棉铃虫对Bt棉的抗性个体检测标准与单雌系F_1代检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用Bt棉叶片喂饲法对棉铃虫抗性品系(YCR)进行抗性筛选和保持,室内筛选YCR从第61代到72代。利用饲料感染法测定棉铃虫抗性品系的抗性倍数,结果表明:经室内12代筛选,YCR对21%MVP Ⅱ粉剂的抗性倍数稳定在2000倍左右。棉铃虫抗性品系得到保持和进一步的纯化,为研究棉铃虫对转Bt基因棉的抗性分子遗传机理提供了保证。
     采用Bt棉叶片喂饲法和含Cry1Ac18.75μg/ml的饲料感染法,通过抗性、敏感亲本及其正、反交试验检测,建立了棉铃虫对转Bt基因棉抗性个体(rr)的检测标准。喂饲抗性品系(YCR)和敏感品系(HZS)亲本及正交F_1(YCR♀×HZS♂)、反交F_1′(YCR♂×HZS♀)后代的初孵幼虫。处理5天后的结果表明:喂饲Bt棉叶5天,F_1和F_1′存活幼虫的发育龄期为1龄到2龄初期,体重在0.1-0.7mg/头;HZS只有2头存活幼虫,龄期为1龄,体重均为0.1mg;YCR存活幼虫的80.9%发育龄期为2龄中期到3龄,体重≥0.8mg/头。喂饲含Cry1Ac 18.75μg/mL的饲料5天,F_1、F_1、HZS的存活幼虫体重均没有达到0.8mg/头,YCR存活幼虫体重≥0.8mg/头的个数(40头)占总处理虫数(50头)的80.0%,YCR、F_1、F_1′和HZS死亡率分别为(8.0±13.0)%、(66.0±11.4)%、(66.0±20.7)%和(88.0±10.6)%,YCR与F_1、F_1、HZS的死亡率差异极显著(p<0.01).棉铃虫对转Bt基因棉的抗性个体(rr)检测标准为发育龄期达2龄中期,体重≥0.8mg/头。上述结果通过回交试验得到进一步验证。
     在室内通过用Bt棉选育棉铃虫抗性品系的基础上,采用单雌系F_1代检测法检测了2004年河北邱县棉铃虫对Bt棉的抗性等位基因频率。结果表明:检测的131个单雌系中,有32个单雌系的存活幼虫达到抗性检测标准(即龄期达到2龄中期,体重≥0.8mg/头),其河北邱县大田棉铃虫种群的抗性等位基因频率E(q)及方差Var(q)分别为12.4×10~(-2)和8.17×10~(-4),95%的置信区间为(0.1526~0.0954)。
     采用等位基因特异性PCR扩增技术对32个单雌系的达标幼虫进行检测。结果表明:9个单雌系为阳性,即河北邱县Bt棉棉铃虫大田种群中携带钙粘素cDNA大片断缺失的抗性等位基因频率E(q)及方差Var(q),分别为3.76×10~(-2)和2.70×10~(-4),95%的置信区间为(0.0054~0.0698)。
Using a Bt cotton leaf-feeding method, selection and maintenance of cotton bollworm resistance strain (YCR) were conducted. YCR was selected from 61st to 72nd generation. Resistance ratio of YCR was measured with diet infection method. The results showed that, resistant ratio of YCR to 21% MVP II WP (only containing Cry1Ac active component) was stable -2000-fold during 12episodes of selection with Bt cotton. Levels of resistance was maintained and enhanced. It would provide a guarantee for the research work about molecular mechanism of cotton bollworm resistance to transgenic Bt cotton.Using a Bt cotton leaf-feeding and toxin-impregnated Cry1Ac 18.75μg/ml diet method, the resistance criterion of cotton bollworm to transgenic Bt cotton was established through experiment of reisistant, susceptible parent and reciprocal cross. After 5 days, the results showed that, survival larvae of F1 and F1' developed to 1st~ initial-2nd instar and weighted 0.1mg~0.7mg/larvae. There were only two survival larvae of HZS that developed to 1st instar and weighted 0.1 mg. The 80.9% of surviving larvae of YCR developed to mid-2nd ~ 3rd instar and weighted≥0.8mg/larvae. The bioassay was carried out for five days with toxin-impregnated Cry1Ac 18.75μg/mL diet. The results showed that F1, F1', and HZS developed to 1st~ initial-2nd instar and weighted 0.1~0.5mg. 80% of surviving larvae of YCR developed to mid-2nd~3rd instar and weighted≥0.8mgAarvae in treated total number (50 larvae). The mean mortality of YCR, F1, F1' and HZS were, respectively, (8.0±13.0)%, (66.0±11.4)%, (66.0 ±20.7)% and (88.0±10.6)%, which of YCR was significantly different to which of F1, F1' and HZS (P<0.01). Resistance larvae criterion of cotton bollworm to transgenic Bt cotton was that developmental stage and weight of survival larvae were mid-2nd instar and ≥ 0.8mg/larvae, respectively. The results were verified by backcross inheritance experiment.On the basis of resistant strain selected by Bt cotton, Applying isofemale lines F1 method detected the resistance alleles frequency of cotton bollworm to transgenic Bt cotton
    in Qiu County, Hebei Province, in 2004. The results showed that, there were survival larvae developed the resistance criterion (developmental stage mid-2nd instar and weight ≥ 0.8mg/larvae ) in 32 isofemale lines with detecting 131 isofemale lines. The E(q) and Var(q) of resistance alleles in field cotton bollworm resistance to transgenic Bt cotton were respectively 12.4 × 10-2 and 4.46 × 10-4,95% confidence interval was 0.1526-0.0954.Using the PASA (PCR amplification of specific alleles) method, the results showed that 9 isofemale lines were positive in 32 isofemale lines of F1 method. The E(q) and Var(q) of resistance alleles of cDNA lesion in cadherins in field cotton bollworm resistance to transgenic Bt cotton were respectively 3.76×10-2 and 2.70× 10-4, 95% confidence interval was 0.0054-0.0698.
引文
[1] Adang MJ, Brody MS, Cardineau G, et al. The reconstruction and expression of a Bacillus thuringiensis CryⅢA gene in protoplasts and potato plants. Plant Mol Biol, 1993, 21: 1131-1145.
    [2] Akhurst RJ, James W, Bird J and Beard C. Resistance to the Cry 1Ac δ-endotoxin of Bacillus thuringiensis in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol, 2003, 96: 1290-1299
    [3] Alstad DN and Andow DA. Managing the evolution of insect resistance to transgenic plants. Science, 1995, 268: 1894-1896.
    [4] Alyokhin A, Ferro DN, Hoy CW and Head G. Laboratory assessment of flight activity displayed by Colorado potato beetles (Coleoptera: Chrysomelidae) fed on transgenic and cry3a toxin-treated potato foliage. J Econ Entomoi, 1999, 92:115-120.
    [5] Andow DA and Alstad DN. F_2 screen for rare resistance alleles. J Econ Entomol, 1998, 91(3): 572-578.
    [6] Andow DA and WD Hutchison. Bt-corn resistance management, pp. 19-66. In: M. Mellon and J Rissler [eds], Now or never serious new plans to save a natural pest control. Union of Concerned Scientists, Washington, DC.
    [7] Andow DA, Olson DM, Hellmich RL, Alstad DN and Hutchison WD. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol, 2000, 93(1): 26-30.
    [8] Angus TA. Abacterial toxin paralyzing silkworm larvae. Nature, 1954, 173: 545-546.
    [9] APHIS. Http://www.aphis.Usda.Gov/bbep/bp(Biotechnology Permits Home Page). 1996
    [10] Barton KA, Whiteley HR and Yang NS. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects.: Plant Physio, 1987, 85: 1103-1109.
    [11] Bauer LS, Koller CN, Miller DL, et al. Proc. ⅩⅩⅥ Annual Meeting of the Soc For lnvertebr Pathol and Ⅵ International Colloquium on lnvertebr Pathol Microb Control. France, Sur Les Press, 1994, 68
    [12] Beegle CC and Yamamoto T. History of Bacillus thuringiensis Berliner research and development. Canadian Entomologist, 1992, 124: 587-616.
    [13] Bentur JS, Andow DA, Cohen MB, Romena AM and Gould F. Frequency of Alleles Conferring Resistance to a Bacillus thuringiensis Toxin in a Philippine Population of Scirpophaga incertulas (Lepidoptera: Pyralidae). J Econ Entomol, 2000, 93(5): 1515-1521.
    [14] Berliner E. Uber die schlaffsuchtr der mehlmotternraupe (Ephestia kuehniella zell), und ihren erreger Bacullus thuringiensis n. sp. Zeitschrift fu rangewandtes entomolgie (Ger.), 1915, 2: 29-56
    [15] Bolin PC, Hutchison WD, Andow DA and Ostlie KR. Monitoring for European corn borer (Lepidoptera: Crambidae) resistance to Bacillus thuringiensis: Logistical considerations when sampling larvae. J Agric Entomol, 1998, 15: 231-238.
    [16] Bolin PC, Hutchison WD, Andow DA. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol, 92: 1021-1030.
    [17] Burd AD, Gould F, Bradley JR, Van Duyn JW and Moar WJ. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J Econ Entomol, 2003,96:137-142
    [18] Candas M, Loseva O, Oppert B, et al. Insect resistance to Bacillus thuringiensis:Alterations in the indiameal moth larval gut proteome. Mol Cell Proteomics, 2003,291:19-28.
    [19] Carriere Y, Ellers-Kirk C, Liu YB, Sims MA, Patin AL, Meyer S, Dennehy TJ and Tabashnik BE. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol, 2001,94:157- 576
    [20] Carriere Y, Ellers-Kirk C, Patin AL, Sims MA, Meyer S, Liu YB, Dennehy TJ and Tabashnik BE. Overwintering cost associated with resistance to transgenic cotton in the Pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol, 2001,94: 935-941.
    [21] Coates BS, DV Sumerford, RL Hellmich, LC Lewis. Sequence variation in the cadherin gene of Ostrinia nubilalis: a tool for field monitoring. Insect Biochemistry and Molecular Biology, 2005, 35(2): 129-139.
    [22] Cousins YL, Lyon BR and Llewellyn DJ. Transformation of an Australian cotton cultivar; prospects for cotton improvement through genetic engineering. Aust J PL Physiol, 1991, 120:1-5.
    [23] Ferre J and Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol, 2002,47:501-533.
    [24] Ferre J, Escriche B, Bel Y and Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thwingiensis insecticidal crystal protein. FEMS Microbiology Letters, 1995,132:1-7.
    [25] Field LM, Anderson AP, Denholm I, Foster SP, Harling ZK, Javed N, Martinez-Torres D, Moores GD, Williamson MS, Devonshire AL. Use of biochemical and DNA diagnostics for characterising multiple mechanisms of insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Pestic Sci 1997,51:283-289.
    [26] Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plants. Bio/Technology, 1987,5:807-813.
    [27] Forrester NW, Cahill M, Bird LJ, Layland JK. Management of pyrethroid and endofulfan resistance in Helicoverpa armigera (Hubner) in Australia. Bull Entomol Res 1993,1 (Special Suppl),l-132
    [28] Gahan LJ, Gould F and Heckel DG. Identification of a gene associated with Bt resistance in Heliothis verescens. Science, 2001,293:857-860.
    [29] Geoghiou GP, Vazquez-Garcia M. Assessing the potential for development of resistance to Bacillus thwingiensis subsp. Israelensis toxin (Bti) by mosquitoes. Annu Rep Msoquito Control Research University of Califarmia, 1982, p: 117.
    [30] Geoghiou GP. Insecticide resistance in mosquitoes: research on new chemical and techniques for management. Annu Rep Msoquito Control Research University of Califarmia, 1984, p: 4140.
    [31] Georghiou GP and Wirth MC. Influence of exposure to single versus multiple toxins of Bacillus thwingiensis subsp. Israelensis on development of resistance in the mosquito Culex quingefasciatus (Diptera: Culicidae). Appl Environ Microbiol, 1997,63:1095-1101
    [32] Georghiou GP. Resistance potential to biopesticides and consideration of counter measures. In: Pesticides and Alternative. Elsevier Science Publishers B.V. (Biomedical Division), 1990,409-420.
    [33] Gill SS, Cowles EA and Francis V. Identification, isolation, and cloning of a Bacillus thwingiensis CrylAc toxin-binding protein from the midgut of the Lepidopteran insect Heliothis virescens. J Bio Chem, 1995, 270(45): 27277-27282.
    [34] Gill SS, Cowles EA and Pictrantonio PV. The mode of action of Bacillus thuringiensis endotoxin. Ann Rev Entomol, 1992, 37:615-636.
    [35] Gould F and Tabashnik BE. Bt-cotton resistance management. See Ref 36, pp: 67-106.
    [36] Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, Micinski S, Leonard R and Laster M. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci, 1997,94(8): 3519-3523.
    [37] Gould F, Anderson, Reynolds A, Bumgarner L and Moar W. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J Econ Entomol, 1995, 88(6): 1545-1559.
    [38] Gould F, Martinez Ramirez A, Anderson A, Ferre J, Silva, FJ and Moar WJ. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci, 1992, 89(17): 7986-7990.
    [39] Gould F. Arthropod behavior and the effect of plant protectants. Annu Rev Entomol, 1991, 36:305-330.
    [40] Gould F. Genetic engineering, integrated pest management and the evolution of pests. Tree/ Tibtech, 1988, 3/6(4): 515-518.
    [41] Gould F. Martinez Ramirez A, Anderson A and Ferre J. Laboratory and field evaluation of Bacillus thuringiensis Berliner var kurstaki, on African bollworm (Helicoverpa armigera, Hubner). Proceedings of the First Annual Conference Crop Protection Society of Ethiopia. Addis Abeba (Ethiopia). CPSE, 1993,28-29.
    [42] Gould F. Potentials and problems with high-dose strategies for pesticidal engineered crops. Biocontrol Sci Technol, 1994,4:451-461.
    [43] Gould F. Sustainability of transgenic insecticide cultivars: Integrating pest genetics and ecology. Annu. Rev Entomol, 1998,43:701-726.
    [44] Hannay CL and Fitz-Tames PC. The protein crystal of Bacillus thuringiensis Berliner. Canadian Journal of Microbiology, 1955, 1:694-710.
    [45] Hanny CL. Crystalline inclusions in aerobic sporeforming bacteria. Nature,1953, 172:1004
    [46] Heckel DG, Gahan L, Gould F, et al. Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis Cry 1 Ac. Pestic Sci, 1997b, 51:251-258.
    [47] Heckel DG, Gahan L, Gould F, et al. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis CrylAc endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J Econ Entomol, 1997a, 90(1): 75-86.
    [48] Heckel DG The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Tech, 1994, 4: 405-417.
    [49] Herrero S, Oppert B and Ferre J. Different mechanisms of resistance to Bacillus thuringiensis toxin in the indianmeal moth. Appl Environ Microbiol, 2001,67:1085-1089.
    [50] Huang F, Buschman LL, Higgins RA, et al. Inheritance of Resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science, 1999, 284: 965-967.
    [51] Huang F, Buschman LL, Higgins RA, McGaughey WH. Inheritance of resistance to Bacillus thuringiensis subsp. Kurstaki under selection pressure in European corn borer(Lepidoptera: Pyralidae). J Econ Entomol, 1997,90:1137-1143.
    [52] Huang F, LL Buschman, RA Higgins and H Li. Survival of Kansas Dipel-resistant European corn
     borer (Lepidoptera: Crambidae) on Bt and non-Bt corn hybrids. J Econ Entomol, 2002, 95:614-621.
    [53] Hyde J, Marshall AM, Paul VP, Craig LD and CR Edwards. An economic analysis of non-Bt corn refuges. Crop Protection, 2001,20:167-171.
    [54] James C and Krattiger AF. Global review of the field testing and commercialization of transgenic plants, 1986 tol995: the first decade of crop biotechnology. ISAAA Briefs No. 1-1996. ISAAA: Ithaca, NY. USA, 1996.
    [55] James C. Preview: Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs No. 32. ISAAA: Ithaca, NY. USA, 2004.
    [56] Jinliang Shen, Yidong Wu, Jianguo Tan, Baohao zhou, Jin Chen and Fujie Tan. Comparison of Two monitoring methods for pyrethroid resistance in cotton bollworm (Lepidoptera: Noctuidae). Resistant pest manigement newsletters, 1993, 5(1): 5-7.
    [57] Knight PJK, Knowles BH and Ellar DJ. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cry 1 Ac toxin. J Bio Chem, 1995, 270(30): 17765-17770.
    [58] Koziel MG, BelandGL, Bowman C, et al. Field performance of Elite transgenic maize plants expressing an insectical protein derived from Bacillus thuringiensis Bio/technology, 1993,11:171-228.
    [59] Lee MK, F Rajamohan, F Gould, et al. Resistance to Bacillus thuringiensis Cry 1 A δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol, 1995,61:3836-3842.
    [60] Liu YB, BE Tabashnik, SK Meyer, Y Carriere and AC Bartlett. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc. J Econ Entomol, 2001b, 94:248-252.
    [61] Liu YB, Tabashnik BE and Pusztai-Carey M. Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol, 1996, 89(4): 798-804.
    [62] Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Sims MA, Meyer S and Carriere Y. Effects of Bt cotton and CrylAc toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol, 2001,94:1237-1242.
    [63] Liu YB, Tabashnik BE, TJ Dennehy, AL Patin and AC Bartlett. Development time and resistance to Bt crops. Nature, 1999,400:519.
    [64] Luo K, Tabashnik BE and Adang MJ. Binding of Bacillus thuringiensis CrylAc toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella). Appl Environ Microbio, 1997,63:1024-1027.
    [65] Marcon PCRG, Siegfried BD, Spencer T and Hutchison WD. Development of diagnostic concentrations for monitoring Bacillus thuringiensis resistance in European corn borer(Lepidoptera:Crambidae). J Econ Entomol, 93:925-930.
    [66] McGaughey WH and Beemen RW. Resistance to Bacillus thuringiensis in colonies of Indian meal moth and almond moth (Lepidoptera: Pyralidae). J Econ Entomol, 1988,81:28-33.
    [67] McGaughey WH and Whalon ME. Managing insect resistance to Bacillus thuringiensis. Science, 1992,258:1451-1455.
    [68] McGaughey WH, Gould F and Gelemter W. Bt resistance management. Nature Biotechnol, 1998,16:144-146.
    [69] McGaughey WH. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985,229:193-195.
    [70] Men XY, F Ge, CA Edwards and EN Yardim. The influence of pesticide applications on Helicoverpa armigera Hubner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Protection, 2005, 24(4): 319-324.
    [71] Meng FX, Shen JL, Zhou WJ, et al. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest Management Science, 2004,60(2): 167-172.
    [72] Metz TM, Tang JD, Shelton, AM, Roush RT and Earle ED. Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. J Mol Breeding, 1995(1): 309-317.
    [73] Moar WJ and Adang MJ. Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (HUbner) (Lepedoptera:Noctuidae). Appl Environ Microbio 1995,61:2086-2092.
    [74] Monsanto 1997. BollGard cotton update. Internet: http://www.Monsanto.co./MonPub/inth... rticles/97-01-06 BollGardupdate.html, 6pp.
    [75] Morin S, Biggs RW, Sisteron MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ, Brown JK, Tabashnik BE. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink boll worm. Proc Nat Acad Sci, 2003, 100(9):5004- 5009.
    [76] Morin S, S Henderson, JA Fabrick, Y Carriere, TJ Dennehy, JK Brown and BE Tabashnik. DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochemistry and Molecular Biology, 2004, 34(11): 1225-1233
    [77] Olsen KM, and Daly JC. Plant-toxin interactions in transgenic Bt cotton and their effect on mortality of Helicoverpa armiger (Lepidoptera: Noctuidae). J Econ Entomol, 2000,93:1293-1299.
    [78] Oppert B, Kramer KJ, Beeman RW, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem, 1997,23473-23476.
    [79] Oppert B, Kramer KJ, Johnson SC, et al. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistance srain Plodia interpunctella. Biochem Biophys Res Commun, 1994, 198:940-947.
    [80] Oppert B, Kramer KJ, Johnson SC, et al. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis Cry1A(c) protoxin. Insect Biochem Mol Biol, 1996, 26:571-583.
    [81] Patin AL, TJ Dennehy, MA Sims, BE Tabashnik, YB Liu, L Antilla, D Gouge, TJ Henneberry and R Staten. 1999. Status of pink bollworm susceptibility to Bt in Arizona. Vol.2.pp. 991-996 In Proc Beltwide Cotton Conferences 1999, National Cotton Council, Memphis, TN.
    [82] Peferoen M. Engineering of insect-resistant plants with Bacillus thuringiensis crystal protein genes. In: Gatehouse, A.M.R., Hilder VA, Boulter D. (eds), Plant Genetic Manipulation for Crop Protection CAB International, Wallingford, 1992, 135-153.
    [83] Perez CJ, Tang, JD and Shelton AM. Comparison of leaf-dip and diet bioassays for monitoring Bacillus thuringiensis resistance in field populations of diamond backmoth (Lepidoptera: Plutellidae). J Econ Entomol, 1997,90(1): 94-101.
    [84] Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fishhoff DA. Insect resistant cotton plants. Bio/Technology, 1990, 8:939-943
    [85] Perlak FJ, Fuchs RL and Dean DA. Modification of the coding sequence enhances plants expression of insect control protein genes. Proc Natl Acad Sci, 1991, 88:3324-3328.
    [86] Pierce C, R Weinzierl and K Steffey. First-year results of a survey for European corn borer resistance to Bacillus thuringiensis, pp.67-68. In: K Steffey [ed.], Proceedings, 1998 Illinois Agricultural Pesticides Conference. Cooperative Extension Service, University of Illinois at Urbana-Champaign.
    [87] Pray CE, Huang J, Ma Dand Qiao F. Impact of Bt cotton in China. World Dev, 2001,29:813-825.
    [88] Pray CE, JK Huang, Ruifa Hu and Scott Rozelle. Five years of Bt cotton in China-the benefits continue. The Plant Journal, 2002,31(4): 423-430.
    [89] Ramachandran S, Buntin GD, All JN et al. Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol, 1998,91:1239-1244.
    [90] Roush RT and GL Miller. Considerations for design of insecticide resistance monitoring programs. J Econ Entomol, 1986, 79:293-298.
    [91] Roush RT and McKenzie JA. Ecological genetics of insecticide and acaracide resistance. Annu Rev Entomol, 1987, 32:361-380
    [92] Roush RT. Bt transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Science, 1997, 51:328-334.
    [93] Roush RT. Can we slow adaptation by pest to insect transgenic crops? See Ref, 12,1996, pp.271 -294
    [94] Roush RT. Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays. Biocontrol Sci Technol, 1994,4:501-516.
    [95] Schnepf HE and Whiteley HR. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci, 1981, 78:2893-2897.
    [96] Schwartz JL, Lu Y, Sohnlein P, Brouseau R, Laprade R, Masson L and Adang MJ. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Letters, 1997,412:270-276.
    [97] Shelton AM, Robertson JL, Tang JD, Perez Eigenbrode SD, Wilsey WK and Cooley RJ. Resistance of diamondback month (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J Econ Entomol, 1993, 86:697-705.
    [98] Shelton AM, Tang JD, Roush RT, Metz TD and Earle ED. Field tests on managing resistance to Bt-engineered plants. Nature Biotechnology, 2000,18:339-342.
    [99] Simmons AL, TJ Dennehy, BE Tabashnik, L Antilla, A Bartlett, D Gouge, and R Staten. Evaluation of Bt cotton deployment strategies and efficacy against pink bollworm in Arizona. Proc Beltwide Cotton Conferences, 1998 , 1025-1030.
    [100] Stone BF. A formula for determining degree of dominance in case of monofactorial inheritance to chemicals. Bull Wold Org, 1968, 38:91-98.
    [101] Stone TB and Sims SR. Geographic susceptibility of Heliothis virescens and Helicoverpa zea to Bacillus thuringiensis. J Econ Entomol, 1993, 86(4): 989-994.
    [102] Tabashnik BE, AL Patin, TJ Dennehy, YB Liu, Y Carriere, M Sims and L Antilla. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc Natl Acad Sci, 2000,97:12980-12984.
    [103] Tabashnik BE, Cushing NL, Finson N, et al. Field development of resistance to Bacillus
     thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol, 1990, 83:1671- 1676.
    [104] Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K.E and Adang MJ. Reversal of resistance to Bacillus thuringiensis in Plutella xytostella. Proc Natl Acad Sci, 1994,91:4120-4124.
    [105] Tabashnik BE, Finson N, Johnson MW. Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol, 1991, 84:49-55.
    [106] Tabashnik BE, Groeters FR, Finson N, Liu YB, Johnson MW, Heckel DG, Luo K and Adang MJ. Resistance to Bacillus thuringiensis in Plutella xylostella: the moth heard round the world. Molecular genetics and evolution of pesticide resistance. Washington, DC (USA). American Chemical Society, 1996, 130-140.
    [107] Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Mensua JL and Ferre J. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci, 1997, 94(24): 12780-12785.
    [108] Tabashnik BE, Liu YB, Rud A, DE Magd, et al. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl Environ Microbiol, 2000, 66(10): 4582-4584.
    [109] Tabashnik BE, Patin AL, Dennehy TJ, Liu YB, Miller E and Robert TS. Dispersal of pink bollworm (Lepidoptera: Gelechiidae) males in transgenic cotton that produces a Bacillus thuringiensis toxin. J Econ Entomol, 1999,92(4): 772-780.
    [110] Tabashnik BE, Timothy JD, Maria AS, K Larkin, Graham PH, WJ Moar, and Y. Carriere. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl Environ Microbiol, 2002, p:3790-3794.
    [111] Tabashnik BE, Y Carriere, TJ Dennehy, et al. Insect resistance to transgenic Bt crops: Lessons from the laboratory and field. J Econ Entomol, 2003,96(4): 1031-1038.
    [112] Tabashnik BE. Evolution of resistance to Bacillus thuringiensis. Ann Rev, 1994.
    [113] Tabashnik, BE, Liu, YB, Unnithan, DC, Carriere Y, Dennehy TJ, Morin S. Shared genetic basis of resistance to Bt toxin Cry1Ac in independent strains of pink bollworm. J Econ Entomol, 2004, 97: 721-726.
    [114] Tang JD, S Gilboa, RT Roush and AM Shelton. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamond back moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol, 1997,90:732-741.
    [115] Tang JD, Shelton AM, Van Rie J, et al. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (plutella xylostella). Appl Environ Microbiol, 1996,62:564-569.
    [116] Timothy JD, GC. Unnithan, Sarah AB, BD Wood, Y Carriere and BE Tabashnik. Update on pink bollworm resistance to bt cotton in the southwest. Arizona Cotton Report (P: 138) May 2004
    [117] Vaeck M, Reynaerts A, HOfte H, et al. Transgenic plants protected from insect attack. Nature, 1987 328(2): 33-37.
    [118] Van der Vorrt JR, Wolters P, Folkertsma R, et al. Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet, 1997, 95:874-880.
    [119] Van Rie J, McGaughey WH, Johnson DE, et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 1990,247:72-74.
    [120] Van Rie J. Biochemical mechanisms of insect resistance to Bacillus thuringiensis. Proc. Canberra
     Mtg. Bacillus thudngiensis, 2nd, Canberra, 1994, pp.31-39. Canberra: CSIRO.
    [121] Venette RC, Hutchison WD and Andow DA. An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. J Econ Entomol, 2000, 93(4): 1055-1064.
    [122] Venette RC, JC Luhman and WD Hutchison. Survivorship of field-collected European corn borer (Lepidoptera: Crambidae) larvae and its impact on estimates of resistance to Berliner. J Entomol Sci, 2000, 35: 208-212.
    [123] Whalon M and Ferro D. Bt-potato resistance management. in: Mellon M, Rissler J. (Eds) Now or Never: Serious new plans to save a natural pest control: 107-136.
    [124] Whalon ME, Miller DL, Hollingworth RH, et al. Selection of a Colorado potato beetle (Coleptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J Econ Entomol, 1993, 86: 226-233.
    [125] Wilson FD, et al. Yeield, yield components, and fiber properties of insect-resistant cotton lines containing a toxingene. Crop Science, 1994, 34: 38-41.
    [126] Wilson FD, Flint HM, Deaton RW, et al. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm and other insects. J Econ Entomol, 1992, 85: 1561-1521.
    [127] Wu K, Guo Y and Gao S. Evaluation of the natural refuge function for Helicoverpa armigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis transgenic cotton growing areas in North China. J Econ Entomol, 2002, 95(4): 832-837.
    [128] Wu K, H Feng and Y Guo. Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpa armigera (Hubner) in the Yellow River cotton-farming region of China. Crop Protection, 2004, 23: 523-530.
    [129] Wu K, Y Guo, N Lv, JT Greenplate and R Deaton. Resistance monitoring of Helicoverpa armigera to Bacillus thuringiensis insecticidal protein in China. J Econ Entomol, 2002, 95: 826-831.
    [130] Xu XJ, Yu LY and YD Wu. Disruption of a cadberin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa amigera. Appl Environ Microbiol, 2005, 71(2): 948-954
    [131] Zhao JZ, Collins HL, Tang JD, Cao J, Earle ED et al. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1 C. Appl Environ Microbiol. 2000, 66: 3784-3789.
    [132] Zhao JZ, Li YX, Collins HL and Shelton AM. Examination of the F_2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol, 2002, 95(1): 14-21.
    [133] Zhao JZ, Li YX, HL Collins, J Cao, et al. Different cross-resistance patterns in the Diamondback Moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin crylC. J Econ Entomoi, 2001, 94(6): 1547-1552.
    [134] Zhu Y, B Oppert, KJ Kramer, WH McGaughey and AK Dowdy. cDNA's for a chymotrypsinogenlike protein from two strains of Plodia interpunctella. Insect Biochem Molec Biol, 1997, 27: 1027-1037.
    [135] 陈骐,范云六.苏云金芽孢杆菌Kurstaki HD-1变种δ内毒素基因在大肠杆菌中表达.科学通报,1991,13:1014-1017.
    [136] 陈瑞春,范云六.苏云金芽孢杆菌HD-1质粒基因文库的构建.微生物学报,1987,27(1):30-36.
    [137] 褚茗莉,许国庆,田本志等.不同寄主对棉铃虫发育的影响.辽宁农业科学,1997,3:35-38.
    [138] 崔金杰,夏敬源.转Bt基因棉对棉铃虫低龄幼虫取食行为的影响,河南职技师院学报,1998,26(1):9-11.
    [139] 崔金杰,夏敬源.转Bt基因棉对棉铃虫抗性的时空动态.棉花学报,1999,11(3):141-146.
    [140] 崔学芬,董双林,夏敬源等.棉铃虫对Bt毒蛋白(Cry1Ac)抗性品系的选育.棉花学报,2001,13(4):213-215.
    [141] 董双林.转Bt基因棉极其抗虫性研究与利用进展.棉花学报,1998(10):57-63.
    [142] 范贤林,孟香清,芮昌辉.抗Bt杀虫蛋白棉铃虫种群的相对适合度.农业学学报,2000,2(3):35-38.
    [143] 范贤林,芮昌辉 孟香清等.一种监测棉铃虫对Bt杀虫晶体蛋白抗性的技术.植物保护学报,2002,29(3):254-258.
    [144] 范贤林,芮昌辉,许崇任等.转双基因抗虫棉对棉铃虫的抗性.昆虫学报,2001,44(4):582-585.
    [145] 范贤林,赵建周,范云六,石西平.转Bt基因植物对不同抗性棉铃的生长抑制作用.植物保护,2000,26(2):3-5.
    [146] 郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花研究.中国农业科学,1999,32(3):1-7.
    [147] 郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学.1995,28(5):8-13.
    [148] 何丹军,沈晋良,周威君等.应用单雌系F_2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率.棉花学报,2001,13(2):105-108.
    [149] 侯茂林,盛承发.食物对棉铃虫生长发育及繁殖的影响.昆虫学报,2000,43(2):168-174.
    [150] 李付广.崔金杰.刘传亮等.双价基因抗虫棉及其抗虫性研究.中国农业科学2000,33(1):46-52.
    [151] 李巧丝,高崇仁,王文夕等.不同寄主对棉铃虫生长发育及种群动态的影响.华北农学报,1999,14(1):102-105.
    [152] 梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究.中国农业科学,2000,33(4):46-53.
    [153] 梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究.昆虫学报,2000,43(sup.):57-62.
    [154] 梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究.昆虫学报,2000,第43卷(增):41-43.
    [155] 梁革梅.棉铃虫Bt毒素受体蛋白生化特性、基因克隆及其抗性的关系.中国农业科学院博士研究生学位论文,2002.
    [156] 卢美光,赵建周,芮昌辉,范贤林等.棉铃虫对Bt杀虫蛋白抗性测定方法的研究.农药学学报,1999,1(3):61-66.
    [157] 陆萍.棉铃虫对转Bt基因棉的抗性等位基因频率及其监测方法研究.南京农业大学硕士论文,2003.
    [158] 马海芹.转Bt基因棉对棉田非靶标生物及次要害虫的影响研究.南京农业大学硕士论文.2003.
    [159] 孟凤霞,沈晋良,褚姝频.Bt棉叶对棉铃虫抗虫性的时空变化及气象因素的影响.昆虫学报,2003,46(3):299-304.
    [160] 孟凤霞,沈晋良,周威君等.转Bt基因棉对棉铃虫抗虫性测定方法的研究.南京农业大学学报,2000,23(1):109-113.
    [161] 孟凤霞.棉铃虫对转Bt基因棉的抗性:抗性品系选育与抗性遗传 南京农业大学博士论文2001.
    [162] 潘启明,潘滨,李建勋等.转Bt基因抗虫棉棉田主要害虫发生消长特点.中国棉花,2002,29(9):22-23.
    [163] 沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社,1995.6-11.
    [164] 沈晋良,周威君,吴益东等.棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系.昆虫学报,1998,41(1):8-14.
    [165] 沈晋良,周晓梅.转基因作物的抗虫性.现代农药,2004,3(3):1-6.
    [166] 束春娥,柏立新,孙宏武,孙以文.棉铃虫多代连续取食转基因抗虫棉的抗性演变.中国生物防治,2001,17(1):1-5.
    [167] 苏建亚,周晓梅,沈晋良.抗Bt棉棉铃虫幼虫Bt受体氨肽酶N(APN2)基因克隆.中国生物工程杂志,2004,24(10):59-62.
    [168] 苏建亚,周晓梅,张天翼,沈晋良.抗转Bt基因棉棉铃虫幼虫中肠氨肽酶N基因的克隆与序列特征.棉花学报,2004,16(1):13-20.
    [169] 孙洪武,孙以文,柏立新.棉铃虫取食棉花和玉米对其生长发育和繁殖的影响.中国棉花,2000,27(1):9-10.
    [170] 谭声江,陈晓峰,李典谟,张惠珍.其他寄主作物能成为Bt感性棉铃虫的庇护所吗.科学通报,2001,46(13):1101-1104.
    [171] 谭维嘉,梁革梅,郭予元,王武刚.Bt杀虫剂预处理缓解棉铃虫对化学农药抗性及机理的研究.中国农业科学,1997,30(5):13-19.
    [172] 汪诗新,陈新乐.转Bt基因抗虫棉病虫危害新特点及综防措施.中国棉花,2002,29(6):17-18.
    [173] 王延琴.为Bt棉选择合适的庇护作物.中国棉花,2002,29(6):45-46.
    [174] 夏敬源,崔金杰,马丽华等.转Bt基因抗虫棉在害虫综合治理中的作用研究.棉花学报,1999,11(2):57-64.
    [175] 夏敬源,汪若海,文绍岩等.抗虫棉在棉铃虫综合治理中的作用研究初报,中国棉花.1995,22(8):8-11.
    [176] 谢道昕,范云六,倪万潮等.苏云金芽孢杆菌杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学[B辑].1991,4:367-373.
    [177] 喻子牛(主编).苏云金杆菌.科学出版社出版,1990.91-93.
    [178] 袁小玲.孙敬.唐灿明.张天真.转Bt+CpTI双价基因抗虫棉抗棉铃虫性的时空表达.2000,10:9-12.
    [179] 张惠珍,王马的,戴慧平等.转基因抗虫棉田棉铃虫消长规律及危害特点.昆虫知识,2000,37:146-148.
    [180] 张天真.转Bt基因抗虫棉品种的推广利用与棉铃虫的抗性治理.作物研究,2001年S1期10-15.
    [181] 张永军,杨舰,郭予元,吴孔明.外源Bt杀虫蛋白和棉花主要抗虫萜烯类物质互作关系研究.中国农业科学,2002,35(5):514-519.
    [182] 赵建周,剧正理,朱国仁等.小菜蛾抗药性的田间监测方法研究,农业科学集刊,1993,(1):253-256.
    [183] 赵建周,赵奎军,卢美光等.华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究.中国农业科学,1998,31(5):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700