抗双翅目Bt杀虫基因GFMcry11B的人工合成、原核表达及植物转基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘿蚊是我国华南稻区近年来危害越来越严重的水稻双翅目害虫,它属钻蛀害虫,繁殖速度快,化学杀虫剂防治难度较大,并且污染环境。目前常规育种由于受到种质资源稀少和稻瘿蚊生物型发展的限制,还未很好的解决其抗性问题。利用基因工程技术把具有杀稻瘿蚊活性的Bt杀虫晶体蛋白基因转入水稻,培育抗稻瘿蚊水稻新品种成为控制其危害的一条全新途径。
     大量的研究表明,将野生型Bt基因直接转入到水稻中后,在水稻中表达量很低甚至不表达,而不具有抗虫育种的实际效果。本研究有目的的利用水稻的偏好密码子对原始Bt基因密码子进行了优化,调整并去除会影响mRNA稳定的序列元件,以期获得高抗双翅目并适合于在水稻中高效表达的新基因,为抗双翅目昆虫的植物基因工程的开展打下基础。其主要工作结果如下:
     1.设计并人工合成Bt GFMcryllB杀虫基因。在保证野生型基因氨基酸序列不变的前提下,用水稻的偏好密码子对核苷酸序列进行优化,去掉了原有基因的44处PPSS信号序列、1处内含子切割序列和4处ATTTA序列,AT富集区(≥4个A/T)也由野生型的66处减少到改造后的16处。使G+C含量由原来的32.96%提高到49.43%,达到了植物基因的GC含量水平。改造后的基因与天然的cryllBal基因保持了74%的核苷酸序列同源性,总共修改了725个密码子中的477个,改变幅度达到65.8%。用连续延伸PCR法扩增出了全长的基因,克隆到通用载体pBluescriptⅡSK上,测序结果和预期设计的序列完全一致。
     2.构建了该杀虫基因的原核表达载体pGC,在E.coli中获得了高效表达的融合蛋白,并利用亲和层析的方法成功地对其进行了纯化,纯化的蛋白大小与预期一致。
     3.完成了双子叶植物表达载体pCSCH的构建,用于烟草的转化。
     4.利用纯化的目的蛋白进行兔免疫,得到相应的多克隆抗体,经间接ELISA法检测其效价为1:8000,可以用于转基因植物的ELISA法检测。
     5.获得了转GFMcryllB基因的烟草,并对其进行了分子水平和蛋白水平的检测。结果表明,合成的基因已经整合到烟草的基因组中,转基因植株所表达Bt蛋白含量占烟草叶片中可溶性总蛋白含量的0.001%~0.21%。
Rice gall midge (Orseclia oryzae) is an important pest of rice(Oryza saliva L.) in Asia. The larva bores into a rice tiller and eats away its host from the inside.Infestation in a field of susceptible variety can result in complete yield loss. Controlling this pest is very difficult by chemical pesticide and easy to cause environmental pollution. Planting resistant varieties has been considered as the most effective measure for protection against this pest. The practice of regular breeding has not significantly solving the problem of insect-resistance due to lack of germplast resource and limitation of biotype developing. The application of dipteran-specific Bt toxin proteins by means of the technique of genetic engineering in transgenic rice plants provides a new way of controlling this pests.
    Poor expression in plants is a well-reported characteristic of wild type Bt insect control proteins results in unsuccessfully commercial use. To increase expression of Bt genes and obtain insect resistance against dipteran-insect hi plants, codon usage of wild type Bt genes is optimized and modified according to plant preferred codons and instability sequence elements is regulated or removed purposefully for efficient plant expression. The main results are summarized as follows:
    1. GFMcryllB insecticidal protein gene was designed and synthesized. Modifications and optimization in nucleotide sequence of cryllBal gene did not alter the amino acid sequence of the CryllBal protein. 44 of potential polyadneylylation signal sequence, one of intron cleavage sequence and 4 of ATTTA sequence were removed entirely. A+T rich regions (>4 of consecutive A/T) were decreased from 66 to 16 during GFMcryllB designed. In comparison with the wild type cryllBal gene, the ratio of GC content was increased from 32.96% of the wild type to 49.43% of the synthetic gene, a ratio more close to that of most plant genes. There are 65.8% of codons in wild type gene not suitable for expression in plant were modified to plant favorable condons without amino acid change. The synthesized GFMcryllB Bt gene using successive PCR was cloned into pBluescript IISK vector. Results of sequencing for recombinant plasmid were correct completely.
    2. Prokaryotic fusion gene expression vector, pGC, was constructed. A high level of expression of fusion protein in E.coli was detected after IPTG induction and purified proteins were obtained by affinity chromatography with Glutathione Sepharose4B.
    
    
    3. The purified GFMCryllB proteins were mixed with Freund's complete or incomplete adjuvant as antigen to immune rabbits. ELISA assay revealed that the titer of the prepared antiserum against GFMCryllB protein was as high as 1:8000. Purified IgG labeled with Alkaline Phosphatase by glutaraldehyde one-step method was used as enzyme-linked immunosorbent assay to detect content and level of GFMcryllB gene expression in transgenic plants.
    4. Synthesized GFMcryllB gene was cloned into plant expression vector. Recombinant plant expression vector was transferred into tobacco (Nicotiana tabacum L.) plant via Agrobacterium-mediated transformation of tobacco leaf disks.
    5. Integration and expression of foreign gene were detected in a number of transgenic tobacco plants by southern blot analysis and ELISA analysis. The results indicated that synthesized GFMcryllB gene was integrated into tobacco genome, expression level of the modified Bt gene reached 0.001%-0.21% of overall soluble proteins.
引文
1. 王关林,方宏筠.植物基因工程.北京:科学出版社.2002
    2. 王志斌,李学勇,郭三堆等.植物凝集素与抗虫基因工程.生物技术通报.1998,2:5~10
    3. 王忠华,舒庆尧,崔海瑞等.Bt杀虫基因与Bt转基因抗虫植物研究进展.植物学通报.1999,16(1):51~58
    4. 田颖川,秦晓峰,许丙寅等.表达苏云金杆菌δ-内毒素基因的转基因烟草的抗虫性.生物工程学报.1991,7(1):1~10
    5. 朱祯.高效抗虫转基因水稻的研究与开发,中国科学院院刊.2001,(5):353~357
    6. 张志涛.中国稻作虫害,中国水稻(熊振民,蔡洪法主编).中国农业科技出版社.1992,130~149
    7. 张雅丽,杨国庆,郭英等.密码子优化的牛精蛋白基因在大肠杆菌中的表达.高技术通讯.2002,2(4):42~46
    8. 郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学.1995,28(5):8~13
    9. 郭三堆,倪万潮,徐琼芳.编码杀虫蛋白质融合基因和表达载体及其应用.专利号:ZL编码杀虫蛋白质融合基因和表达载体及其应用.95119563.8,C12N 15/32
    10. 赵荣敏,范云六,石西平等.获得高抗虫转双基因烟草.生物工程学报.1995,11(1):1~5
    11. 袁志明,张用梅.含二元毒素基因的苏云金杆菌重组子晶体蛋白分析及其对蚊幼虫的毒性.微生物学杂志.1999,19(1):1~5
    12. 莫禹诗,吕培均,黄汉杰.广东省稻瘿蚊的发生和综合防治研究.植物保护学报.1990,17(2):149~153
    13. 喻子牛.苏云金杆菌.北京:科学出版社.1997
    14. 曾千春,吴茜,周开达等.修饰的cryl Ac基因导入籼稻明恢81获得抗虫纯合系.遗传学报.2002,29(6):519~524
    15. 谢道昕,范云六,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学(B辑).1991,8:830~834
    16. Adang M L, Staver M J, Rockelean T A, et al. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp kurstaki-73 and their toxicity to manduca sexta. Gene. 1985, 36: 289~300
    17. Allen G C, Hall G E. Childs L C, et al. Scaffold Attachment Regions Increase Reporter Gene Expression in Stably Transformed Plant Cells. Plant Cell. 1993, 5: 603~613
    18. Aronson A I, Han E S, McGaughey W, et al. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl Environ Microbiol. 1991, 57(4): 981~986
    19. Barton K A, Whiteley H R, Ying N S. Bacillus thuringiensisδ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidepteran insects. Plant physiology. 1987,85: 1103~1109
    20. Berliner E. Uber die schlaffsuchtr der mehlmottenraupe. (Ephestia kuehniella zell),und ihren erreger Bacillus thuringiensis n. sp.. Zeitschrift fur Angewandte Entomologie. 1915, (2): 29~56
    21. Breyne P, Van Montagu M, Depicker A, et al. Characterization of a Plant Scaffold Attachment Region in a DNA Fragment That Normalizes Transgene Expression in Tobacco. Plant Cell.1992,4: 463~471
    22. Callis J, Fromm M, Walbot V. Introns increase gene expression in cultured maize cells. Genes Devel, 1987,1: 1183~1200
    
    
    23. Cao J, Tang J D, Strizhov N, et al. Transgenic broccoli with high levels of Bacillus thuringiensis cry1C protein control diamondback moth larvae resistance to cry1A or cry1C. Mol Breed.1999, 5: 131~141
    24. Charles J F, Nielsen-Leroux C, Delecluse A. Bacillus sphaericus toxin: molecular biology and mode of action. Ann Rev Entomol.1996,41: 451~472
    25. Chestukhina G G, Kostina L I, Mikhailova A L. et al. The main features of Bacillus thuringiensis δ-endotoxin molecular structure. Arch Microbiol. 1982,132: 159~162
    26. Chilcott C N, Wigley P J, Broadwell A H, et al. Activities of Bacillus thuringiensis insecticidal crystal proteins Cyt1Aa and Cyt2Aa against three species of sheep blowfly. Appl Environ Microbiol. 1998, 64(10): 4060~4061
    27. Choma C T, Surewicz W K. Carey P R. et al. Secondary structure of the entomocidal toxin from Bacillus thuringiensis subsp. kurstaki HD-73. J Protein Chem. 1990, 9(1): 87~94
    28. Chow E, Singh G J P, Gill S S. Binding and aggregation of the 25-kilodalton toxin of Bacillus thuringiensis subsp, israelensis to cell membranes and alteration by monoclonal antibodies and amino acid modifiers. Appl Environ Microbiol. 1989. 55(11): 2779~2788
    29. Climie S. Santi D V. Chemical synthesis of the thymidylate synthase gene. Proc Natl Acad Sci USA. 1990, 87(2): 633~637
    30. Crickmore N, Zeigler D R, Feitelson J, et al. Program and abstracts of the 28th annual meeting of the society for invertebrate pathology Society for Invertebrate Pathology. 1995
    31. Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62(3): 807~813
    32. Crickmore N. Zeigler D R, Schnepf E, et al. http://epunix.biols.susx.ac.uk/Home/Neil_ Crick more/Bt/index.html
    33. Debabov V G. Azizbekian R R, Khlebalina O I, et al. Isolation and preliminary characteristics of the extra chromosomal elements of Bacillus thuringiensis DNA. Genetika. 1977, 13(3): 496~501
    34. de Barjac H. Bonnefoi A. A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol. 1968, 11(3): 335~347
    35. de Barjac H, Frachon E. Classification of Bacillus thuringiensis strains. Entomophaga.1990, 35(2): 233~240
    36. Delecluse A, Rosso M L, Ragni A. Cloning and espression of a novel toxin gene from Bacillus thuringiensis subsp. Jegathesan encoding a highly mosquitocidal protein. Appl Environ Microbiol. 1995,61(12): 4230~4235
    37. de Maagd RA. Bosch D. Stiekema W. Toxin-mediated insect resistance in plants. Trends Plant Sci.1999, 4(1): 9~13
    38. Dulmage H T. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis. J Invertebr Pathol. 1970,(015): 232~239
    39. Federict B A. Bauer L S. Cyt1Aa protein of Bacillus thuringiensis is toxic to the Cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol. 1998, 64(11): 4368~4371
    40. Fischhoff D A, Bowdish K S, Perlak F J, et al. Insect tolerant transgenic tomato plants. Bio/Technology. 1987, 5: 807~813
    41. Frangioni J V, Neel B G. Solubilization and purification of enzymatically active glutathione S-transferase(pGEX) fusion proteins. Anal Biochem. 1993, 210(1): 179~187
    42. Frutos R, Rang C, Royer M. Managing insect resistance to plants producing Bacillus
    
    thuringiensis toxins. Critical Reviews in Biotechnology. 1999,19(3): 227~276
    43. Galushka F P, Azizbekian R R. Investigation of plasmids different variants of Bacillus thuringiensis. Dokl Akad Nauk(USSR). 1977, 236: 1233~1235
    44. Goldberg L J, Margalit J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranstaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens.Mosquito News. 1977, 37: 355~358
    45. Goldman E, Rosenberg AH, Zubay G, et al. Consecutive low-usage leucine codons block translation only when near the 5' end of a message in Escherichia coli. J Mol Biol. 1995,245(5): 467~473
    46. Gonzalez J M Jr. Brown B J, Carlton B C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA. 1982,79(22): 6951~6955
    47. Grochulski P, Masson L, Borisova S, et al. Bacillus thuringiensis Cry1A(a) insecticidal toxin:crystal structure and channel formation. J Mol Biol 1995, 254(3): 447~464
    48. GST Gene Fusion System. (Third edition, Revision 2).Amersham Pharmacia biotech.
    49. Hannay C L. Crystalline inclusions in aerobic spore-forming bacteria. Nature. 1953, 172: 1004
    50. Hannay C L, Fitz-James P C. The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol. 1955, (1): 694~710
    51. Haseloff J, Siemering K R, Prasher D C, et al. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA. 1997, 94: 2122~2127
    52. Hofmann C, Vanderbruggen H, Hfte H, et al. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci USA. 1988, 85(21): 7844~7848
    53. Hofmann C, Luthy P. Binding and activity of Bacillus thuringiensis δ-endotoxin to invertebrate cells. Arch Microbiol. 1986,146(1): 7~11
    54. Hofmann C, Luthy P, Hutter R, et al. Binding of the δ-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly(Pieris brassicae). Eur J Biochem.1988,173(1): 85~91
    55. Hfte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev.1989, 53: 242~255
    56. Ihara H, Kuroda E, Wadano A, et al. Specific toxicity ofδ-endotoxin from Bacillus thuringiensis to Bombyx mori. Biosci Biotechnol Biochem. 1993, 57: 200~204
    57. Ishiwata S, Dainihon Sanshi Kaiho(Rep. Sericult. Assoc. Jpn.)1905,160: 1~8
    58. Johnston K A, Lee M J, Brough V A, et al. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes. Insect Biochem Mol Biol. 1995, 25: 375~383
    59. Kota M, Daniell H, Varma S, et al. Overexpression of the Bacillus thuringiensis(Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects.Proc Natl Acad Sci USA. 1999, 96(5): 1840~1845
    60. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989, 108(2): 229~241
    61. Koziel M G, Carozzi N B, Desai N, et al. Optimizing expression of transgene with an emphasis on post-transcriptional events. Plant Mol Biol, 1996, 32: 393~405
    62. Kronstad J M, Schnepf H E, Whiteley H R. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol. 1983,154: 419~428
    
    
    63. Lecadet M-M, Dedonder R. Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae. Ⅰ. Preparation and fractionation of the lysates. J Invertebr Pathol.1967, 9: 310~321
    64. Lecadet M M, Frachon E, Dumanoir V C, et al. Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 1999, 86(4): 660~672
    65. Li J, Carroll J, Ellar D J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 resolution. Nature 1991, 353(6347): 815~821
    66. Li J, Koni P A, Ellar D J. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 1996, 257(1): 129~152
    67. Losey JE, Rayor LS. Carter ME. Transgenic pollen harms monarch larvae. Nature, 1999,399: 214
    68. Mascerenhas D, Mettler I J, Pierce D A, et al. Intron mediated enhancement of heterologous gene expression in maize. Plant Mol Biol,1990,15: 913~920
    69. McBride K E, Svab Z, Schaaf D J, et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco.Bio/technol. 1995,13: 362~365
    70. Mcelroy D, Zhang W. Wu R, et al. Isolation of an efficient promoter for use in rice transformation.Plant Cell, 1990,2: 163~171
    71. Mikkelsen TR. The risk of crop transgene spread. Nature, 1996, 380: 31
    72. Milne R, Kaplan H. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm(Choristoneura fumiferana) responsible for the activation of δ-endotoxin from Bacillus thuringiensis. Insect Biochem Mol Biol. 1993, 23(6): 663~673
    73. Murray E E. Lotzer J, Eberle M. Codon usage in plant genes. Nucl Acids Res. 1989.17: 477~498
    74. Murray E E. Rocheleau T, Eberle M, et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol. 1991, 16(6): 1035~1050
    75. Obukowicz M G, Perlak F J, Kusano-Kretzmer K, et al. Integration of theδ-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5.Gene. 1986; 45(3): 327~331
    76. Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA. 1991, 88: 3324~3328
    77. Perlak F J, Stone TB, Muskopf Y M, et al. Genetically improved potatos: protection from damage by Colorado potato beetles. Plant Mol Biol. 1993, 22: 313~321
    78. Peterson A M, Fernando G J, Wells M A. Purification, characterization and cDNA sequence of an alkaline chymotrypsin from the midgut of Manduca sexta. Insect Biochem Mol Biol.1995,25(7): 765~774
    79. Pierpoint W S, shewry P R. Genetic engineering of crop plants for resistance to pests and diseases. Brtish crop protection council. 1996, pp8~15
    80. Poncet, S, Delécluse A, Klier A,et al. Evaluation of synergistic interactions among CryIVA, CryIVB, and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. J Invert Pathol. 1994, 66: 131~135
    81. Rajamohan F, Alcantara E, Lee M K,et al. Single amino acid changes in domain Ⅱ of Bacillus
    
    thuringiensis Cry Ⅰ Ab δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J Bacteriol. 1995,177(9): 2276~2282
    82. Saluta M, Bell P A. Troubleshooting GST fusion protein expression in E. coli. 1998, Amersham Pharmacia Biotech, Piscataway, NJ USA
    83. Sambrook J, Fritsch E F, Maniatis T. Molecular Clone: a Laboratory Manual, 2nd ed, New York: Cold Spring Harbor Laboratory Press, 1995
    84. Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA. 1981, 78: 2893~2897
    85. Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol Mol Biol Rev. 1998,62(3): 775~806
    86. Schouten A. Roosien J. Van-Engelen F A, et al. The C-terminal KDEL sequence increase the expression levels of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol. 1996. 30: 781~793
    87. Servant P, Rosso M L. Hamon S, et al. Production of Cry11A and Cry11Ba toxin in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations. Appl Environ Microbiol. 1999, 65(7): 3021~3026
    88. Shi y, Wang M B, Powell K S,et al. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot. 1994, 45: 623~631
    89. Sipley J, Goldman E. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc Natl Acad Sci USA. 1993, 90(6): 2315~2319
    90. Soenarjo E.Parasitoids of the rice gall midge(GM) in Indonesia. Int Rice Re. News. 1986, 11(5): 29
    91. Spanjaard RA. Chen K. Walker JR, et al. Frameshift suppression at tandem AGA and AGG cod-ons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA(Arg). Nucleic Acids Res. 1990, 18(17): 5031~5036
    92. Spanjaard RA. van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frame-shift. Proc Natl Acad Sci USA. 1988,85(21): 7967~7971
    93. Staub J M, Garcia B. Graves J, et al. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol. 2000,18(3): 333~338
    94. Tanaka A, Mita S. Ohta S. et al. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl Acids Res, 1990,18: 6767~6770
    95. Tojo A, Aizawa K. Dissolution and degradation of Bacillus thuringiensis δ-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl Environ Microbiol. 1983, 45: 576~580
    96. Van Rie J, Jansens S, Hofte H, et al. Specificity of Bacillus thuringiensis δ-endotoxins: Importance of specific receptors on the brush border membrane of the midgut of target insects. Eur J Biochem. 1989,186(1-2): 239~247
    97. Vasil V, Clancy M. Ferl R J, et al. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. plant physiol,1989,91: 1575~1579.
    98. Veack M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack. Nature.1987,327: 33~37
    99. Vilbois F, Caspers P, da Prada M, et al. Mass spectrometric analysis of human soluble catechol O-methyltransferase expressed in Escherichia coli. Identification of a product of ribosomal frame-shifting and of reactive cysteines involved in S-adenosyl-L-methionine binding. Eur J Biochem.
    
    1994,222(2): 377~386
    100. Wada K, Wada Y, Ishibashi F, et al. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1992, 20: 2111~2118
    101. Wandelt C, Khan M R I, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J.1992,2: 181~192
    102. Wilbur H C, Crowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant physiology. 1990, 92: 1~11
    103. Williams S, Friedrich L, Dincher S, et al. Chemical regulation of Bacillus thuringiensis δ-endotoxin expression in transgenic plants. Bio/technol. 1992, 10: 540~543
    104. Wirth M C, Georghiou G P, Federict B A. CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci USA. 1997, 94: 10536~10540
    105. Wirth M C, Federict B A, Walton W E. Cyt1A form Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti(Diptera: Culicidae). Appl Environ Microbiol.2000, 66(3): 1093~1097
    106. Wong E Y, Hironaka C M, Fischoff D A, et al. Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants.Plant Mol Biol. 1992, 20: 81~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700