静止浅水环境中浮力射流稳定性与混合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对静止环境中几种不同形式的热水浮力射流的表层流动的稳定性和混合特性进行了研究。废热水是很多工业企业(尤其是热电厂)的副产品,通常被直接排放到大的天然水体,也即所谓的“一次性”冷凝系统。近年来国家对废热的排放标准更加严格,设计和建设部门都在采取措施以增加排放口近区的稀释度。要最大限度的利用环境水体的冷却能力,就要对这类排放条件下的温度分布,及相关的水动力学性质进行研究,这些信息同样也是研究热水排放对水体环境乃至水生物影响的基础。因此,对各种形式的热浮力射流,探讨各自的稳定性判据及其混合特性,给出稳定与非稳定条件下热废水的排放规律,不仅具有重要的学术意义,而且对工程实践也具有重要的指导意义,可以为排海、排江工程扩散器的优化设计,扩散器的稀释效果评价,以及环境评价等提供理论依据。
     热水浮力射流是受初始动量和温差浮力共同作用的一种流动,它不同于污水浮力射流,污水浮力射流中初始动量充当的角色要小,并且其混合程度更易受浮力作用的影响,与环境水体的动力作用很大程度上不存在。因此对浮力热水的分析技术不同于污水排放(至少在静止范围内),对其混合特性的研究也不能采用分析污水排放时所采用的简单浮力射流理论,而是要根据热水浮力射流流场各部分的特征,将其分成不同的区域分别进行研究,一般将其分为四个区域:Ⅰ、浮力射流区;Ⅱ、表面碰撞区;Ⅲ、内水跃区;Ⅳ、反向分层流动区;前三个区域属于流动近区,而第四个区域属于远区。在强浮力条件下,射流流体以浮力射流的形式上升到流体表面,并且作成层运动沿水体表面扩散,即所谓的稳定近区;而在浮力较小的条件下,射流流体被流体边界所反射,在有限深环境水体中会与环境水体发生剧烈掺混,破坏成层运动,也即非稳定近区。
     本文的主要工作就是在对已有的稳定性研究成果进行分析和总结的基础上,采用数值计算的手段对平面浮力射流、轴对称浮力射流、水平圆形浮力射流进行模拟和预报,研究在环境水体与射流水体的何种组合下,近区会趋于稳定或非稳定,并确定各自的混合特性。
     本文首先建立了考虑浮力作用的κ-ε双方程湍流模型,采用混合有限分析方法对其进行离散,并编制了相应计算程序。对计算中的一些技术问题作了介绍,如为了
The near field stability and mixing characteristics of buoyant jets produced by thermal diffuse in quiescent shallow water are analyzed. A simple way to dispose of the large quantities of waste heat, resulting from thermal power plants and in the operation of pumped storage hydroelectric plants, is to discharge the heated condenser water through a submerged outfall located at the bottom of estuaries and costal waters, the so-called once-through condenser cooling system. The quite restrictive thermal standards that have been adopted recent years by the governments severely limit the permissible temperature rises and mixing zones around sites of heated water discharge, and have led to the design and construction of large sophisticated structures that enhance the near-field dilution of the effluent. More and more scientific workers are majored in the prediction for the characters of buoyant jets both in stagnant and flowing, confined and unconfined environment. An understanding of the induced excess temperature distribution, in relationship to the hydrodynamic characteristics of the buoyant discharge, and the hydrodynamic reaction between the heat buoyant discharge and the receiving water, is essential for a sound design which utilizes to its fullest the cooling capacity of the ambient water-body to meet the appropriate standards. The information can also provide a basis for an assessment of the aquatic impact of the thermal effluent. So the research on the stability and mixing character of heated buoyant jets has academic and practical meaning. It can predict the diffuse and transportation characteristic of thermal heat, optimize the designing of diffuser, and present theoretic sopport for the environmental evalution.Heated buoyant jets are strongly influenced by the interaction of its inertia forces and the buoyancy. For the sewage jets, however, the role of the momentum flux is minor and its mixing is governed by its buoyancy flux, and the interaction dynamics are largely nonexistent in sewage discharges. So analysis techniques employed to determine the mixing capablity of thermal diffusers (at least in the stagnant range) must be different from the simple buoyant jet theories for sewage diffusers. In such a case, four flow regions of distinct hydrodynamic properties can be discerned: (I) Initial Buoyant Jet Region, in
    which the discharge mixes with the ambient fluid by turbulent entrainment as it rising to the surface; (IT) Surface Impingement Region, within which the buoyant mixed flow is turned into a outward moving supercritical flow; (TTT) Internal Hydraulic Jump Region, transforming the flow into a sub-critical flow region downstream with an abrupt change of upper layer thickness and loss of energy; (IV) Stratified Counter Flow Region, with negligible entrainment across the interface. Anterior three zones are defined as near field and the forth zone is defined as far field. A stable near field is defined as one in which a buoyant surface layer is formed which does not communicate with the initial buoyant jet zone. The near field is defined as unstable whenever the layerd flow structure breaks down in the discharge vicinity, resulting in recirculating zones or mixing over the entire water depth.Based on their achievements of the former researchers, the flow behavior of different types of thermal buoyant jets is studied in this paper, to predict under what combinations of discharge and ambient characteristics the near field will be stable or unstable, and to find stability criterion and mixing characters for different discharging types. Using numerical method, the plane vertical thermal buoyant jet, vertical round buoyant jet and horizontal buoyant jets are numerically analyzed.The buoyancy extended k-e turbulence model and the Hybrid Finite Analytic Method (HFAM) are used to simulate the 2D and 3D thermal buoyant jets. The staggered grid technique is adopted to obtain the correct pressure and velocity at each grid point. At solid surfaces, the wall function is used to relate the values at the first grid points outside the viscous sub layers to the boundary conditions.The characters for the three dimensional thermal buoyant jets in the flowing environment are analyzed experimentally. Using the Micro ADV and temperature measuring system, the velocity field and temperature field of the heated buoyant jets at different cross-to-jet velocity ratios are measured. The test data processed by the professional soft WinADV presented by Sontek Company revealed the characteristics of those mean flow parameters, such as the temperature contours in the symmetry plane, the velocity vector in the symmetry plane, and the trajectory based on the maximal velocity
    and maximal temperature. The turbulent flow parameters such as the relative kinetic energy distribution and the distribution of the relative turbulence intensity are also gave out. Furthermore, the experimental runs are numerically simulated using the buoyancy extended k-s turbulence model, and the calculated distribution of velocity and temperature field, the bifurcation phenomenon, the horse-shoe configuration and the trajectories are all in good agreement with the experiments. Thus the reliability of the methematical model is testified, and it can be used to the simulation of other types of thermal buoyant jets.The discharge stability is purely dependent on the near-field behavior of the jets, or the dynamic interaction of the buoyant jet region, the surface impingement region and the internal hydraulic jump region, and is independent of the far-field geometry of the receiving water. The stability criterion is a function of the relative submerged depth, and source densimetric Froude number. For a given relative submerged depth, the stable domain can be approached by decreasing the densimetric Froude number; All these are well demonstrated by the numerical analysis for the plane buoyant jet, the round vertical buoyant jet and the horizontal buoyant jet with different combinations of discharge and ambient characteristics.The far-field geometry of the receiving medium has a significant influence on the bulk mixing characteristics of the discharge. This is especially important for unstable discharges in which the continuous build-up of species concentrations in the recirculation process is limited by the buoyancy-driven convection in the far-field. Stable discharge configuration is more propitious to the diffusion of waste heat, for the re-entrainment of warm fluid in unstable conditions will decrease the near field dilution.The flowing characteristics and discharge stability for horizontal buoyant jets are numerically analyzed. Its flowing configuration is symmetrical, and no bifurcation phenomena are found. Under the buoyancy effect, the thermal jets rise to the surface and diffused downstream. The water temperature in the surface is significant higher than that in the bottom. At the same relative depth of submergence, the decay rate of temperature in the symmetry plane of horizontal buoyant jets will decrease with the increase of densimetric Froude number; for a given densimetric Froude number, the decay rate of temperature will
    increase with the increase of relative depth of submergence. It's indicted that the diffusion of thermal contamination can be quicken, under the condition of increase relative submergence, decrease discharge velocity, increase the port diameter or increase the temperature difference between the jet and the ambient water.Under stable discharge, the thermal buoyant jets can be diluted rapidly, and the temperature in the near field is high; under unstable discharge, the temperature in the near field is lower, but the influence field download is extended very far. What kind of discharge pattern should be chosen in practical application is decided by the different requirements of ecology and environment. The formula for the minimal surface dilution for horizontal buoyant jet under stable and unstable discharge is given out, and the effects of the densimetric Froude number to the minimal surface dilution is inconspicuousness under unstable discharge. The formula for the location of maximal surface temperature and the maximal surface velocity for horizontal buoyant jet under stable and unstable discharge are given out, which present quantitative criteria for the subdivision of the flow field, and conduce to the realization of the flowing configuration.The comparision of stability criterion with that for vertical round buoyant jet indicates that for the horizontal buoyant jet the surfacr layer becomes unstable at lower densimetric Froude numbers, which result in a horizontal acceleration of the ambient flow. Farther analysis believes that the asymmetrical discharge condition with a horizontal velocity component is more unstable than the symmetric discharge.
引文
[1] S.V帕坦卡.传热与流体流动的数值计算[M],1984,北京,科学出版社
    [2] 陶文铨,数值传热学[M],1988,西安,西安交通大学出版社
    [3] 李炜,槐文信,浮力射流的理论及应用[M],1997,科学出版社
    [4] 董志勇,冲击射流[M],1997,海洋出版社
    [5] 谢春象.湍流射流理论与计算[M],1975,科学出版社
    [6] 赵文谦.环境水力学[M],1986,成都科技大学出版社
    [7] 张书农,环境水力学[M],1988,河海大学出版社
    [8] 李炜,环境水力学进展[M],1999,武汉水利电力大学出版社
    [9] 余常昭,环境流体力学导论[M],1992,清华大学出版社
    [10] 余常昭,紊动射流[M],1987,高等教育出版社
    [11] 平浚,射流理论基础及应用[M],1995,宇航出版社
    [12] 李炜,粘性流体的混合有限分析法[M],2000,科学出版社
    [13] 黄铭荣,胡纪萃,水污染治理工程[M],北京,高等教育出版社,1995
    [14] 黄忠秀,船舶与港口水域防污染[M],人民交通出版社,1999
    [15] 蒋展鹏,环境工程学,高等教育出版社[M],1992
    [16] 张东生,徐静琦,王震,环境工程[M],人民交通出版社,1998
    [17] 黄时达,徐小清,鲁生业,三峡工程与环境污染及人群健康[M],科学出版社,1994
    [18] L. Pantzlaff, R. M. Lueptow, Transient positively and negatively buoyant turbulent round jets [J], Experiments in Fluids, 1999, Vol. 27, pp 117-125
    [19] Daniel Goldman and Yogesh Jaluria, Effect of opposing buoyancy on the flow in free and wall jets [J], J. Fluid Mech., 1986, Vo1.166, pp41-56
    [20] Cederwall, K., Buoyant slot jets into stagnant or flowing environments, Technical report KH-R-25, W.M.Keck Lab. For water resources and hydraulics, California Institute of Technology, Pasadena, Calif.
    [21] Jirka, G.H., Turbulent buoyant jets in shallow fluid layers. Ch.43 of turbulent buoyant jets and plumes, W.rodi, ed., Pergamon Press, New York, N.Y., 1982.
    [22] Jirka, G.H., and Harleman, D.R.F, The mechanics of submerged multiport diffusers for buoyant discharges in shallow water, Technical report 169, Ralph. MParsons Laboratory for water resources and hydrodynamics, Massachusetts Insititute of Technology, Cambridge, Mass., 1973.
    [23] Kannberg, L.D., and Davis, L.R., An analysis of deep submerged multiple port buoyant discharges [J], Journal of heat transfer, Transactions, American society of mechanical engineers,Vol.99, 1977, pp648.
    [24] Morton, B., Taylor, G.I., and Turner, J.S., Turbulent gravitational convection from maintained and inatantaneous sources, Proceedings of the royal society A234, 1956,pp1-23.
    [25] Roberts, P.J.W., Dispersion of buoyant waster water discharge from outfall difussers of finite length, Report KH-R-35, W.M.Keck Lab. For water resources and hydraulics, California Institute of Technology, Pasadena, Calif, 1977.
    [26]Rodi, W., Areview of experimental data of uniform density free turbulent boundary layers, Studies in convection, B.E.Launder, ed., Academic Press, New York, N.Y., 1975.
    [27] Schmidt, F.H., On the diffusion of heat jets, Tellus , Vol.9, 1957,pp378-383
    [28]Kamotani Y, Greber I. Experiments on a turbulent jet in a cross wind [J]. J. Fluid Mech., 1972, (15):481-496.
    [29] Kamotani Y, Greber I. Experiments on a turbulent jet in a cross flow [J]. AIAA Journal, 1972, (10):1425-1429.
    [30] Subramanya K, Porey P D, Trajectory of a turbulent cross jet [J]. J. of Hydraulic Research, 1984, (22): 343-354.
    [31] Pratte B D, Baines W D. Profiles of the round turbulent jet in a cross flow [J]. J. of the Hydraulics Div., ASCE, 1967, (93), pp: 53-64.
    [32] Andreopolous J. Rodi W. Experimental investigation of jets in a cross flow [J]. J.Fluid Mech. 1984,(138). pp: 93 -127.
    [33] 黄真理,李玉梁,余常昭. 平面激光诱导荧光技术测量横流中射流浓度场的研究[J].水利学报. 1994, (11), pp:1-7.
    [34] Yu Changzhao, Xiao Zuoting, Zhou Bingliang, Chen Daoyi. Experiment studies of turbulent water jets. Proceedings of the International conference on fluid mechanics. Beijing, 1987. pp 643-648. .
    [35] Sykes R I, Lewellen W S. Parker S F. On the vorticity dynamics of a turbulent jet in a cross flow [J]. J. Fluid Mech. 1986,(168), pp:393-413.
    [36] A.O Demuren. Characteristics of three-dimensional turbulent jets in cross flow [J]. Int.J.Engng Sci. Vol.31, No.6.pp:899-913, 1993.
    [37] 槐文信,李炜,彭文启.横流中单圆孔紊动射流计算与特性分析.水利学报[J].1998 年第4期,pp:7-13.
    [38] YakhotV,OrszagSA. Nomalization group analysis of turbulence basic theory [J].Journal of Scientific Computing, 1986, 1(1): 3-5.
    [39] Chen, Ching Jen. Finite Analytic Method in flows and heat transfer. [M]. New York: Taylor & Francis,2000.
    [40] Ramsey, J.W., Goldstein, R.J., Interaction of a heated jet with a deflecting stream[M]. NASACR 73613, 1972.
    [41] A.O Demuren, Numerical calculations of steady three-dimensional turbulent jets in cross flow[J]. Computer methods in applied methanics and engineering, Vol. 37(1983), pp: 309-328.
    [42] Scorer R. S., The behavior of chimney plumes[J]. Int. J. Air Pollution. 1959, (1), pp: 198-220.
    [43] Turner J.S., Comparison between vortex rings and vortex pairs[J]. J.fluid Mech. 1960, (1), pp: 419-432.
    [44] Albertson, M.L., Dai, Y.B., Jensen, R.A. & Rouse, H. Diffusion of submerged jets. Trans. A.S.C.E. 115, 1950,639-664.
    [45] C.P.Kuang & J.H.W.Lee, A numerical study on the stability of a vertical plane jet in confined depth, Environmental Hydraulics, Lee, Jayawardena & Wang ( eds )(c). 1999, Balkema, Rotterdam, ISBN 90 5800 035 3.
    [46] C.P.Kuang & J.H.W.Lee, Effect of downstream control on stability and mixing of a vertical buoyant jet in confined depth [J], Journal of Hydraulic Research, Vol.39,
     2001,No.4.
    [47] Gerhard H. Jirka, Donald R. F. Harleman, Stability and mixing of a vertical plane buoyant jet in confined depth [J]; J.Fluid Mech (1979), Vol.94.part2, pp275-304.
    [48] Gerhard H. Jirka. Multiport diffusers for heat disposal: a summary [J]. J.Hydraul Div, Proc. ASCE, 1982,Vol.108(12),pp 1425-1486.
    [49] Iamandi, C. & Rouse. H. Hot-induced circulation and diffusion [J], J. Hydraul Div., Proc. A.S.C.E.95 (HY2), 1969,589-601.
    [50] Jannis Andreopoulos, et al. Experiments on vertical plane buoyant jets in shallow water [J]; J.FluidMech. (1986), vol.168.pp305-336.
    [51] Murota, A. & Muraoka, K. Turbulent diffusion of a vertically upward jet. Proc. 12th Cong. I.A.H.R., Water resource publications, Colorado, 1967,Vol.4,pp.60-70.
    [52] Pan, F. & Acrivos, A. Steady flows in rectangular cavities [J]. J. Fluid Mech. 1967, 28,643-655.
    [53] Asterios Pantokratoras. Effect of ambient temperature on vertical turbulent buoyant water jet [J]. International Journal of Heat and Mass Transfer. 2001, Vol.44, ppl889-1898.
    [54] Lee, J. H. W., and Jirka, G H., Vertical Round Buoyant Jet in Shallow Water [J]. J.Hyd., Div, ASCE, 1981,Vol. 107(12), pp: 1651-1675.
    [55] Rawn, A.M., and Plmaer , H.K. Predetermining the extent of a sewage field in seawater[J]. Transactions, ASCE, 1930, Vol.94,pp: 201-210.
    [56]Hening Huang, Robert E. Fergen, John R. Proni, etc. Initial dilution equations for buoyancy-dominated jets in currents [J]. Journal of Hydraulic engineering, 1998, Vol.124(1),pp:105-108.
    [57] Pantokratoras .A, Horizontal penetration of inclined thermal buoyant water jets [J]. Int. Comm. Heat mass transfer, 1998,vol 25(4), pp:561-569.
    [58] Balasubramanian. V, Subhash Jain. C, Horizontal buoyant jets in quiescent shallow water [J]. J. of the environmental engineering division, ASCE, 1978, vol. 104(4), pp:717-729.
    [59] Rodi, W., Turbulent models and their applications in hydraulics [M]. A state of the Art
     Review, SFB 80/T/127, 1978.
    [60] Yakhot V, Orszag SA. Nomalization group analysis of turbulence basic theory [J]. Journal of Scientific Computing, 1986, 1(1): 3-5.
    [61] Chen, C.Q., Lee, J.H.W.. Advected turbulent line thermal driven by concentration difference [A], in: Communications in nonlinear science and numerical simulation. Elsevier Science B.V, 7(2002), pp: 175-195.
    [62] Jain, S. C., Preliminary Report—thermal hydraulic model study of offshore discharge system of Kahe Power Plant, IIHR Limited Distribution Report No.38, Iowa Institute of Hydraulic Research, the University of Iowa, Iowa City, Iowa, Jan., 1969.
    [63] 槐文信,静止浅水环境中水平圆形浮力射流稳定性的数值研究,水动力学研究与进展,Vol.17(1),2002,pp40-45.
    [64] Huai wenxin, Y. Peter Sheng, T. Komatsu, Hybrid finite analytic solutions of shallow water circulation[J], Applied mathematics and mechanics, 2003, vol.24(9), pp:1081-1088.
    [65] Zeng yuhong, Huai wenxin, Numerical study on the stability and mixing of vertical round buoyant jet in shallow water[J]. Applied mathematics and mechanics, 2005.No.1.
    [66] 曾玉红,槐文信.静止环境中垂直平面浮力射流稳定性与混合特性数值研究[J],水利学报,2004(9),pp:56-62.
    [67] Zeng yuhong, Huai wenxin, Numerical study on the stability and mixing of vertical round buoyant jet in shallow water[J], Applied mathematics and mechanics, 2005.No. 1, 2005.1.
    [68] Bosanquet, C & Pearson, J. L, The spread of smoke and gases from chimneys, Trans. Faraday Soc., 1936, Vol.6. pp 32-1249
    [69] Priestley, C. H. B., A working theory of the bent-over plume of hot gas, Quart. J.Soc, 1956, Vol.82, ppl-7
    [70] Laikhtman, D.L ,1961, Physics of the boundary layer of the atmosphere, GIMIZ Gridrometeorol, Vol 189, pp33-51
    [71] 槐文信,李炜,静止环境中倾斜浮力射流,武汉水利电力学院学报,1991,Vol.24, No.5, pp489-494
    [72]Palley, A. T, etal, Similarity solution for plane and radial jets using a k-s turbulent model, Trans ASCE. J. of Fluid Engineering, 1985, Vol.107, pp79-85
    [73]Madni, I. K & Pletcher, R. H., Prediction of turbulent Force Plumes Issuing Vertically into Stratified or Uniform Ambient, J. of Heat Trasfer, 1986, Vol.132, pp847-873
    [74] Lauder, B. E, Progress in the modeling of turbulent transport, Lecture Series 78, VonKarman Institute, Brussels, 1975
    [75] Chen, C, J & Rodi W., A mathematical model for stratified turbulent flow and its application to buoyant jets, 16th IAHR Congress San Paulo, Brazil, 1975
    [76] Salventti. M.V Zang, Y. Street, R. L., Large-eddy simulation of free-surface decaying turbulent with dynamic sub grid-scale models, Phys Fluid, 1997, Vol.9, pp2405-2419
    [77]Hegge Zijnen, B. G, Measurement of the velocity distribution in a plane turbulent jet of air, Appl. Sci. Res., Section A, 1958, Vol.7, pp256-276
    [78]Hegge Zijnen, B. G, Measurement of the distribution of heat and matter in a plane turbulent jet of air, Appl. Sci. Res., Section A, 1958, Vol.7, pp277-292
    [79]Hegge Zijnen, B. G, Measurement of turbulent in a plane jet of air by the diffusion method and by the hot-wire method, Appl. Sci. Res., Section A, 1958, Vol.7, pp293-313
    [80] Rodi, W., A New method of analyzing hot-wires signals in highly turbulent flow, Experiment in fluids, 1975, Vol.97, pp 139-150
    [81]Hewett, T. A, Fay, J.A & Hoult, D. P, Laboratory experiments of smoke stack plumes in a stable atmosphere, Atoms. Environ, 1971, Vol.59, pp755-767
    [82] Rouse H., Yih C. S. and Humphreys H. W., Gravitational convection from a boundary source, Tells, 1952, Vol4, pp201-210
    [83] Chen C. J, W. Rodi, Vertical turbulent buoyant jets, A review of experimental data, London/New York, Pergamon 1980
    [84]Ramaprian B. R. and Chandrasehara M. A., Study of vertical plane turbulent jets and plumes, IAHR Report, NO.257, The University of Iowa, 1983
    [85] Lee H. W. and Cheng W. L., Inclined plane of buoyant jet in stratified fluid, J. Hydra.
     Eng., ASCE, 1986, Vol.112, pp580-589
    [86] Kotsovinos, N. E., A study of the entrainment and turbulence in a plane buoyant jet, Ph.D. thesis, CIT, P academe, California, 1975
    [87] Harris, P. R., The densmetric flows caused by the discharge of heated two-dimension jets beneath a free surface, Ph.D. thesis, University of Bristol. Department of Civil Eng. 1967
    [88] Turner, J. S., Buoyant plumes and thermals, Ann. Rev. Fluid Mech., 1969, pp1-29
    [89] Wright, S. J. and R. B. Wallace, Two-dimensional buoyant jets in stratified, Proc. ASCE, J. Hydr. Div. 1979, Vol.105, pp393-1406
    [90] Michael Shusser & Morteza Gharib, A Model for vortex ring formation in a starting buoyant plume, J. Fluid Mech., 2000, Vol.416, pp173-185.
    [91] Wallace, R. B and B. B. Sheff, Two-dimensional buoyant jets in two-layer ambient fluid, Proc. ASCE, J. Hydr. Eng., 1984, Vol. 113, pp992-1005
    [92] 槐文信,静止环境中的射流、卷流和浮力射流,武汉水利电力学院博士论文,1991
    [93] Huai wenxin and Li wei, Similarity Solutions of round jets and plumes, Applied Mathematics and Mechanics, English Edition, 1993, Vol.14, No.7, pp649-658
    [94] Fukushima, Y., Analysis of inclined wall plume by turbulent model, Pro. of Japan Society of Civil Engineers, 1988, Vol. 168, pp65-74
    [95] Fukushima, Y., Similarity solution of plane and jets using k-ε turbulent model, Pro. of Japan Society of Civil Engineers, 1989, Vol.339, pp147-154
    [96] W. Li and W. X. Huai, Calculation of whole field for buoyant jet in static environment, Int. Sym. on Envir, Hydr. H.K. Rotterdam.1:, 1991, pp85-89
    [97] W. Li and W. X. Huai, Numerical simulations of whole field behavior for round buoyant jet, J. Hydrodynamics, Ser.B, 1994, Vol.6, No.1, pp43-49
    [98] 李炜,槐文信,平面射流和浮力射流的数学模型及其计算方法,水动力学研究与进展,1989,Vol.4,No.4,pp41-50
    [99] 李炜,槐文信,湍浮力射流形成后区特性的预报,水动力学研究与进展,Ser.A,1991,Vol.6,No.1,pp10-16
    [100] Pratte B. D & Baines W. D., Profiles of the round turbulent jet in a cross flow, J. Hydraulic Div., ASCE, HY, 1967, pp6-53
    [101] Scorer R. S., Natural aerodynamics, Ellis Harwood, chi Chester, 1958,
    [102] J. F. Keffer, and W. D. Baines, The round turbulent jet in a cross wind, J. Fluid Mech., 1963, Vol.15, No.4, pp481-496
    [103] Chu V. H. and M. B. Goldberg, Buoyant forced-plumes in cross flow, Proc. ASCE, J. Hyd. Div., 1974, Vo1.100, pp1203-1214
    [104] Moore C. J., Physical aspects of plume models. Air & Water Pollution, 1966, Vol. 10, pp411-417
    [105] D. Crabb, D. F. G.Durao and J. H. Whitelaw, A round jet normal to a cross flow, ASME, J. Fluids Eng., 1981, Vol.103, pp142-153
    [106] G. Bergeles, A. D. Gosman, B. E. Launder, The near-field character of a jet discharged normal to a main stream, Journal of Heat Transfer, 1976, pp373-378
    [107] Z.M. Moussa, John W. Trischka, and S. Eskinazi, The near field in the mixing of a round jet with a cross-stream, J. Fluid Mech., 1977, Vol.80, pp49-80
    [108] Andreopoulos, J., On the structure of jets in a cross flow, J. Fluid. Mech., 1985, Vo1.157, pp163-197
    [109] Qi, Meilan, Fu, Renshou, and Chen Zhicong, Computations for plane turbulent impinging jet in cross flow, J. of Hydrodynamics, Ser.B, 1999, Vol.4, pp23-37
    [110] 张晓元,槐文信,李炜,多孔平面射流混合区流动的数值计算,应用基础与工程科学学报,1994,Vol.2,pp382-387
    [111] 张晓元,横流流动环境下的湍浮力射流,武汉水利电力大学博士论文,1997
    [112] Wenxin Huai, Toshimitsu Komatsu, Wei Li, Hybrid finite analytic solutions for turbulent jets in cross-flow, IAHR, 1999, pp2060-2069
    [113] 韩会玲,横流中线源型浮力射流的数值预报,武汉水利电力大学博士论文,1998
    [114] D. G. Kim and IL Won Seo, Modeling the mixing of heated water discharge from a submerged multi-port diffuser, J. of Hydraulic Research, 2000, Vol.38, pp259-269
    [115] J.S. Turner, Jets and plumes with negative or reversing buoyancy, J. Fluid Mech. 1966, Vol.26, pp779-792
    [116] Hua Zhang and Raouf E. Baddour, Maximum penetration of vertical round dense jets at small and large Froude numbers, Journal of Engineering Mechanics, 1998, Vol.124, No.5, pp550-553
    [117] Philip J. W. Roberts, G Toms, Inclined dense jets in flowing current, Journal of Hydraulic Engineering, 1987, Vol.113, No.3, pp323-340
    [118] Wesley P. James, Ignacio Vergara, Ken Kim, Dilution of a dense vertical jet, Journal of Environmental Engineering, 1984, Vol.109, No.6, pp1273-1283
    [119] Philip J. W. Roberts, Adrian Ferrier, and Greg Daniero, Mixing in inclined dense jet, Journal of Hydraulic Engineering, 1997, Vol.123, No.8, pp693-699
    [120] Zeitoun, M. A., et al, Conceptual Designs of Outfall Systems for Desalting Plants, Research and Development Progress Report No.550, Office of Saline Water, U.S. Dept. of Interior, Washington, D. C. May, 1970
    [121] Jochen Donat & Michael Schatzmann, Wind tunnel experiment of single-phase heavy gas jets released under barious angles into turbulent cross flows, Journal of Wind Engineering and Industrial Aerodynamics, 1999, Vol.83, pp361-370
    [122] R. A. Seban, M. M. Behnia and K. E. Abreu, Temperatures in a heated air jet discharged downward, J. of Hydraulic Research, 1978, pp1453-1458
    [123] Asterios Pantokratoras, Vertical penetration of inclined heated water jets discharged downward, Journal of Environmental Engineering April, 1999, pp389-393
    [124] Asterious Pantokratoras, Vertical penetration of Duble-Diffusive Water Plumes Discharged Vertically Downward, Journal of Environmental Engineering July, 2003, pp541-545
    [125] W. D. Baines, J. S. Turner and L. H. Campbell, Turbulent fountains in an open chamber, J. fluid Mech. 1990, Vol.212, pp557-592
    [126] R. A. Seban, M. M. Behnia, K. E. Abreu, Temperatures in a heated air jet discharged downward, Int. J. Heat Mass Transfer, 1987, Vol.21, pp1453-1458
    [127] F. Corriveau, W. D. Baines, A pH indicator technique for measurement of concentration during mixing in a container by a negative buoyant jet, J. Hydraulic Research, 1994, Vol.32, pp291-302
    [128] Campbell Ⅰ. H. and Turner, J. S., Fountains in magma chambers, J. Petrology, 1989, Vol.30, pp885-923
    [129] Zeitoun M. A., Reid R. O., McHilhenny W. F., and Mitchell T. M., Model studies of outfall systems for desalination plants. Part Ⅲ, Numerical simulations and design considerations. Res. and Devel., Progress Rep., No. 804, Office of Saline Water, U. S. Dept. of Interior Washington, D.C., 1972
    [130] Chu V. H. Turbulent dense plumes in laminar cross flow, J. Hydraulic Res., 1975, Vol. 13, pp263-279
    [131] Chen C. J. and Nikitopoulos, On the near field characteristics of ax symmetric turbulent buoyant jets in a uniform environment, International Journal of Heat and Mass Transfer, 1979, Vol.22, pp1-10
    [132] Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and brooks, N. H., Mixing in inland and coastal waters. Academic, New York, 1979
    [133] 格拉夫,阿廷拉卡,河川水力学,(赵文谦,万兆惠译),成都科技大学出版社,1997,pp379-401
    [134] 陈景仁,湍流模型及有限分析法[M],1991,上海交通大学出版社
    [135] 陈矛章,粘性流体动力学理论及紊流工程计算[M],1986,北京航空学院出版社
    [136] 金忠青,N-S方程的数值解和紊流模型[M],1987,河海大学出版社
    [137] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation and Mc Graw Hill Book Company, 1980
    [138] 窦国仁,紊流力学[M],1980,人民教育出版社
    [139] Sohn, J. L, Evaluation of FIDAP on some classical laminar and turbulent benchmarks, Int. J. Numer Methods in Fluids, 1988, Vol.8, pp1469-1490
    [140] Patankar, S. V & Spalding D. B, A calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Tran 1972, Vo1.15, pp1787-1792
    [141] Perry, A. E & Flarile B. D., Critical points in flow pattern, Adv. GeoPhys, 1974, Vol.18, pp299-306
    [142] Smith, J. H. B., A Review of separation in steady Three-dimensional flow, AGARD Conf.Proc., 1984, pp31-47
    [143] Lighthill M. J., Laminar boundary layers, Oxford, 1963, Vol.Ⅱ
    [144] 周雪漪,计算水力学[M],1995,北京,清华大学出版社
    [145] 郭振仁,污水排放工程水力学[M],2001,科学出版社
    [146] 李爱华,横流环境中二维铅垂纯射流的实验研究及数值模拟,武汉大学硕士论文,2003
    [147] 盛森芝,徐月亭,袁辉靖,日新月异的现代流动测量技术[M],1999,北京大学特赛流动测量研究中心
    [148] P. Yannopoulos and G. Noutsopoulos, The plane vertical turbulent buoyant jet, J. of Hydraulic Research, 1990, Vol.28, No.5, pp565-580
    [149] 梁书秀,沈永明,孙昭晨,倪浩清,潮汐水域中污水侧排放的数值模拟,海洋学报,2000,Vol.22,No.2,pp113-119
    [150] 李福田,倪浩清,工程湍流模式的研究开发及应用,水利学报,2001,Vol.3,pp22-31
    [151] Gerhard H. Jirka and Robert L. Doneker, Hydrodyanmic classification of submerged single-port discharges, J. of Hydraulic Engineering, ASCE, 1991, Vol. 117, No.9, pp1095-1128
    [152] Nikolase E. Kotsovinos and E. J. List, Plane turbulent buoyant jets, J. Fluid Mech., 1977, Vol.81, pp25-62
    [153] Frederic Dias and Jean-Marc Vanden-Broeck, Open channel flows with submerged obstructions, J. Fluid Mech., 1989, Vol.206, pp155-170
    [154] Ashok K, Rodi W. Prediction of heat and mass transfer in open channels, J. of the Hydraulics Div., ASCE, 1978, Vol.104, No.3, pp397-420
    [155] McGuirk J. J., Spalding D. B., Mathematical modeling of thermal pollution in fiver, Mechanical Eng. Dep., Imperial College of Science and Technology, 1975
    [156] McGuirk J. J., Prediction of turbulent buoyant jets in a co-flowing stream, dissertation, Uni. of London, 1975
    [157] 槐文信,同流热污水排放的三维数学模型及计算方法,武汉水利电力大学学 1997,Vol.30,No.4,pp1-5
    [158] Wei Li and Wenxin Huai, Calculation of whole field for vertical round buoyant jets in static linearly stratified environment, J. of Hydraulic Research, 1995, Vol.33, No.6, pp865-876
    [159] Paully A. T. et al, Similarity solution for plane and radial jets using a k-ε turbulence model, Trans, ASME, J. of Fluid Engineering, 1985, Vol. 107, pp-79-85
    [160] 吴江航,韩庆书,计算流体力学的理论、方法及应用[M],1988,科学出版社
    [161] 吴望一,流体力学[M],1983,北京,北京大学出版社
    [162] 刘顺隆,郑群,计算流体力学[M],1998,哈尔滨工程大学出版
    [163] 王蜀南,曾道先,环境水利[M],1989,水利电力出版社
    [164] 陈景仁,流体力学及传热学[M],1984,国防工业出版社
    [165] 梁在潮,紊流力学,1988,河南科学技术出版社
    [166] 杨中华,负浮力射流特性的研究,武汉大学博士论文,2004.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700