人参锈腐病化学诱导抗性机制及其病原菌分子检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C.A. Meyer)为五加科人参属多年生草本药用植物,是我国传统的名贵药材,被誉为“药中之王”。人参锈腐病是由人参锈腐病菌(Cylindrocarpon destructans (Zinns.) Scholten)引起的根部病害之一,平均发病率20%-30%,严重影响人参产量和加工质量,造成极大的经济损失。随着国际市场人参需求量的不断上升,人类健康意识和环保意识的增强,通过降低人参的农药残留、倡导安全无污染的GAP栽培模式来提高我国人参的市场竞争力已成为必然的发展趋势。利用植物诱导抗病性的原理来提高人参植株的抗性,利用分子检测手段对病害进行早期诊断和病菌种群动态监测,可能为人参锈腐病的防治提供一条新途径。本文以植物诱导抗病性为着眼点,从生理生化反应、差异蛋白质组学、分子检测等角度系统研究了外源化学诱导因子诱导人参抗锈腐病的机制,建立了人参锈腐病菌的分子检测体系,主要研究结果如下:
     1.明确了水杨酸、肉桂酸、阿魏酸、苯甲酸、对羟基苯甲酸和茉莉酸甲酯6种化学诱导因子对人参锈腐病菌的影响。通过在培养基内人工添加不同化学诱导因子培养人参锈腐病菌,来考察这些化学因子对人参锈腐病菌的影响。结果表明肉桂酸、阿魏酸、苯甲酸显著抑制人参锈腐病菌的菌丝生长和孢子萌发;水杨酸、茉莉酸甲酯在低浓度时不影响锈腐病菌的生长,浓度高于200μg mL-1时显著抑制其生长;而对羟基苯甲酸则对人参锈腐病菌没有影响。这些物质在人参锈腐病的化学诱导抗病性中发挥着重要作用。
     2.室内接种试验证明了水杨酸和茉莉酸甲酯在低浓度处理人参时可以对人参锈腐病菌产生诱导抗性。在所选用的6种化学诱导因子中,水杨酸和茉莉酸甲酯的诱抗效果最为显著。经200μg mL-1的水杨酸和茉莉酸甲酯处理后,不仅对人参生长有一定的促进作用,而且对人参锈腐病的防效分别达到了67.9%和56.6%。而其他几种化学因子对锈腐病的防效不显著,并会对人参生长产生不同程度的不良影响。因此,本文筛选水杨酸和茉莉酸甲酯作为进一步研究的化学诱导因子。
     3.首次证明了外源水杨酸(SA)和茉莉酸甲酯(MeJA)处理可以显著提高人参植株的诱导抗病性,并明确了其诱导人参抗人参锈腐病的生理生化机制。通过温室盆栽试验测定与抗性相关的生理生化指标发现,外源SA. MeJA能有效降低人参根内MDA含量和细胞膜电解质外渗率,提高脯氨酸和可溶性糖的含量及总酚含量,人参根系PAL、CAT、PPO、POD活性较对照均上升,p-1,3-葡聚糖酶和几丁质酶活性也较对照增强,说明SA. MeJA诱导的植物抗病性可能与植物的系统获得抗性有关。外源施入SA和MeJA可减轻人参锈腐病的发病率和病害严重度,发病率分别下降了39.1%和34.8%,明显提高了人参植株抗性。SA诱导人参抗人参锈腐病的效果较MeJA更为显著,因此选择SA作为进一步研究人参锈腐病化学诱导抗性的诱导因子。
     4.采用植物组培技术,成功诱导出人参根愈伤组织并建立了生长旺盛的人参悬浮细胞系,为下一步运用SA诱导人参抗人参锈腐病的差异蛋白质组学研究提供了稳定、均一的试验试材。愈伤组织诱导选用MS培养基,外源激素种类及浓度为3mg/L2,4-D和0.2mg/L KT,培养基蔗糖浓度为0.8%,pH值在5.8-6.0之间。继代培养添加的激素配比及浓度为2mg/L2,4-D和0.5mg/L BA。悬浮细胞液体培养基的激素浓度及配比与愈伤组织继代培养基的激素水平相同,人参悬浮细胞于摇床悬浮振荡培养,培养条件为110rpm,24±2℃
     5.首次采用蛋白质组学分析方法对SA诱导人参抗人参锈腐病的差异蛋白组进行了分析,明确了SA对人参抗锈腐病蛋白表达的调控作用。建立了适合人参悬浮细胞蛋白质组学分析的高通量、高分辨率的双向电泳技术体系:采用改良酚提取法制备人参悬浮细胞总蛋白,裂解缓冲液为9M尿素、2M硫脲、2%IPG Buffer、4%CHAPS、1%TBP.65mMDTT, pH5-8IPG胶条,SDS-PAGE分离胶浓度为12%。通过双向电泳技术获得了清水对照、SA处理、C. destructans处理及SA+C. destructans处理的人参悬浮细胞蛋白2-DE图谱。在凝胶上分别检测到800多个蛋白点。对蛋白质丰度变化在2倍以上、重复性好的24个差异表达蛋白点进行MALDI-TOF-MS质谱鉴定分析,其中共成功鉴定了23个蛋白点,去掉重复的蛋白共鉴定出22种蛋白质。在这些鉴定的蛋白点中,以对照为参考胶,只在SA处理中上调表达的蛋白点有12个,下调表达的蛋白点2个,特异表达的蛋白点1个;只在SA+C.destructans处理中上调表达的蛋白点2个,下调表达的蛋白点1个;,在三个处理中都上调表达的蛋白点5个,下调表达的蛋白点1个。这些特异表达的蛋白涉及植物自身的防卫反应、信号转导、能量代谢和转录调控等方面。其中热激蛋白60、肉桂醇脱氢酶、单脱水抗坏血酸还原酶、甲氧基转移酶都与防御反应正相关。
     6.首次建立了人参锈腐病菌分子检测体系,为人参锈腐病的早期诊断和病原菌种群动态监测奠定了理论基础。该体系在对人参锈腐病菌ITS区进行PCR扩增、测序及序列分析基础上,设计了特异性引物CD-F/CD-R,可以用于人参主要病原真菌及常见土壤习居菌的PCR检测。只有以C. destructans基因组DNA为模板的体系中能扩增出一条450bp左右的条带,而其他菌株及阴性对照均无特异性条带产生。利用该特异性引物能从罹病组织和人工接种C. destructans的土壤DNA中扩增出特异性条带,而对照及健康人参组织均无扩增产物,表明该特异性引物可以用于人参锈腐病菌的分子检测和早期诊断。
Ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant in the family Araliaceae which has been grown in northeast China for centuries, is known as the king of medicine. Cylindrocarpon root rot of ginseng caused by Cylindrocarpon destructans is the main disease which led to serious crop yield losses, and the average loss is up to20%-30%. The soilborne disease is very difficult to control. The use of high toxic pesticide is forbidden because of GAP cultivation. It maybe provide a new way to control Cylindrocarpon root rot of ginseng by using the principle of plant induced disease resistance to improve the resistance of ginseng plant and using molecular detection method to monitor pathogen population. The inducing mechanism of Cylindrocarpon root rot was studied and the pathogen molecular detection system was established based on plant induced disease resistance from the physiological and biochemical reaction, proteomics, and molecular detection. The results were as follows:
     1. The effects of salicylic acid, cinnamic acid, ferulic acid, benzoic acid, p-hydroxybenzoic acid and methyl jasmonate on C. destructans were studied. These chemicals were added into media to incubate C. destructans to investigate their effects on the pathogen. The results indicated that the growth and spore germination of C. destructans were suppressed by cinnamic acid, ferulic acid, benzoic acid, while p-hydroxybenzoic acid had no influence on the pathogen. At low concentration of salicylic acid and methyl jasmonate, the growth of C. destructans was hardly affected, while at higher concentrations (>200μg mL-1) the growth of pathogen was prohibited.
     2. The resistance of ginseng to C. destructans could be induced by low concentrations of SA and MeJA. Of these6kinds of chemicals, the induced effects of SA and MeJA were better than other chemicals. It showed that ginseng treated with low concentration of salicylic acid and jasmonic acid methyl jasmonate could enhance the resistance of ginseng plant itself, the control effects were up to67.9%and56.6%, respectively, and the two kinds of chemical factors in low concentration had promoting effects on the growth of ginseng. However, the other chemicals had harmful effects on ginseng growth. Therefore, SA and MeJA were chosen for next study.
     3. The resistance of ginseng induced by SA and MeJA was firstly demonstrated. The physiological and biochemical mechanisms of ginseng resistant to Cylindrocarpon root rot induced by exogenous salicylic acid and methyl jasmonate were studied. SA and MeJA treatment could effectively decrease the contents of MDA and relative electricity conductivity, but increase the contents of proline, soluble sugar and total phenols. The activities of PAL, CAT, PPO, POD,(β-1,3-glucanase and chitinase could be increased significantly in the ginseng roots induced by SA and MeJA than those in control. The incidence and disease severity were reduced with ginseng plant resistance increased obviously due to exogenous applied SA and MeJA, and the incidences were reduced by39.1%and34.8%, respectively. It demonstrated that SA and MeJA could induce the system resistance of ginseng to C. destructans. In addition, the impact of SA was better than MeJA. Thus, SA is chosen as the chemical factor for further study.4. A stable and vigorous growth of ginseng suspension cell lines was established using plant tissue culture technology. The establishment of the system provides a stable and uniform test material in ginseng proteomics research. MS culture medium was used in callus induction, supplement with3mg/L2,4-D and0.2mg/L KT,0.8%sucrose, pH5.8to6.0. Successive transfer culture added2mg/L2,4-D and0.5mg/L BA. The hormone of suspension cell liquid medium was at the same levels of successive transfer culture. The culture condition of callus is25℃, dark culture. The suspension cell masses were grown in the flasks on a rotary shaker (110rpm)at24±2℃.
     5. The proteome of salicylic acid inducing ginseng suspension cell was firstly studied by two-dimensional gel electrophoresis technology. A high-throughput and high-resolution two-dimensional gel electrophoresis system was established for suspension-cultured ginseng cells proteins. The proteins were extracted by using the phenol extraction, the elements of lysis buffer were composed of9M urea,2M Thiourea,2%IPG buffer,4%CHAPS,65mM DTT and1%TBP. The pH5-8IPG strip was used. SDS-PAGE was performed in12%polyacrylamide gels. The proteins related to resistance were identified.2-DE was adopted to separate the differentially expressed proteins from suspension-cultured ginseng cells induced by SA. About800protein spots were detected on the2-DE gels. Twenty-four differentially expressed proteins that changes in protein abundance in more than2times and good repeatability were analyzed by MALDI-TOF-MS, of23proteins were successfully identified. In the absence of pathogen,12proteins had increased levels, two proteins had decreased levels and one protein was newly induced in suspension cultures treated directly with SA, in comparison to the control. Two proteins were up-regulated and one protein was down-regulated after SA treatment in the presence of C. destructans. Five proteins were up-regulated and only one protein was down-regulated in suspension cultures were differentially expressed after both SA treatment and pathogen infection. These identified proteins were predicted to be involved in defense and stress responses, energy and metabolism, signal transduction/transcription, protein synthesis and metabolism, photosynthesis and others. The proteins related to defense responses, such as Chaperonin60, monodehydroascorbate reductase, CAD and orcinol O-methyltransferase, were more abundant in suspension cultures of ginseng roots after application of S A.
     6. The molecular detection of Cylindrocarpon root rot of ginseng was established. A pair of primers specific for C. destructans was designed from comparisons of the internal transcribed spacer (ITS) regions1and2of isolates of diverse origins with sequences from commonly encountered fungi in soil. Under stringent PCR conditions, primers CD-F/CD-R amplify a450bp fragment from C. destructans DNA but not from other species or negative control. And C. destructans could be specifically detected with CD-F/CD-R from ginseng tissues and soil samples inoculated artificially.
引文
1. 白容霖,王子权.1989.人参锈腐病参根若干生物化学变化.植物病理学报,19(2):75-77.
    2. 白容霖.1990.我国人参锈腐病综合防治研究进展.植物保护,(2):40-43.
    3. 边秀秀,尚勋武,王化俊.2008.外源水杨酸(SA)诱导小麦抗条锈病研究初报.麦类作物学报,28(4):701-704.
    4. 陈芳育,黄青云,张红心,等.2007.水稻品种“佳辐占”应答细菌性条斑病病原菌侵染的蛋白质组学分析.作物学报,3(7):1051-1058.
    5. 陈捷.现代植物病理学研究方法.北京:中国农业出版社,2007.
    6. 陈喜文,郝友进,陈德富.2000.几种化学诱导物对黄瓜白粉病抗性的诱导作用.华北农学报,15(4):103-107.
    7. 董汉松.1995.植物诱导抗病性原理和研究.北京:科学出版社.
    8. 窦坦德,沈崇尧.2000.植物病原真菌检测技术研究进展.植物检疫,14(1):31-33.
    9. 段玉玺,张禹,朱晓峰,等.2011.根际促生菌诱导大豆抗大豆胞囊线虫的生化机理.大豆科学.
    10.范海延,陈捷,邵美妮,许玉凤,张春宇.2009.白粉病菌胁迫下黄瓜R17抗病品系叶片蛋白质组分析.园艺学报,36(6):829-834.
    11.冯洁,陈其媖.1991.棉株体内几种生化物质与抗枯萎病之间的初步研究.植物病理学报,21(4):291-297.
    12.冯远娇,王建武,苏贻娟,骆世明.2009.茉莉酸在玉米地上部与地下部系统性诱导防御反应中的作用.中国农业科学,42(8):2726-2735.
    13.葛银林,张元恩.1995.二硝基苯胺化合物对棉花抗枯萎病诱导作用及机理.植物保护学报,22(1):62-66.
    14.郝雨涵.2012.葡聚六糖诱导黄瓜子叶活性氧爆发的组织化学和蛋白质组学研究.沈阳农业大学学位论文.
    15.何永明,丁秀英,丛林晔,等.2007.β-氨基丁酸诱导烟草产生PR蛋白及对TMV的抑制作用.植物病理学报,37(3):271-277.
    16.贺福初.1999.蛋白质组研究——后基因组时代的生力军.科学通报,(2):3-12.
    17.皇甫海燕,官春云.2010.甘蓝型油菜抗菌核病近等基因系和感病亲本蛋白差异的初步研究.中国农业科学,43(10):2000-2007.
    18.黄国明,廖芳,刘跃庭,等.2007.苇状羊茅内生真菌与多年生黑麦草内生真菌实时荧光PCR检测研究.菌物学报,26(2):257-265.
    19.贾燕涛.2003.植物抗病信号转导途径.植物学通报,20(5):602-608.
    20.李强,张卫东,田纪春.2009.小麦抗白粉病基因Pm21抗病差异的蛋白质组学研究.中国农业科学42(8):2778-2783.
    21.李冠,薛应龙.1989.诱导免疫哈密瓜植株的苯丙烷类代谢酶活力及新蛋白的出现.植物生理学报,15(4):360-364.
    22.李冠,欧阳光察.1990.植物诱导抗病性.植物生理学通报,(6):1-5.
    23.李洪连.1994.植物诱导抗病性研究的现状与展望.河南农业大学学报,28(3):221-229.
    24.李伟华.2012.我国小麦秆锈菌兼Ug99监测新体系建立及其品种抗病基因分析.沈阳农业大学学位论文.
    25.李鑫.2009.矿质元素调控烟草抗PVYN生理生化及分子机制研究.沈阳农业大学学位论文.
    26.廖晓兰,朱水芳,陈红运,等.2002.植原体TaqMan探针实时荧光PCR检测鉴定方法的建立.植物病理学报,32(4):361-367.
    27.刘大伟.2011.灰皮支黑豆对大豆胞囊线虫3号生理小种抗性机制研究.沈阳农业大学博士学位论文.
    28.刘凌凤等.2003.一种基于分子信标荧光探针快速检测烟草花叶病毒的新方法.分析化学研究报告,31(9):1030-1035
    29.刘梅娟,李世昌,刑云章,等.1984.植物病理学报.14(3):183-185.
    30.刘士旺,吴学龙,郭泽建.2003.拟南芥的抗病信号传导途径.植物病理学报,33(2):104-111.
    31.刘小林.2007.蛋白质组学及其研究进展.安徽农业科学,35(31):9810-9812,9818.
    32.龙亚芹,王万东,王美存,等.2009.水杨酸(SA)诱导植物对病虫害产生抗性及作用机制研究.热带农业科学,29(12):46-50.
    33.孟慧,段翠芳,曾日中,植物蛋白质组学研究概况.热带农业科学,2006,26(6):60-65.
    34.邱红梅,刘春燕,张代军,等.2009.大豆抗疫霉根腐病的蛋白组研究.作物学报,35(3):418-423.
    35.任婧祺.2012.番茄花芽分化关键时期的差异蛋白质组学分析.沈阳农业大学学位论文.
    36.沈英,黄大年,范在丰,等.1990.稻瘟菌非致病性和弱致病性菌株对稻株诱导抗性的初步研究.中国水稻科学,4(2):95-96.
    37.石延霞,于洋,傅俊范,李宝聚.2008.病原菌诱导后黄瓜叶片中脂氧合酶活性与茉莉酸积累的关系.植物保护学报,35(6):486-490.
    38.史益敏.现代植物生理学实验指南.北京:科学出版社,1999:128-128.
    39.宋凤鸣,郑重.1996.棉酚和单宁含量与棉花对枯萎病抗性之间的关系.浙江农业大学学报,22(3):263-270.
    40.孙平华,郭坚华,蔡永健.1996.植物细菌性青枯病的综合防治.世界农业,20(3):45-47.
    41.孙平祥,王瑞霞,周燚,等.2010.植物诱导抗病性研究进展.30(10):15-17.
    42.陶刚,刘杏忠,王革,等.产几丁质酶木酶生防菌株的生化测定.西南农业学报,2005,18(4):453-454.
    43.王大东.2000.蛋白质组与蛋白质组学.国外医学:分子生物学分册,22(3):129-133.
    44.王桂兰,陈超.1999.水杨酸诱导花生对叶斑病抗性研究初报.北京农学院学报,14(4):6-10.
    45.王惠娟.2001.细胞分裂素在植物生长中应用.北京农业,21(5):12.
    46.王铁生.2001.中国人参.辽宁,辽宁科学技术出版社.
    47.夏明星,赵文军,马青,等.2006.番茄细菌性溃疡病菌的实时荧光PCR检测.植物病理学报,,36(2):152-157.
    48.肖长坤,李健强,师迎春,等.2005.十字花科蔬菜黑斑病菌的PCR鉴定.植物病理学报,35(3):278-282.
    49.谢勇,王云月,等.2000.烟草黑胫病菌分子检测.云南农业大学学报,15(2):176.
    50.许克新,王云川.2002.双向电泳及质谱分析与蛋白质组研究.第四军医大学学报,23(22):2017-2022.
    51.严雪瑞,傅俊范.柱孢属_Cylindrocarpon_真菌和参类锈腐病的研究历史与现状.沈阳农业大学学报,2002,33(1):71-75.
    52.易建平,刘素萍,印丽萍,等.2005.TaqMan-MGB探针在小麦印度腥黑穗病菌和黑麦草腥黑穗病菌鉴定上的应用.植物检疫,19(1):15-19.
    53.尹玲莉,杨凤还,侯晓杰,等.2007.化学药剂诱导植物抗病性研究进展.华北农学报,22(S):43-46.
    54.余朝阁,李天来,杜妍妍等.2008.植物诱导抗病信号传导途径.植物保护,34(1):1-4.
    55.张欣,曹君迈,贝盏临.2011.差异蛋白质组学在植物科学研究中的应用.广东农业科学,(07).
    56.张衍荣,王小菁,张晓云,等.2006.豇豆枯萎病抗性与水杨酸互作关系.中国蔬菜,(10):7-10.
    57.张元恩.1994.氟乐灵对棉花枯萎病的诱导作用.植物病理学报,24(1):80-84.
    58.赵杰.2004.IT S序列分析及其在植物真菌病害分子检测中的应用.陕西农业科学.4:35-37.
    59.周如军.2010.人参锈腐病发病因素与生防细菌的研究.沈阳农业大学学位论文.
    60.朱桂香,陈学胜,吴寿兴,等.1985全国人参科技资料汇编.
    61. Aebersold, R. and M. Mann.2003. Mass spectrometry-based proteomics. Nature 422(6928):198-207.
    62. Agirrezabala X. and J. Frank.2009. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Quarterly reviews of biophysics,42(3): 159.
    63. Aggarwal K and Lee KH.2003. Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic, (2):175-184.
    64. Amme S., et al.2005. A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics,5(10):2508-2518.
    65. Avdiushko S A, Ye X S, Kuc J.1993. Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology,42:441-454.
    66. Awade A, Metz-Boutigue MH, Le Ret M, et al.1991. The complete amino acid sequence of the pathogenesis-related (PR2) protein induced in chemically stressed bean leaves. Biochim Biophys Acta,1077:241-4.
    67. Bairoch, A. and B. Boeckmann.1992. The SWISS-PROT protein sequence data bank. Nucleic Acids Research,20(suppl):2019.
    68. Barakat A, Bagniewska A, Choi A, et al. The cinnamyl alcohol ehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biology,2009,9:26.
    69. Berger L R, Reynolds D M.The chitinase system of a strain of Streptomyces griseus. Biochimica et Biophysica Acta,1958,29(3):522-534.
    70. Bohm J, Hahn A, Schubert R, et al.1999. Real-time Quantitative PCR:DNA Determination in Isolated Spores of the Mycorrhizal Fungus Glomus mosseaeand Monitoring of Phytophthora infestans and Phytophthora citricolain their Respective Host Plants. Journal of Phytopathology,147(7-8): 409-416.
    71. Boller T, Gehri A, Mauch F, et al. Chitinase in bean leaves; induction by ethylene, purification, properties and possible function. Planta,1983,157(1):22-31.
    72. Bradford M M. A rapid and sensitive method for the quantitative of microgram quantities of protein using the principle of protein dye biding. Analytic Biochemistry,1976,72:248-254.
    73. Buzi A, Chilosi G, M agro P.2001. Induction of resistance in melon seedlings against soil-borne fungal pathogens by gaseous treatments with methyl jasmonate and ethylene. Phytopathology,152 (9):491-497.
    74. Camon, E., M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey, N. Mulder, T. Oinn, J. Maslen and A. Cox.2003. The gene ontology annotation (GOA) project:implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome research,13(4):662-672.
    75. Campbell, A. M. and L. J. Heyer.2007. Discovering genomics, proteomics, and bioinformatics, Benjamin.
    76. Caruso F L.1977. Protection of cucumber against Colletotrichum lagenarium by Pseudomonas Iachrymans. Proc Am Phytopathol Soc,3:159(Abstr).
    77. Catinot J, Buchala A, Mansour E A, et al.2008. Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett.,582:473-478.
    78. Chan ZL, Wang Q, Xu XB, Meng XH, Qin GZ, Li BQ, Tian SP.2008. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics,8 (22):4791-4807.
    79. Chilvers M I, duTL J, Akamatsu H, et al.2007. A Real-Time, Quantitative PCR Seed Assay for Botrytis spp. That Cause Neck Rot of Onion. Plant Disease,91(5):599-608.
    80. Cote M J, TardifM C, Meldrum A J.2004. Identification of Monilinia fructigena, M. fructicola, M. laxa, and Monilia polystromaon Inoculated and Naturally Infected Fruit Using Multiplex PCR. Plant Disease,88(11):1219-1225.
    81. Dean J F D, Gamble H R, Anderson J D.1989. The ethylene biosynthesis inducing xyganase:its induction in Trichoderma viride and certain plant pathogens. Phytopat holog y,79:1071-1078.
    82. Dean R A, KUC J.1987. Rapid lignification in response to wounding and infection as a mec han ism for induced systemic protection in cucunlber. Physiol Mol Plant Pathol,31:69.
    83. Dhindsa R S, Plumb-dhindsa P, Thorpe T A. Leaf senescence:Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.J Exp Bot,1981,32:93-101.
    84. Dumer J, Shah J, Klessig D F.1997. Salicylic acid and disease resistance in plants. Trends Plant Sci, (2):266-274.
    85. Echan, L. A., H. Y. Tang, N. Ali han, K. B. Lee and D. W. Speicher.2005. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics,5(13):3292-3303.
    86. Edgar, R., M. Domrachev and A. E. Lash.2002. Gene Expression Omnibus:NCBI gene expression and hybridization array data repository. Nucleic Acids Research,30(1):207-210.
    87. Farkas G L, Stahmann A.1996. On the nature of change in peroxidase isoenzymes in bean leave in tomato plants of south bean mosaic virus. Phytopathology,56:669-677.
    88. Feng Y J, Wang J W, Su Y J, Luo S M.2009. The Role of Jasmonic Acid in the Systemic Induced Defense Response of Aboveground and Underground in Corn (Zea mays). Scientia Agricultura Sinica, 42(8):2726-2735.
    89. Fenn J. B., M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse.1989. Electrospray ionization for mass spectrometry of large biomolecules. Science,246(4926):64-71.
    90. Fraaije BA, Lovell D J, Coelho JM, et al.2001. PCR-based Assays to Assess Wheat Varietal Resistance to Blotch (Septoria Triticiand Stagonospora Nodorum) and Rust(Puccinia Striiformisand Puccinia Recondita) Diseases. European Journal of Plant Pathology,107:905-917.
    91. Frederick R D, Snyder C L, Peterson G L, et al.2002. Polymerase Chain Reaction Assays for the Detection and Discrimination of the Soybean Rust Pathogens Phakopsora pachyrhizi and P.meibomiae. Phytopathology,92(2):217-227.
    92. Geddes J., F. Eudes, A. Laroche and L. B. Selinger.2008. Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics,8(3):545-554.
    93. Ge X C, Song F M, Chen Y Y, et al.2001. Activities of defense related enzymes induced by benzothiadiazole in rice to blast fungus. Chinese Rice Research News letter,9(4):10-11.
    94. Guerrera IC and Kleiner O.2005. Application of mass spectrometry in proteomics. Biosci Rep, (25):71-93.
    95. Guillem Segarra, Eva Casanova, David Bellido,Maria Antonia Odena, Eliandre Oliveira, Isabel Trillas. 2007. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomic,2(21):3943-3952.
    96. Hoo, Choong. Rept. Tottori Mycol. Intst, (Japan).1983.
    97. Iwai T, Seo S, Mitsuhara I, et al.2007. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol,48(7):915-924.
    98. Jenns A E, Kuc J.1977. Localized infection with tobacco necrosis virus protects cucumber against Colletotrichum lagenarium. Physiol PI Path,11:207-212.
    99. Kachroo P, Kachroo A, Lapchyk L, et al.2003. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2 mediated signaling. Mol Plant Microbe Inter,16:1022-1029.
    100. Karas M. and F. Hillenkamp.1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry,60(20):2299-2301.
    101. Kim S J, Kim K W, Cho M H, et al. Expression of cinnamyl alcohol dehydrogenases and their put ative homologues during Arabidopsis thaliana growth and development:lessons for database annotations? Phytochemistry,2007,68(14):1957-1974.
    102. Kim, S. I., Kim, J. Y., Kim, E. A., Kwon, K. H., Kim, K. W., Cho, K., Lee, J. H., Nam, M. H., Yang, D. C., Yoo, J. S., and Park, Y. M.2003. Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 3:2379-2392.
    103. Koller A., Washburn M.P., Lange B.M., et al.2002. Proteomic survey of matabolic pathways in rice, Proc. Natl. Acad. Sci.,99:1969-11974.
    104. Kozlowski G, Buchala A, Metraux J P.1999. Methyl jasmonates protects Norway spruce seedlings against Pythiurn ultimum Trow. Physiological Molecular Plant Pathology,55 (1):53-58.
    105. Kruger N. J. and A. von Schaewen.2003. The oxidative pentose phosphate pathway:structure and organization. Current opinion in plant biology,6(3):236-246.
    106. Kuc J, Richmond S.1977. Aspects of protection of cucumber against Colletotrichum lagenarium by Colletotrichum lageoarium. Phytopath,67:533-536.
    107. Kuc J, Shochley G, Kearney K.1975. Protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Physiol PI Path,195-199.
    108. Kuc J. Induced immunity to plant disease. Bioscience,1982,32:854-860.
    109. Kulik T, Fordonski G, Pszczolkowska A, et al.2004. Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation ofFusarium sporotrichioides. FEMSMicrobiology Let-ters,239(1):181-186.
    110. Kundu S, Chakraborty D, Pal A.2011. Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. Journal of Proteomics 74 (3):337-349.
    111. Kunkel, B N, Brooks, DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol,2002,5:325-331.
    112. Latha P, Anand T, Ragupath iN, et al.2009. Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and zmimu leaf extract against Alternaria solani. Biological Control.50(2):85-93.
    113. Lechti R, Farmer E.2002. The jasmonate pathway. Science,296(5573):1649-1650.
    114. LeemanM. Vanpelt J A, DAN Ouden F M, et al.1995. Induction of systernic resistance against Fusarium wilt of radish by lippolysac-charides of Pseudomonas fluorescens. Phytopathology,85(9): 1021-1027.
    115. Mauch F. Mauchmani B. Boller T. Antifungal hydrolases in pest tissue II. Inhibition of fungal growth by combination of chitinase and β-1,3-glucanase. Plant Physiology,88:936-942.
    116. Mehdy M C.1994. Active oxygen species in plant defense against pathogens. Plant Physiology,105: 467-472.
    117. McInttyre J L, Dodds J A, Hare J D.1981. Effects of localized infection of Nicotiana tabaccum by tobacco mosaic virus on systemic resistance against diverse pathogens and an insect. Phytopathology, 71:297-301.
    118. Meyer G D, ELAD Y.1998. Induced resistance in Trichoderma harzianum biocontrol. Plant Pathology,104 (3):279-286.
    119. Michael N., JEFFREY S. RUSH, AND JOSEPH A. KuC.1987. A Role for Ca2+ in the Elicitation of Rishitin and Lubimin Accumulation in Potato Tuber Tissue. Plant Physiol.84,520-525.
    120. Moerschbacher B, Heck B, Kogel K H, et al. An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f.sp.tritici. Induction of enzymes correlated with biosynthesis of lignin. Zeitschrift fur Naturforsch,1986,41:839-844.
    121. Moiseyev G P, Beintema J J, Fedoreyeva L I, Yakovlev G E.1994. High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonuclease. Planta,193:470-2.
    122. Moiseyev G P, Fedoreyeva LI, Zhuravlev YN, Yasnetskaya E, Jekel PA.1997. Primary structures of two ribonucleases from ginseng calluses; new members of the PR-10 family of intracellular pathogenesis-related plant proteins. FEBS Lett,407:207-10.
    123. Mtraux JP, Singer H, Ryals JA, et al.1990. Increase in salicylic acid at the onset of systemic acquried resistance in cucumber. Science,250:1004-1006.
    124. Nedelkov D, Rasooly A, Nelson RW.2000. Multitoxin biosensor-mass spectrometry analysis:a new approach for rapid real-time sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol, (60):1-13.
    125. Nelson RW, Krone JR.1999. Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS).MolRecognit, (12):77-93.
    126. O'Farrell PH.1975. High Resolution Two-dimensional Eletrophoresis of Proteins. J Biol Chem.250 (10):4007-4021.
    127. Patterson SD and Aebersold RH.2003. Proteomics:the first decade and beyond. Nat Genet, (33) (Suppl.):311-323.
    128. Peer V, Niemann R, Sohippers G J B.1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation Pseudomonas. Phytopathology,81:728-733.
    129. Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Metraux, J. P. and Broekaert, W.F.1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113.
    130. Preston C. A., Carrie L., Alexander J., Ian T. B.1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta,209:87-95.
    131. Pulla R. K., Lee O. R., In J. G. et al.2010. Expression and functional characterization of pathogenesis-related protein family 10 gene, PgPR10-2, from Panax ginseng C.A. Meyer. Physiological and Molecular Plant Pathology,74:323-329.
    132. Punja, Z. K., Feeney, M., Schluter, C., and Tautorus, T.2004. Multiplication and germination of somatic embryos of American ginseng derived from suspension cultures and biochemical and molecular analyses of plantlets. In. Vitro. Cell Dev-pl 40:329-338.
    133. Rahman M, Punjia Z K. Influence of iron on cylindrocarpon root rot development on ginseng. Phytopathology,2006,96 (11):1179-1187.
    134. Rampitsch C., N. V. Bykova, B. McCallum, E. Beimcik and W. Ens.2006. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics, 6(6):1897-1907.
    135. Richard C H, Pierre B, Manon G.1996. Identification of root rot fungi in nursery seedlings by nested multiplex PCR.Appl. Environ. Microbiol.,62 (11):4026-4031.
    136. Rodriguez-Celma J., et al.2010. Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteomics,73 (9):1694-1706.
    137. Saligrama A D, Junko S, Hideo I, et al.2008.Proteomics Approach for Investigating the Disease Resistance Using Cucumber as Model Plant. American Journal of Biochemistry and Biotechnology, 4(3):231-238.
    138. Scheel D. Resistance response physiology and signal transduction. Plant-microbe interactions,1998, 305-310.
    139. Schmid MB.2002.Structural proteomics:the potential of high-throughput structure determination.Trends Microbiol, (10):27-31.
    140. Schweizer P., Buchala A., Silverman P., Seskar M., Raskin L., and Metraux J.P.1997. Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid LevelsP. Plant Physiol.114:79-88.
    141. Seifert K A, McMullen C R, Yee D, et al.2003. Molecular differentiation and detection of ginseng adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology,93 (12): 1533-1542.
    142. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF.2008. Plant pathogenesis-related (PR) proteins:a focus on PR peptides. Plant Physiol Biochem,46:941-50.
    143. Sibou T R, Eudes A, Pollet B, et al. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Phy siol.,2003,132(2):848-860.
    144. Shi Y X, Yu Y, Fu J F, Li B J. Relationship between LOX activity and JA accumulations in cucumber leaves induced by pathogen. Acta Phytophylacica Sinica,2008,35(6):486-490.
    145. Smith J L, Moraes C M D, Mescher M C.2009. Jasmonate and salicylate mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci,65:497-503.
    146. Spengler SJ. Bioinformatics in the Information Age. Science,2000; 287(18):12211223.
    147. Stephen R H.2002. Molecular detection of Neonectria galligena (syn. Nectria galligena). Mycological Research,106 (3):280-292.
    148. SuarezM B, Walsh K, Boonham N, et al.2005. Development of real-time PCR (TaqMan (R)) assays for the detection and quantification of Botrytis cinereain planta. Plant Physiology and Biochemistry, 43(9):890-899.
    149. Tavares R, Aubourg S, Lecharny A, Kreis M. Organization and structural evolution of four mult igene families in Arabidopsis thaliana:AtLCAD, AtLGT, AtMYST and AtHD-GL 2. Plant Mol.Biol,2000, 42(5):703-717.
    150. Tronchet M, Balagu C, Kroj T, Jouaninl L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol.Plant Pathol.,2010,11(1):83-92.
    151. Turner J G, Ellis C, Devoto A. The jasmonate signal pathway. The Plant Cell,2002,14:153-164.
    152. Van Loon LC, Pierpoint WS, Boller T, Conejero V.1994. Recommendation for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245-64.
    153. Van Loon LC, Van Strien EA.1999. The family of pathogenesis-related proteins. Physiol Mol Plant Pathol,55:85-97.
    154. Ventelon. M, Delalande F, Brizard J P, et al.2004. Proteome analysis of cultivar specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics,4(1):216-225.
    155. Wang H., S. Wang, Y. Lu, S. Alvarez, L. M. Hicks, X. Ge and Y. Xia.2011. Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis. J Proteome Res,11(1):412-424.
    156. Whetzel H H, Rosenbaum J. U. S.1912. Dep. Agric. Bur. Plant Ind. Buth. (250):44.
    157. White R.F.1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology,99(2):410-412.
    158. Yahata E., W. Maruyama-Funatsuki, Z. Nishio, T. Tabiki, K. Takata, Y. Yamamoto, M. Tanida and H. Saruyama.2005. Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics,5(15):3942-3953.
    159. ZhangAW, Hartman G L, Curio P B, et al.1999. Molecular Detection of Diaporthe phaseolorumand Phomopsis longicolla from Soybean Seeds. Phytopathology,89(9):796-804.
    160. Zinnsmeister G L. Phytopathology.1918, (8):557-571.
    161.Zuo Y H, Rui H Y, Yang C P, et al.2008. Relationships between chitinase activity and resistance to Phytophthora root rot in soybean. Plant Protection,34(6):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700