稀土甲壳素饵料黏合剂.化学世界,1989,4:149-152
    4.黄丽萍,刘宗明.甲壳素、壳聚糖在农业上的应用[J].辽宁农业科学.1996(6):18~21
    5.姜海平,阐李斌等.壳聚糖S—Ⅱ拌种对水稻恶苗病的控制作用.安徽农业科学,1999,27(6):592-592,593.
    6.蓝海燕,陈正华。葡聚糖酶及其在植物中的发育调节和防卫反应.生物技术通报,1998,7(4):10-15.
    7.蓝海燕,田颖川,王长海.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报,2000,21(7):70-77.
    8.李红叶,黎军英,曹若彬.脱乙酰壳多糖对桃软腐、褐腐病菌的抑制和采后软腐病的防治研究.浙江农业学报,1997,9(2):87-92.
    9.李洪连,汪守正,王金生等.黄瓜对炭疽病诱导抗性的初步研究Ⅱ.诱导抗病机制的研究.植物病理学报.1993,23(4):327-332.
    10.李靖,利容千,袁文静.黄瓜感染霜霉病叶片中一些酶活性的变化,植物病理学报,1991,21(4):277-283.
    11.李庆春,翁长仁,曹广才等.壳多糖溶液浸种对冬小麦籽粒产量和品质的影 响.环境科学学报,1991,11(2):248-251
    12.李治,刘晓非等.壳聚糖降解研究进展.化工进展,2000,19(6):20-23,57.
    13.廖春燕,马国瑞,洪文英.不同分子量壳聚糖对几种植物病原真菌的拮抗作用[J].浙江农业学报,2001,13(3):172-175.
    14.刘和众,刘东辉。甲壳素植物生长调节剂在玉米上的应用。天然产物研究与开发,1996,8(4):90-92.
    15.刘铁平,薛仲华.壳聚糖复合絮凝剂在茶皂素提取工艺中的应用.化学世界,1998,39(7):386-387.
    16.罗小英,侯磊.大麦β-1,3葡聚糖酶基因表达载体的构建及其对马铃薯的遗传转化.西南农业学报,2000,13(4):1-5.
    17.南京大学主编,《土壤农化分析》。农业出版社,1986.
    18.师素云,薛启汉.壳聚糖对玉米生长的调节作用.天然产物研究与开发,1999,11(2):32-36.
    
    
    19.史建荣,王裕中,方中达.三唑酮、三哗醇对小麦纹枯病菌形态和生理的影响.植物病理学报,1992,22(3):205-209.
    20.水茂兴 陈美慈等.壳聚糖处理番茄、青椒的保鲜效果.浙江农业科学.2001,(4),-164-167
    21.宋凤鸣,郑重.植物抗真菌和细菌病害基因工程的策略及其进展.植物生理学通讯,1996,32(1):64-70.
    22.苏凤池.寡糖素生物农药.中国水果与蔬菜,2000,2:21-22.
    23.唐启义、冯明光.Data Processing System数据处理系统.北京:中国农业出版社,1997.
    24.王关林,方宏筠.植物基因工程原理与技术。北京:科学出版社,1998
    25.夏文水,吴焱楠.甲壳寡聚糖的功能特性,无锡轻工大学学报,1996,15(4):297-302.
    26.徐建华,利容千,王建波.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物病理学报,1995,25(3):239-242.
    27.许为黎,张志高,倪向群等.几丁质,6-BA和PP333包衣春性小麦的春前效应.江苏农业科学,1997,5:17-20.
    28.于汉寿,吴汉章,张益民等.壳聚糖对小麦生长及纹枯病发生的影响.江苏农业科学,1997,6:9-10.
    29.于汉寿,吴汉章,张益民等.水溶性壳聚糖对水稻恶苗病和油菜菌核病的作用。江苏农业科学,1998a,5:38-40.
    30.于汉寿,张益民,陈永萱等.壳聚糖对油菜生长及油菜菌核病的影响.上海农业学报,1999,15(2):80-83.
    31.于汉寿、张益民、吴汉章、陈永萱和吴川德。壳聚糖对几种植物病原真菌的作用。天然产物研究与开发,1998b,11(5):33-37.
    32.袁毅桦,赖兴华.壳聚糖常温保鲜番茄的研究.食品科学,1994,7:62-65.
    33.曾艳,赵南明,刘进元.几丁质与植物防卫反应.生物工程进展.1997,17(4):31-34
    34.张红辉,石伟勇等.壳聚糖对种子萌发及幼苗生长的影响.东海海洋,2001,19(2):54-59.
    35.张燕,方力和王宝.聚糖对烟草种子萌发及幼苗生理生化特性的影响.吉林农业大学学报.1998,20(3):28-30.
    36.赵惠芝.壳聚糖对向日葵种子萌发及幼苗生理特性的影响.河北农业技术师范学院学报,1999,13(2):37-39.
    
    
    37.郑连英、朱江峰、孙昆山。壳聚糖的抗菌性能研究。材料科学与工程,2000,18(2):22-24.
    38.周勋波,吴海燕等.大豆应用抗寒剂抗寒效应的研究.杂粮作物,2001,21(4)3:2-33.
    39.朱亚萍,赵治书.番茄配方施肥研究.西南农业大学学报,1999,21(2):166-169.
    40.邹书国,杨洪彬.钾肥对大豆的增产抗病效应及最佳用量试验.现代化农业,1997,5:39-39.
    41. Abeles FB, Bosshart RP, Forrcnce LE, et. al.Preparation and purification of glucanase and chitinase from bean leaves.Plant Physiol,1970, 47:129-134.
    42. Baldridge GB, O'Neill NR, Samac DA.Alfkfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots.Plant Molecular Biology,1998, 38: 999-1010.
    43. Bégin A, Van C, Marie R.Antimicrobial films produced from chitosan.International Journal of Biological Macromolecules,1999,26:63-67.
    44. Bell AA,Hubbard JC, Liu C, et al. Effects of chitin and chitosan on the incidence and severity of fusarium yellows of Celery.Plant Dis,1998, 82: 322-328.
    45. Benhamou N, Belanger RR, Rey P, et al.Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants.Plant Physiol Biochem, 2001,39:681-698.
    46. Benhamou N, Brodeur J.Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold.Phytopathology, 2000, 90:932-943.
    47. Benhamou N, Broglie K, Chet I, et al.Cytology of infection of 35S -bean chitinase trangenic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. The Plant J, 1993, 4: 295~305.
    48. Benhamou N, Kloepper JW, Tuzun S.Induction of resistance against Fusarium wilt of tomato by combition of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response[J].Planta, 1998, 204:153~168.
    49. Benhamou N, Lafontaine P J, Nicole M.Induetion of systemic resistance to fusarium crown and root rot in tomato plants by seed treament with chitosan.
    
    Phytopathology, 1994, 84: 1432-1444.
    50. Benhamou N. Ultrastructural and cytochemical aspects of chitosan on fusarium oxysporum f.Sp.radicis-lcopersici, agent of tomato crown and root rot. Phytopathology, 1992,82: 1185-1193.
    51. Bittelli M, Flury M, Campbell GS, et al. Reduction of transpiration through foliar of chitosan. Agricultural and Forest Meteorology, 2001, 107: 167-175.
    52. Bohland C, Balkenhohl T, Loers G, et al. Differtial induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chtosan, and methyl jasmonate. Plant physiol, 1997, 114: 679-685.
    53. Boiler T, Gehri A, Manch F, et al. Chitinase in bean leaves: induction by ethylene, purification,properties,and pssible function[J]. Planta, 1983, 157: 22-31
    54. Bradford MN. Arapid and sensitive method using the principle of pritein-dye for the quantitation of microgram quantities of protein. Anal Biochem, 1976, 72: 248-254.
    55. Bronner R, Wcstphal E, Dreger F. Chitosan, a component of the compatible interaction between Solanum dulcamara L. And the gall mite Eriophyes cladopthirus Nal[J]. Physiol Mol Plant Pathol. 1989, 34: 117-130.
    56. Bullock G, Blazer V, Tsukuda S, et, al. Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture, 2000, 185: 273-280.
    57. Cardwell KF, Schulthcss F, Ndemah R, et, al. A systems approach to assess crop health and maize yield losses due to pests and diseases in Cameroon. Agriculture, Ecosystems and Environment, 1997, 65: 33-47.
    58. Caruso C, Chilosi G, Caporale C, et. al. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Science, 1999, 140: 1,87-97.
    59. Chang MM, Horovitz D, Culley D, et al. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungul infection and the elicitor chitosan. Plant Molecular Biology, 1995, 28: 105-111.
    60. Chen T. The Relationship Between Specific Properties and Use of Chitosan; Present on the National Symposium on. Nature Marine Product and Nature
    
    Biological Medicine: Beijing, China, 1998; pp. 282-284.
    61. Christiane B, Daniel B, Ingmar H, et al. Charaterization of a novel, antifungal, chitin-binding protein from streptomyces tendae tu901 that interferes with growth polarity. Journal of Bacteriology, 1999, 181(24) :7421-7429.
    62. Cohen-Kupiec R, Broglie KE, Friesem D, et. al. Ilan Molecular characterization of a novelβ-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene, 1999,226: 147-154.
    63. Daisuke T. A rapid induction by elitors of the mRNA encoding CCD-1, a 14 kDa Ca2+-binding protein in wheat cultured cells. Plant molecular Biology, 2000,42: 807-817.
    64. Doares SH, Syrowcls T, Weiler EW, ct al. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway[J]. Proc Ncad Sci USA, 1995, 92: 4095-4098.
    65. Dubery IA, Teodorczuk LG, Louw AE. Early responses in methyl jasmonate-proconditioned cells toward pathogen-derived elicitors. Molecular Cell Biology Research Communications, 2000, 105-110.
    66. El Ghaouth A, Arul J, Grenier J, et al. Antifungal activity of chtosan on two postharvest pathogens of strawberry fruits. Phytopathology, 1992, 82: 398-402.
    67. El Ghaouth A, Arul J, Grenier J, et al. Effects of chtosan on cucumber plants: suppression of Pythium aphanideermatum and induction of defense reactions[J]. Phytopathology, 1994, 84: 313-320
    68. Fininsa C, Yuen J. Association of maize rust and leaf blight epidemics with cropping systems in Hararghe highlands, eastern Ethiopia. Crop Protection,2001, 8: 669-678.
    69. Francois C, Michael H. Oligosaccharins: structures kand singal transduction. Plant Molecular Biology, 1994,26: 1379-1411.
    70. Gaudot ED, Slezack S, Dassi B, et al plant hydrolytic enzymes (chitinases and β-glucanase) in root reactions to pathogenic and symbiotic microorganisms. Plant and Soil, 1996,185:211-221.
    71. Gregory P, Patrice AM, Jennifer G, et al. Accoumulation of feruloyltyremine and p-coumaroyltyramine in tomato leaves in response to wounding. Phychemistry, 1998,47: 659-664.
    72. Gwary DM, Nahunnaro H. Epiphytotics of early blight of tomatoes in Northeastern Nigeria. Crop Protection, 1998, 17: 619-624.
    
    
    73. Haapalainen ML, Kobets N, Piruzian El, et. al. Integrative vector for stable transformation and expression of aβ-1,3-glucanase gene in Clavibacter xyli subsp. cynodontis. FEMS Microbiology Letters, 1998, 162: 1-7.
    74. Hadwiger LA Beckman JM, Adams MJ. Localization of fungal components in the pea-fusarium interaction detected immunochemically with antichitosan and antifungal cell wall anlisera[J]. Plant Physiol, 1981b, 67: 170-175.
    75. Hadwiger LA, Beckman JM. Chtosan as a component of Pea-Fusarium solani interactions. Plant physiol, 1980, 66: 205-211.
    76. Hadwiger LA, Loschke DC. Molecular communication in host-parasite interactions: hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions. Phytopathology, 1981 a, 71: 756-762.
    77. Hadwiger LA. Induction of phenylalanine ammonia lyase and pisatin by photo-sensitive psoralcn compounds. Plant Physiol, 1972, 49: 779-782.
    78. Helander, IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 2001, 71: 235-244.
    79. Hirano S, Hayashi M, Nagao N, et al. Chitinase activity of some seeds during their germination process and its inducetion by treating with chitosan and derivatives. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical, Properties, and Applications. Edited by Skjak B, Gudmund, London UK. 1998, p743-747.
    80. Hirano S, Nagao N. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens[J]. Agric Biol Chem, 1989, 53(11) : 3065-3066.
    81. Hirano S, Yamaguchi Y, Kamiya M. Novel N-saturated-fatty-acyl derivatives of chitosan soluble in water and in aqueous acid and alkaline solutions. Carbohydrate Polymers, 2002, 48 : 203-207.
    82. Hiroshi U, Fumio N, Masaaki M, et al. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials, 2001 b, 22 : 2125-2130.
    83. Hiroshi U, Takashi M, Toru F. Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews, 200la, 52: 105-115.
    84. Izume M. Coating of seeds with chitosan oligosaccharides. Jpn Kokai Tokkyo
    
    KohoJP, 63:297-305.
    85. Jach G Gonhardt B, Mundy J, et al. Enhanced quantitative resistance againsi fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J, 1995, 8:97-109.
    86. Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym, 2001, 44: 71-76.
    87. Jia ZS, Shen DF, Xu WL. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research, 2001, 333: 1-6.
    88. Jiang YM, Li YB. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chemistry, 2001, 73: 139-143.
    89. Johannes S, Justin S, Clarence AR. Suramin inhibits initiation of defense signaling by systemin, chitosan, and a p-glucan elicitor in suspension-culyured Lycopersicon peruvianum cells. PNAS, 2000, 97: 8862-8867.
    90. Kauss K, Jeblick W, Domard A. The degrees of polymerization and N-acetilation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta, 1989, 178: 385-392.
    91. Kendra DF, Christian D, Hadwiger LA. Chtosan oligomers from Fusarium solani/pea interactions, chitinase/p-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance[J]. Physiological and Molecular Plant Pathology, 1989, 35: 215-230
    92. Lafontaine PJ, Benhamou N. Chtosan treament: an emerging straegy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. Sp. Radicis-lycopersic[J]i. Biocontrol Sci Technol, 1996, 6: 111-124.
    93. Lee KY; Kwon IC; Kim YH, et. al. Jeong, S.Y.Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 1998, 51:213-220.
    94. Leslie CA, Romani RJ. Inhibition of ethylene biosynthesis by salicylic acid[J]. Plant Physiol, 1988, 88: 833-837.
    95. Lienart Y, Gautier C, Domard A. Isolation from Rubus cell-suspension cultures of a lectin specific for glucosamine oligomers[J]. Planta, 1991, 184:8-13.
    96. Maffi D, Bassi M, Brambilla A, et. al. Possible role of chitosan in the interaction between barley and erysiphe graminis after tetraconazole treatment.
    
    Mycol. Res.. 1998, 102(5) : 599-606.
    97. Malamy J, Carr JP, Klessig DF, et al. Salicylic avid: a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science, 1990, 250: 1002-1004
    98. Martinez N, Giselle MA, Madrid EA, Bottini, R, et. al. Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiology and Biochemistry, 2001, 39:815-823.
    99. Masuta C, Bulcke MVD, Bauw G, et al. Differential effects of elictors on the viability of rice suspension cells. Plant physiol, 1991, 97: 619-629.
    100. Matsuhashi S, Kume T. Enhancement of antimicrobical activity of chitosan by irrdiation. J Sci Food Agric, 1997, 73: 237-241.
    101. Matthew ES, Alexander JE. Salicylic acid induces resistance to alternaria solani in hydroponically grown tomato. Phytopathology, 1999, 89(9) : 722-727.
    102. Mauch F, Hadwiger LA, Boiler T. Antifungal hydrolases in pea tissue. Plant physiol, 1988a, 87:325-333
    103. Mauch F, Hadwiger LA, Boiler T. Ethylene: symptom, not signal for tne induction of chitinase and β-1,3-glucanase in pea pods of pathogens and elicitors[J]. Plant physiol, 1984, 76: 607-611
    104. Mauch F, Mauch-Mani B, boiler T. antifungal hydrolases in pea tissue Ⅱ.inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol, 1988b, 88: 936-942
    105. Metraux JP, Signer H, Ryals J, et al. Increase in salicylic acid at the onset of sistemic acquired resistance in cucumber. Science, 1990, 250: 1004-1006.
    106. Mi FL, Shyu SS, Wu YB, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001,22: 165-173.
    107. Miller GL. Use of dinitrosalicylic acid reagent for determination and biological control of Fusarium in soil. Nature (Lond) 1959, 31:426-428.
    108. Nagib S, Inoue K, Yamaguchi T, et. al. Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy, 1999, 51: 73-85.
    109. Nielsen KK, Jorgensen P, Mikkelsen JD. Antifungal activity of sugar beet
    
    chiinase against Cercospora beticola :an autoradiographic study on cell wall degration. Plant Patho, 1994, 43: 979-986.
    110. No HK, Na YP, Shin HL, et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 2002, 74: 65-72.
    111 .Ohmura YS, Matsunaga KC, Motokawa I, et. al. Protective effects of a protein-bound polysaccharide, PSK, on Candida albicans infection in mice via tumor necrosis factor-a induction. International Immunopharmacology, 2001, 1: 1797-1811.
    112. Oungbho, Kwunchit; Muller, Bernd W Chitosan sponges as sustained release drug carriers. International Journal of Pharmaceutics, 1997, 156: 229-237.
    113. Pospieszny H, Chirkov S, Atabekov J. Induction of antiviral resistance in plants by chitosan. Plant Sci, 1991, 79: 63-68.
    114. Pospieszny H. Antiviroid activity of chitosan. Crop Protection, 1997, 16(2) : 105-106.
    115. Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, et al. Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. Journal of Experimental Botany, 1998, 49: 1729-1739.
    116. Rasmussen PH, Knudsen IMB, Elmholt S, et, al. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils. Applied Soil Ecology, 2002, 19: 91-96.
    117. Reddy MVB, Angers P, Castaigne F, et al. Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria altemata in postharvest tomatoes. J.Am. Soc. Hortic. Sci.2000, 125(6) : 742-747.
    118. Reddy MVB, Arul J, Angers P, et al. Chitosan treatment of wheat seeds induced resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem., 1999,47:1208-1216.
    119. Reissig JL, Strominger JL, and Leloir LP. A modified colorimetric method for estimation of N-acetylamine sugars . J Biol Chem 1955, 27:959-966.
    120. Rejikumar S, Surekha D, Devi S. Hydrolysis of lactose and milk when using a fixed bed reator containing beta-galactosidase covalently bound onto chitosan and cross-linked poly(vinyl alcohol). Food science and techno;ogy, 2001, 36(1) : 91-98.
    121. Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan
    
    against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 2000, 66(1) : 80-86.
    122. Ryder T. Cramer CL, Bell JN, et al. Elicitor rapidly induceds chalcone synthase mRNA in Phaseolus Vulgaris cells at the onset of the phytoalexi defense response[J]. Proc Natl Acad Sci USA, 1984, 81: 5724-5728.
    123. Sahoo PK, Mukherjee SC. Influence of the immunostimulant, chitosan on immune responses of healthy and cortisol-treated rohu (Labeo rohita). Journal of Aquaculture in the Tropics, 1999, 14(3) : 209-215.
    124. Sathiyabama M and Balasubramanian R. Chitosan induces resistance components in Arachis hypogaea against leaf rust caused by Puccinia arachidis Speg. Crop Protection, 1998, 17(4) : 307-313.
    125. Selgel OP. Pathogenesis-related proteins in lima bean leaves infected with tobacco ringspot virus and their distribution within and around local lessions. Plant Cell Report, 1992, 12: 25-31
    126. ShinY. Hanguk Konghakhoechi. 1996, 33(6) : 487-189. (Korean)
    127. Shu XZ, Zhu KJ, Song WH. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics, 2001, 212: 19-28.
    128. Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. International Journal of Pharmaceutics, 2002, 233: 217-225.
    129. Spagna G, Barbagallo RN, Casarini D, et. al. A novel chitosan derivative to immobilize α-L-rhamnopyranosidase from Aspergillus niger for application in beverage technologies. Enzyme and Microbial Technology, 2001,28: 427-438.
    130. Suntomsuk W, Pochanavanich P, Suntornsuk L. Fungal chitosan production on food processing by-products. Process Biochemistry, 2002, 37: 727-729.
    131. Suzuki K, Mikami T, Okawa Y, et al. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res., 1986, 151: 403-408.
    132. Teixeira MA, Patterson WT, Dunn EJ, et al. Assessment of chitosan gels for the controlled release of agrochemicals. Ind Eng Chem Res, 1990(29) : 1205-1209.
    133. Thanou M; Florea BI; Geldof M, et. al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 2002: 153-159.
    134. Tokoro A, Tatewaki N, Suzuki K, et al. Growth-inhibitory effect of
    
    hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharm. Bull, 1988, 36:784-790.
    135. Tokura S, Miuray Y, Johmen M, et. al. Control. Rel. 1994, 28, 235-241.
    136. Uchida Y, Izume M. Ohtakara A. Preparation of chitosan oligomers with purified chitosanase and its application. In: Skja k-Braek, G, Anthonsen, T., Sandford, P. (Eds.), Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. Elsevier, London, 1989, pp. 373-382.
    137. Vander P, Varum KM, Domard A, et al. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol, 1998, 118: 1353-1359.
    138. Vasyukova NI, Zionov'eva SV, Il'inskaya LI, et. al. Modulation of plant resistance to diseases by water-soluble chitosan. Applied Biochemistry Microbiology, 2001, 37:115-122.
    139. Waldmann T, Jeblick W, Kauss H. Induce net Ca2+uptake and callos biosynthesis in suspension-cultured plant cells. Planta, 1988, 173: 88-95.
    140. Xie WM, Xu PX, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett, 2001, 11: 1699-1701.
    141. Xuan TL, Nagasawa N, Matsuhashi S, et. al. Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiation Physics and Chemistry, 2001,61: 171-175.
    142. Xuan TL, Nagasawa N, Matsuhashi S, et. al. Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiation Physics and Chemistry, 2001,61:171-175.
    143. Yano S. Chitosan-containing seed coating for yield enhancement. Jpn Kokai Tokkyo Koho JP, 63:139,102.
    144. Yong DH, Kauss H. Release of calcium from suspension-cultured Glyci. Maxcells by chitosan and polyamines in relation to effects on membrane permeability . Plant Physiol, 1980, 73 : 698-712.
    145. Zhu Q, Eileen AM, Sameer M, et. al. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic Tobacco. Bio/Technology, 1994, 12:807-812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700