虫害马尾松邻株信号通讯及茉莉酸甲酯诱导的蛋白表达差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana)是我国南部特有乡土树种,面积居全国针叶林首位,在荒山造林及采脂中发挥着重要的生态效益和经济价值。但常遭受马尾松毛虫(Dendrolimus Punctatus Walker)的危害,猖獗年份针叶全部食尽,给林业带来巨大损失。为解释马尾松毛虫周期爆发的机理,发挥森林生态系统自主调节作用,完善害虫综合治理策略,本文从马尾松诱导防御角度进行了以下几个方面的研究。
     1)用扫描电镜观察了马尾松毛虫危害后马尾松针叶横切面树脂道变化,发现针叶树脂道中有许多紧密排列、且不易挥发的白色颗粒状树小球,推测其为二萜酸类物质,表明马尾松诱导防御反应中物理抗性增强。同时,单萜类具有与其相同的丙酮酸/3-磷酸甘油醛代谢途径,间接说明虫害后起主要防御作用的萜烯类挥发物通过重新合成来发挥其重要生态功能。
     2)对盆栽马尾松接虫咬食处理后,通过TCT-GC/MS分析了同株中未受害轮枝针叶挥发物成分及相对含量的时序变化。结果表明,与对照相比,挥发物组分相同,但多数挥发物相对含量变化显著,萜烯类化合物如莰烯、4(10)-宁烯、β-蒎烯、p-散花烯、柠檬烯、β-水芹烯、β-石竹烯、α-石竹烯、罗汉柏烯和含氧化合物辛醛、壬醛、癸醛、冰片乙酯、戊二烯二丁酯等的相对含量都有明显的时序变化。另外,邻枝针叶内源茉莉酸含量测定结果显示,茉莉酸含量在2h显著高于对照,与受害枝的内源茉莉酸相比,具有滞后性。表明虫害后马尾松的伤信号可以从受害部位传递至周围邻枝,引起整个植株产生防御反应。茉莉酸在调节挥发物的系统诱导防御中起重要作用。
     3)通过自制密闭玻璃箱对虫害马尾松邻株针叶挥发物及信号物质进行研究。结果表明,在感受到虫害株释放的伤信号后,健康马尾松针叶茉莉酸含量迅速增加,并在48h达到高峰,72h降至正常水平。脂氧合酶是茉莉酸合成途径中的关键酶,在虫害邻株针叶中,其活性呈先升高后回落的趋势,且在12h达到最高,与内源茉莉酸的变化相一致。水杨酸在处理后所测各点始终高于对照,12h达到峰值。ABA方差分析差异不显著。
     4)在上述研究的基础上,进一步持续检测了密闭环境中可能的报警信号及邻株健康马尾松挥发物的时序变化。结果表明,箱体中没有检测到茉莉酸甲酯,但却检测到乙烯的存在,在处理的10h内一直维持在5μg/L左右。邻株挥发物的成分与对照相同,但相对含量差异显著。多数挥发物的相对含量在处理后就有所升高,在24h或36h达到峰值。初步证明虫害马尾松与相邻健康马尾松之间存在明显的化学通讯,邻株能够迅速感知虫害株挥发物指纹图的改变,并产生相应的防御功能。邻株马尾松激发了茉莉酸信号途径,且与乙烯、水杨酸表现出协同作用,共同调节挥发物的变化。
     5)为了深入了解茉莉酸对马尾松防御相关蛋白调节机制,通过外源茉莉酸甲酯喷施处理,利用蛋白质双向电泳及生物质谱技术,首次研究了处理前后蛋白表达的差异。胶图结果显示,蛋白主要集中在pH4-7的区间内,分子量从15-82kD。从中找出56个差异点,处理后9个蛋白点丢失,新合成27个,其余20个差异显著的蛋白点中,11个表达上调,9个下调。生物质谱鉴定出21个差异蛋白,以1,5-
     二磷酸核酮糖羧化酶为主,在诱导防御中的能量供给上发挥重要作用。同时,通过优化提取试剂,挑选最适pH范围的等电聚焦胶条等,成功建立了适合马尾松针叶蛋白样品的提取方法及电泳条件,为马尾松蛋白质组学研究奠定了良好的基础。
     6)模拟吸附热解析方式,首次通过ATD-GC/MS建立了常见挥发物的外标定量曲线,并对其条件进行了优化,即直接进样方式、流速50±3ml/min、干吹时间1min、温度50℃,当标准化合物含量在几十pg~几百ng之间时,其线性范围最佳。这一研究弥补了热脱附所测挥发物的绝对定量问题,为今后挥发物定量提供了科学依据。
Pinus massoniana is a native endemic species in southern China, holding the biggest areas among coniferous forests. It has enormous ecological and economic value, especially in barren mountain afforestation and resin tapping. However, it often suffers from the feeding of Dendrolimus Punctatus seriously, resulting in huge losses to the forestry. For explaining the pest outbreak mechanism, revealing the self-regulation function of forest ecosystem, improving integrated pest management strategies, several aspects about the rapid induced resistance of P. massoniana have been researched in this dissertation.
     1) The needle transverse plane of P. massoniana had been observed by scanning electron microscope (SEM). There were many white granular resin acid arranged closely in the resin ducts after punctatus feeding, showing the physical resistance is increased by their re-synthesis. Meanwhile, according monoterpenea and diterpene acids sharing the same pyruvate/3-glyceraldehyde phosphate metabolic synthesis pathway, this proved indirectly that the volatile terpenoids were also re-produced in the resin ducts, which played an important function in plant induced resistance.
     2) After one branch needles of potted plant P. massioniana was fed by D. Punctatus, the composition and relative contents of volatile organic compounds (VOCs) from the adjacent upper branch needles of insect-damaged branch at different times was analyzed by TCT-GC/MS. The results showed that terpenes were the dominant, while the others such as oxygenated and nitrogenous compounds were less abundant VOCs. Most of them in treated plants had higher contents than those in the control after 1h treatment and remained much high levels at 2h, such as camphene, 4(10)-Thujene,P-pinene, o-Cymene, limonene,β-phellandrene, p-Metha-1.4(8)-dien,β-Caryophyllene, a-Caryophyllene, as well as some oxygenates including octanal, nonanal, decanal, borneol acetate, glutaric acid, dibutyl ester and cyclohexyl isothiocyanate. The content of methyl jasmonic acids (MeJA) in adjacent needles of infected P. massioniana was increased after 1h treatment and nearly doubled that of control plants at 2h. The data indicates that the defensive system of P. massioniana was initiated and leading to the resistance reaction of the neighborhood undamaged branches by inset-pest.
     3) For investigating whether and how gymnosperm can perceive chemical compound as pre-warning signals from adjacent neighbors, insect-damaged P. massoniana and healthy ones were placed in one transparent closed glass box. After treated for 10h, the dynamic change of endogenous jasmonic acid (JA), abscisic acid (ABA), salicylic acid (SA), lipoxygenase (LOX) and VOCs from healthy needles had been studied. The results showed that the content of JAs increased immediately and reached twice times as control after treatment, then it was keeping in a higher level than control until another peak come again at 48h. LOX is a key enzyme in the synthesis of JA, its activity was increased at first and then trend down, the change trend was consistent with that of JA. SA in measured points was always higher than controls, and reached its peak in 12h. Although in most points ABA higher than the control, the analysis of variance was not significant.
     4) Furthermore, compared with control, no new compounds produced emitted from adjacent no-feeding P. massoniana needles, but most of their relative percentages like Tricyclene, a-Pinene,β-Phellandrene promoted and reached the peak between 24-36h. In addition, to explore what kinds of chemicals can be the potential elicitor, the blend of gases in the glass cube were collected and analyzed, apart from the common VOCs from P. massoniana, ethylene (ETH) was detected and was keeping stable content about 5μg/L among the treating points. The reported volatile MeJAs was not found. The date indicates that the neighboring plants make evident response to the received information and initiated the rapid resistance reaction, plant-to-plant communication indeed exists between damaged and undamaged P. massoniana. In the inspired signal conduction pathway, JA, SA and ET showed synergy effect in the regulation of volatiles.
     5) To understand the regulation mechanism of JA on the pinus defense-related proteins better, by using two dimensional electrophoresis (2-DE) and tandem mass spectrum techniques,56 JA-responsive proteins were sieved and analyzed between control and exogenous MeJA spraying treatment in P. massoniana needles. Those protein spots mainly distributed in pH4~7,MW15kD~82kD. Among of them, the expression of 11 proteins increased,9 decreased,9 disappeared, and 27 new synthesized. Twenty-one proteins was analysized by TOF-MS. R ibulose-1,5-bisphosphate carboxylase/oxygenase is the main differential expression proteins. Meanwhile, by optimizing the extraction, selection of the optimum pH range of isoelectric focusing strips, etc, the 2-DE maps was gained with less tailing, clearly and well distributed protein spots, and have high repetition rate. The successful establishment of pine needle protein extraction and electrophoresis conditions has laid a good foundation for future pine proteomics research.
     6) Simulating adsorption-thermal desorption procedure, external standard quantitative curves of common pinus VOCs were established by atuo-themal-desorber (ATD)-GC/MS. When the flow rate of N2 is 50±3ml/min, dry blow time lmin, temperature 50℃, the results are repeatable well. For the MS, the injection content of standard compounds between 50pg-700ng, the linear range is best. The external standard method could determine the absolute content of VOCs, which supplies a more accurate and reliable quantitative manner for plant VOCs research.
引文
[1]蔡晓明,孙晓玲,董文霞等.应用zNoseTM分析被害茶树的挥发物.生态学报,2009,29(1):169-177
    [2]陈昌洁,松毛虫综合治理.北京,中国林业出版社,1990
    [3]陈定如.马尾松、罗汉松、圆柏、侧柏.华南园林树木,2009,6:78-79
    [4]陈华君,张风娟,任琴等.植物材料中茉莉酸的提取、纯化及其定量方法的研究.分析测试学报,2005,24(增刊):138-140
    [5]陈昆松,徐昌杰,许文平等.猕猴桃和桃果实脂氧合酶活性测定方法的建立.果树学报,2003,20(6):436-438
    [6]陈云霞,梁冰,王国俊.吸附浓缩/热脱附技术进展.分析测试技术与仪器,1999,5(1):9-14
    [7]邓文红,沈应柏,陈华君等.昆虫取食和药剂熏蒸对马尾松针叶脱落酸和茉莉酸含量的影响.应用生态学报.2009,20(5):1166-1170
    [8]邓文红,沈应柏,陈华君等.虫食与熏蒸对马尾松挥发性化学物质的影响.西北植物学报,2008,28(12):2547-2551
    [9]董道青,陈建明,俞晓平等.夹竹桃不同溶剂提取物对福寿螺的毒杀作用评价.浙江农业学报,2009,21(2):154-158
    [10]戈峰,李镇宇,谢映平等.我国主要松树诱导抗虫性的一些规律比较.北京林业大学学报,2002,24(3):61-65
    [11]韩宝瑜.茶树-茶蚜捕食、寄生性天敌间定向、取食的物理、化学通讯机制.杭州:中国农业科学院茶叶科学研究所,1999
    [12]胡永建,任琴,金幼菊等.马尾松、湿地松挥发性化学物质的昼夜节律释放.生态学报,2007,27(2):565-570
    [13]黄新培.昆虫化学生态学的研究进展.北京农业大学学报,1991,17(4):103-112
    [14]贾贞,马银山,毛学文等.植物的虫害反应与抗虫机制研究进展.2005,21(5):53-55
    [15]贾贞,宋占午,金祖荫等.山楂叶螨危害对海棠叶片POD的影响.西北植物学报,2004,24(11):2136-2139
    [16]李爱民,王玉荣,吴鸿.马尾松主要器官树脂道的发生和发育马尾松主要器官树脂道的发生和发育.林业科学,2008,9(44):36-42
    [17]李海林,李镇宇,张丽丽.取食不同受害程度的马尾松对马尾松毛虫种群数量的影响.中国森林病虫,2005,24(6)1-5
    [18]李清清,李大鹏,李德全.茉莉酸和茉莉酸甲酯生物合成及其调控机制.生物技术通报,2010,1:53-57
    [19]李镇宇,陈华盛,袁小环等.油松对赤松毛虫的诱导化学防御.林业科学,1998,34(2):43-49
    [20]李镇宇,王燕,陈华盛.油松对赤松毛虫的诱导化学防御及滞后诱导抗性.林业科学,2000,36
    (1):66-70
    [21]李中新,庆和,刘凤菊等.火炬树(Rhus typhina)叶挥发性成分及其对两种叶螨选择行为的影响.生态学报,2009,29(2):714-719
    [22]刘兴平,戈峰,陈春平.我国松树诱导抗虫性研究进展.林业科学,2003,39(5):119-128
    [23]娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制.生态学报,2000,20(6):1097-1106
    [24]娄永根,程家安.植物的诱导抗虫性.昆虫学报,1997a,40(3):320-331
    [25]娄永根,程家安.植物-植食性昆虫-天敌三营养层次的相互作用及其研究.应用生态学报,1997b,8(3):325-331
    [26]鲁玉杰,张孝羲,棉铃虫对几种信息化合物的触角电位反应,生态学报,2003,2(23):308-313
    [27]马崇坚,柳俊,谢从华.茉莉酸类物质的功能与胁迫防御.华中农业大学学报,2001,20(6):603-608
    [28]马尾松抗松毛虫抗性研究组.马尾松抗松毛虫植株的抗性机制研究.林业科学,1990,26(2):133-141
    [29]潘敏,杨建平,李永祥等.韭菜受迟眼蕈蚊为害后3种酶活性的变化.西北农业学报,2005,14(3):137-140
    [30]潘延云,郭毅,赵军峰等.乙烯在植物中的信号转导.浙江大学学报,2003,29(4):453-460
    [31]彭金英,黄勇平.植食性昆虫诱导的挥发物及其在植物通讯中的作用.植物生理学通讯,2005,41(5):679-683
    [32]平立岩,沈应柏.植物创伤诱导的挥发物及其信号功能.植物生理学通讯,2001,37(2):166-172
    [33]秦秋菊,高希武.昆虫取食诱导的植物防御反应.昆虫学报,2005,48(1):125-134
    [34]任琴,金幼菊,胡永建等.马尾松诱导挥发性有机化合物的快速变化.林业科学,2006a,42(4):65-70
    [35]任琴,李镇宇,胡永建等.受害马尾松、湿地松挥发性化学物质的释放.生态学报,2005,25(11):2928-2932
    [36]任琴,杨莉,胡永建等.受害马尾松针叶内脱落酸含量的变化.北京林业大学学报,2006b,28(5):99-101
    [37]王立春,任琴,许志春等.茉莉酸甲酯对马尾松松针萜烯类挥发物及马尾松毛虫生长发育的影响.北京林业大学学报,2008,30(1):79-84
    [38]王燕,戈峰,李镇宇.马尾松诱导化学物质的时空动态变化.生态学报,2001,21(8):1256-1261
    [39]王燕,李镇宇,戈峰.马尾松受害诱导的化学物质滞后变化.昆虫报,2000,43(3):291-296
    [40]王勇,肖铁光,何忠等.马尾松针叶挥发性化合物质对松毛虫赤眼蜂嗅觉及寄生行为的影响,昆虫知识,2008,45(6):944-949
    [41]王志辉,张树宇,陆思华等.北京地区植物VOCs排放速率的测定.环境科学,2003,24(2): 7-12
    [42]武晓颖,金幼菊,陈华君.简易蒸馏法提取侧柏挥发物组分的GC-MS分析.分析测试学报,2008,27:90-92
    [43]郄光发,王成,彭镇华.森林生物挥发性有机物释放速率研究进展.应用生态学报,2005,16(6):1151-1155
    [44]徐涛,周强,陈威等.茉莉酸信号转导途径参与了水稻的虫害诱导防御过程.科学通报,2003,48(13):1442-1447
    [45]许宁.挥发性物质在茶树-茶尺蠖-绒茧蜂三重营养关系中化学通讯作用.杭州:浙江农业大学应用昆虫研究所,1996
    [46]徐伟,严善春.茉莉酸在植物诱导防御中的作用.生态学报,2005,25(8):2074-2082
    [47]严善春,江华,迟德富等.植物挥发性物质对落叶松球果花蝇的驱避效果.生态学报,2003,23(2):314-319
    [48]杨迪,李庆,胡增辉等.损伤与邻近健康复叶槭植株内脱落酸和茉莉酸含量变化.北京林业大学学报,2003,25(4):35-38
    [49]殷海娣,黄翠虹,薛望等.昆虫唾液成分在昆虫与植物关系中的作用.昆虫学报,2006,49(5):843-849
    [50]张峰,阚炜,张钟宁.寄主植物-蚜虫-天敌三重营养关系的化学生态学研究进展.生态学报,2001,21(6):1025-1033
    [51]张海峰,袁晶,汪俏梅.植物激素与芥子油苷在生物合成上的相互作用.细胞生物学杂志,2005,7(4):423-426
    [52]张茂新,凌冰,孔垂华等.微甘菊挥发油的化学成分及其对昆虫的生物活性.应用生态学报,2003,14(1):93-96
    [53]张星耀,骆有庆.中国森林重大生物灾害.北京:中国林业出版社,2003
    [54]周莹,寿森炎,贾承国等.水杨酸信号转导及其在植物抵御生物胁迫中的作用.自然科学进展,2007,17(3):305-312
    [55]周政贤.中国马尾松.北京:中国林业出版社,2001,14
    [56]朱麟,杨振德,赵博光等.植食性昆虫诱导的植物抗性最新研究进展.林业科学,2005,42(1):165-173
    [57]宗娜,阎云花,王琛柱.昆虫对植物蛋白酶抑制的诱导及适应机制.昆虫学报,2003,46(4):533-539
    [58]Agrawal AA, Karban R. Domatia mediate plant-arthropod mutualism. Nature,1997,387:562-563
    [59]Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants. The Plant Cell,2003,15:2866-2884
    [60]Alborn T, Turlings TCJ, Jones TH, et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science,1997,276:945-949
    [61]Alfaro R I. An induced defense reaction in white spruce to attack by the white pineweevil, P issodes strobe. Can. J. For. Res,1995,25:1725-1730.
    [62]Appel HM, Schultz JC. Oak tannins reduce effectiveness of Thuricide (Bacillus thuringiensis) in the Gypsy Moth (Lepidoptera:Lymant riidae). J Econom Entomol,1994,87 (6):1736-1742
    [63]Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,2000,406:512-514
    [64]B. Miller, L. L. Madilao, S. Ralph, and J. Bohlmann.. Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcript in Sitka spruce. Plant Physiol.2005,37:369-382
    [65]Baldwin IT, Schultz JC. Rapid changes in tree leaf chemistry induced by damage:evidence for comm unication between plants. Science,1983,221:277-279
    [66]Baldwin IT, Zhang ZP, Diab N, et al. Quantification, corrections and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta,1997,201(4): 397-404
    [67]Baldwin IT. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol,2001,127:1449-1458
    [68]Beckers GJM, Spoel SH. Fine-tuning plant defence signaling: Salicylate versus jasmonate. Plant Biol,2006,8:1-10
    [69]Bergey DR, Rhowe GA, Ryan CA. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Pr6c.Natl.Acad.Sci.USA,1996,93:12053-12058
    [70]Bergey DR, Ryan CA. Wound-and system-inducible calmodulin gene expression in tomato leaves. J Plant Molecule Biology,1999,40:815-823
    [71]Birkenmeier GF, Ryan CA. Wound signaling in tomato plants-evidence that ABA is not a primary signal for defense gene activation.Plant Physiology,1998,117:687-693
    [72]Bishop P, Pearce G, Bryant JE et al. Isolation and characterization of the proteinase inhibitor inducing factor from tomato leaves:Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem,1984,259:13172-13177
    [73]Byun-McKay A, Godard KA, Toudefallah M, et al. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiology Preview,2006,10 (1):104-105
    [74]Byun-McKay, A., K. A. Godard et al. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 2006,140:1009-1021
    [75]C. J. Mayer, A. Vilcinskas, and J. Gross. Pathogen-induced release of plant allomone manipulates vector insect behavior. J chem. Ecol.2008,34:1518-1522
    [76]C. M. Smith and E. V. Boyko. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata 2007,122:1-16
    [77]Campbell CA M. Dawson GW, Griffiths DC, et al. Sex attractant pheromone of damson-hop aphid Phorodon humuli. J.Chem. Ecol.,1990,12:3455-3465
    [78]Chaman ME, Copaja SV, Argandona VH. Relationships between salicylic acid content, phenylalanine ammonia- lyase (PAL) activity and resistance of barley to aphid infestation. J Agric Food Chem,2003,51:2227-2231
    [79]Chenier JVR, Philogene BJR. Field responses of certain forest coleoptera to conifer monoterpenes and ethanol. J Chem Ecol,1989,15(6):1729-1746
    [80]Conconi A, Miquel M, Browse JA et al. Intracellular levels of free linolenic and linoleic acids increase in tomato lesves in response to wounding. Plant Physiology,1996,111:797-803
    [81]Constabel CP, Bergey DR, Ryna CA. Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores. Rec Adv Photochem,1996,30:231-252
    [82]Creelman RA, Tiemey ML, Mullet JE. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene-expression. Proc Natl Acad Sci USA.1992,89: 4938-4941
    [83]De Boer JG, Dicke M. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol,2004,302:255-271
    [84]De Moraes CM, Mescher MC, Tumlinson JH. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature,2001,410:577-580
    [85]Degenhardt J, Gershenzon J. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (E)4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta,2000,210:815-822
    [86]Desveaux D, Subramaniam R, Despre C et al. A'Whirly'transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell,2004,6:229-240
    [87]Devoto A, Turner JG. Regulation of jasmonate-mediated plant responses in Arabidopsis. Annals of Botany,2003,92:329-337
    [88]Dicke M, Sabelis M. Costs and benefits of chemical information conveyance: proximate and ultimate factors. In BD Roitberg, MB Isman, eds, Insect Chemical Ecology: An Evolutionary Approach. Chapman and Hall, New York,1992:122-155
    [89]Dicke M, Sabelis MW. Plant strategies of manipulating predator-prey interaction through allelochemicals:Prospects for application in pest control. J Chem Ecol,1990b,16:3091-3118
    [90]Dicke M, Takabayashi J, Posthumus M A et al. Plant-phytoseiid interactions mediated by herbivore induced plant volatiles:variation in production of cues and in responses of predatory mites. Exp Appl Acarol,1998,22:311-333
    [91]Dicke M, Van TA, Beek MA. Posthumus et al. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions:involvement of host plant in its production. J Chem. Ecol.1990a,16:381-396
    [92]Dicke M. Local and systemic production of volatile herbivore2induced terpenoids: their role in plant-carnivore mutualism. Plant Physiol,1994,143:465-472
    [93]Dicke M. Evolution of induced indirect defense of plants. In:Tollrian R, Harvell C(eds). The Ecology and Evolution of Inducible Defenses. Princeton: Princeton University Press,1999,62-68
    [94]Dietz K. J, Tavakoli N and Kluge C et al. Significance of the Ⅴ-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Biol. 2001,52:1969-1980.
    [95]Doss RP, Oliver JE, Proebsting WM, et al. Bruchins:insect-derivesd plant regulators that stimulate neoplasm formation. Proc. Natl. Acad. Sci. USA,2000,97:6218-6223
    [96]Ecker JR. Davis R W. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci USA, 1987,84:5202-5206
    [97]Ecker JR. The ethylene signal transduction pathway in plants. Science,1995,268:667-675
    [98]Engelberth J, Koch T, Schueler G et al. Ion channel2forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Crosstalk between jasmonate and salicylate signaling in lima bean. Plant Physiol,2000,125:369-377
    [99]Farmer EE, Ryan CA. Interplant communication:Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA,1990,87:7713-7716
    [100]Farmer EE. New fatty acid-based signals:A lesson from the plant world. Science,1997,276: 912-913
    [101]Farmer EE. Surface-to-air signal. Nature,2001,411:854-856
    [102]Felton GW, Eichenseer H. Herbivore saliva and its effects on plant defense against herbivores and pathogens. In:Induced Plant Defenses against Pathogens and Herbivores: Ecology and Agriculture St.Paul, MN:Am Phytopahrol Soc Press.1999,19-36
    [103]Feussner I, Wasternack C. The lipoxygenase pathway. Annual Review of Plant Biology,2002,53: 275-297
    [104]Fowler SV, Lawton JH. Rapidly induced defenses and talking trees:the devil's advocate position. Amer Nat,1985,126:181-195
    [105]G. A Howe and G. Jander. Plant immunity to insect herbivores. Annu.Rev. Plant Biol.2008,59: 41-66
    [106]Gaffney T, Friedrich L, Vernooij B et al. Requirement of salicylic for the induction of systemic acquired resistance. Science,1993,261:754-756 [107] Giri AP, Harsulkar AM, Deshpande VV, et al. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol,1998,116:393-401
    [108]Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves:a possible defense mechanism against insects. Science,1972,175:776-777
    [109]Guo H, Ecker J R. The ethylene signaling pathway: New insights. CurrOpin PlantBio, 2004,7(1):4
    [110]Halitschke R, Schitlko U, Pohnert G et al. Molecular interactions between the specialist herbivone Manduca sexta (Lepidoptera:Sphingidae) and its natural host Nicotiana attenuata III Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol,2001,125:711-717
    [111]Hatada EN, Krappmann D, Scheidereit C. NF-kB and the innate immune response. Curr Opin Immunol,2000,12:52-58
    [112]HauseB, Hause G, Kutter C, et al. Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant and Cell Physiology,2003,44:643-648.
    [113]Herms DA, Mattson WJ. The dilemma of plants:to grow or to defend. Quart Rev Biol,1992,67: 283-335
    [114]Hountondji FC, Hanna R, Sabelis MW. Does methyl salicylate a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae? Exp Appl Acarol,2006,391:63-74
    [115]Howell CR, Hanson LE, Stipanivic RD et al. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia silani by seed reatment with Trichoderma virens. Phytopathology,2000,90: 248-252
    [116]J. Browse and GA. Howe. New weapons and a rapid response against insect attack. Plant Physiol. 2008,146:832-838
    [117]Jongsma MA, Bolter C. The adaption of insects to plant protease inhibitors. J Insect Physiol,1997, 43:885-895
    [118]JIA HS, LU CM. Effects of abscisic acid on photo inhibition in maize plants. Plant Science,2003, 165:1403-1410.
    [119]K Matsui. Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism. Current opinion in plant biology.2006,9:274-280
    [120]Kaiser R. Aromatherapy: the art of being a good nergbbor. Pollution Engineering,1999,31(9): 46-49
    [121]Karban R, Baldwin IT. Induced Response to Herbivory. Chicago:Chicago University Press.1997
    [122]Karban R, Balwin IT, Baxte KJ et al. Communication between plants:induced resistance in wild tabacco plants following clipping of neighboring sagebrush. Oecologia,2000,125:66-71
    [123]Kessler A, Baldwin IT. Defensive function of herbivore- induced plant volatile emissions in nature. Science,2001,291:2141-2144
    [124]Kim S.T., Kim S.G., Hwang D.H., et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics,2004,4(11):3569-3578
    [125]Kloek AP, Verbsky ML, Sharma SB et al. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coil) mutation occurs through two distinct mechanisms. Plant J,2001,26:509-522
    [126]Koiwa H, Bressan RA, Hasegawa PM. Regulation of protease inhibitors and plant defense. Trends Plant Sci,1997,2:379-383
    [127]Koomneef A, Leon-Reyes A, Ritsema T, et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol,2008,147 (3):1358-1368
    [128]Kranthi S, Krannthi KR, Wanjari RR. Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub.). Plant Sci,2003,164:157-163
    [129]L.de Bruxelles G, Roberts MR. Signals regulating multiple responses to wounding and herbivores. Critical reviews in plant sciences,2001,20 (5):487-521
    [130]Lee J, Parthier B, Lobler M. Jasmonate signal can be uncoupled from ABA signaling in barley: identification of jasmonate regulated transcripts that are not induced by ABA. Planta,1996,199: 625-632
    [131]Leon J, Royo J,Vancanneyt G et al. Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production J Biol Chem,2002,277: 416-423
    [132]Lgbler M, Lee J. Jasmonate signaling in barley. Trends Plant Sci,1998,3(1):8-9
    [133]Li J, Brader G, Palva ET. The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell,2004,16:319-331
    [134]Li L, Li C, Lee G et al. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences.2002,99 (9):6416-6421
    [135]Li XC, Schuler MA, Berenhaum MR. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature,2002,419:712-715
    [136]Loughrin JH, Manukian A, Heath RR et al. Diurnal cycle emission of induced volatile terpenoids from herbivore-injured cotton plants. Proc Natl Acad Sci USA,1994,91:11836-11840
    [137]Maeda T, Takabayashi J, Yano S et al. Effects of light on the tritrophic interaction between kidney bean plants,two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari Phytoseiidae). Exp Appl Acarol,2000,24:415-425
    [138]Mahmood T, Jan A, Kakishima M, et al. Proteomic analysis of bacterial-blight defense responsive proteins in rice leaf blades. Proteomics,2006,6053-6065
    [139]Malamy J, Carr JP, Klessig DF et al. Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science,1990,250:1002-1004
    [140]Maleck K, Dietrid RA. Defense on multiple fronts:how do plants cope with diverse enemies. Trends Plant Sci,1999,4:215-219
    [141]Mark DR. Co-evolution and plant resistance to natural enemies. Nature,2001,411:857-860
    [142]Martin D, Dorothea T, Jonathan G et al. Methyl jasmonate induces traumatic resin ducts terpenoid resin biosynthesis and terpenoid accumulation in developing xylem of Norway Spruce stems. Plant Physiol,2002,129 (7):1003-1018
    [143]Martin D, Faldt J, Bohlmann J. Functional characterization of nine Norway spruce TPS gene and evolution of Gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology,2004,135 (4):1908-1927
    [144]Martin D, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiology,2003,132 (3): 1586-1599
    [145]Mattiacci L, Dicke M, Posthumus MA. Beta-glucosidase-an elicitor of herbivore-induced plant order that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA,1995,92:2036-2040
    [146]Meiners T, Hilker M. Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol,2000,26:221-232
    [147]Mikkelsen MD, Petersen BL, Glawischnig E et al. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pat hways. Plant Physiol,2003,131:298-308
    [148]Miller B, Madilao LL, Ralph S, et al. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol, 2005,137 (1):369-382
    [149]Moraes C M, Lewis WJ, Pare PW, et al. Herbivore-infested plant selectively attract parasitoids. Nature,1998,393:570-572
    [150]Mur LAJ, Kenton P, Atzorn R et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol,2006,140 (1):249-262
    [151]Niki T, Mitsuhara I, Seo S et al. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genesin wounded mature tobacco leaves. Plant Cell Physiol,1998,39:500-507
    [152]O'Donnell PJ, Calvert C, Atzorn R et al. Ethylene as a signal mediating the wound response of tomato plants. Science,1996,274:1917-1927
    [153]Pare PW, Tumlinson JH. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochem,1998,47:521-526
    [154]Park SW, Kaimoyo E, Kumar D et al. Methyl Salicylate Is a Critical Mobile Signal for Plant Systemic Acquired Resistance.Science,2007,318:113-116
    [155]Paul W, Pare J, Tumlinson H. Plant volatiles as a defense against insect herbivores. Plant Physiology,1999,121:325-331
    [156]Pena-Cortes H, Fisahn J, Willmitzer L. Signals involved in wound-induced proteinase inhibitor-Ⅱ gene expression in potato and tomato plants. Proc Natl Acad Sci. USA.1995,92:4106-4113
    [157]Pena-Cortes H, Prat S, Albrecht T et al. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta,1993,191:123-128
    [158]Pena-Cortes H, Prat S, Atzorn R et al. Abscisic acid-deficeint plants do not accumulate proteinase inhibitor II following system in treatment. Planta,1996,198:447-451
    [159]Pena-Cortes H, Sanchez-Serrano JJ, Mertens R, et al. Abscisic-acid is involved in the wound induced expression of the proteinase inhibitor-Ⅱ gene in potato and tomato. Proc. Natl. Acad. Sci. USA,1989,86:9851-9855
    [160]Pena-Cortes H, Willmitzer L. The role of hormones in gene activation in response to wounding. In: Davis PJ(ed). Plant Hormones:Physiology, Biochemistry and Molecular Biology. Dordrecht, The Netherlands: Kluwer Academic Publishers,1995,395-414
    [161]Peng JY, Deng XJ, Huang JH, et al. Role of salicylic acid in tomato (Lycopersicon esculentum) plant defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch.2004,59c: 856-862
    [162]Piel J, Donath J, Bendemer K et al. Mevalonate-independent biosynthesis of terpenoid volatiles in plants induced and constitutive emission of volatiles. Angew. Chem. (Int. Edn. English),1998,37: 2478-2481
    [163]Pohnert G, Jung V, Haukioja E et al. New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron Lett,1999,55:11275-11280
    [164]Preston CA, Lewandowski C, Enyedi AJ et al. Tobacco mosaic virus inoculation inhibits wound induced jasmonic acid-mediated responses within but not between plants. Planta,1999,209:87-95
    [165]Prokopy RJ, Vargas RI. Attraction of Ceratitis capitata flies to odor of coffee fruit. J Chem Ecol, 1996,22(4):807-820
    [166]Pandet DM,Coswami CL,Kumar B,et al.Hormonal regulation of photosynthetic enzymes in cotton under water stress.Photosynthetica,2000,38:403-407.
    [167]Quiroz A, Pettersson J, Pickeet JA. Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi, feeding on cereals. J Chem Ecol.1997,23:2599-2607
    [168]R.M. Bostock. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol.2005,43,545-580
    [169]Rasmann S, Kollner TG, Degenhardt J et al. Recruitment of entomopathogenic nematodes by insect- damaged maize roots. Nature,2005,434:732-737
    [170]Reddy GVP, Guerrero A. Behavioral responses of the diamondback moth.Plutella xylostella,to green leaf volatiles of Brassica oleracea subsp.capitata.J. Agril Food Chem,2000,48 (12):6025-6029
    [171]Rossiter M, Schultz JC, Baldwin IT. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology,1988,69 (1):267-277
    [172]Ryan C A, Moura D S. Systemic wound signaling in plants:a new perception. PNAS.2002,99: 6519-6520
    [173]S. I. Zarate, L. A. Kempema, and L. L. Walling. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiolo.2007,143:866-875
    [174]Schaller F. Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot, 2001,52:11-23
    [175]Schittko U, Preston CA, Baldwin IT. Eating the evidence? Manduca sexta cannot disrupt specific jasmonate induction in Nicotiana attenuate by rapid consumption. Planta,2000,210:343-346
    [176]Schmelz EA, Alborn HT, Banchio E et al. Quantitive relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta,2003,216: 665-673
    [177]Schultz JC, Baldwin IT. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science,1982,217:149-151
    [178]Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci,2002,7: 41-48
    [179]Smith CM and Boyko EV. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata 2007,122:1-16
    [180]Snyder MJ, Glendnning JI. Causul connection between detoxification enzyme activity and consumption of a toxic plant compound. J Comp. Physiol. A-Sensory Neural. Behav. Physiol,1996, 179 (2):255-261
    [181]Spoel SH, Koornneef A, Claessens SM et al. NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell,2003,15: 760-770
    [182]Spoel SH. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc NatlAcad Sci USA,2007,104 (47):18842-18847
    [183]Stenzell, Hause B, Maucher H, et al. Allene oxide cyclase dependence of the wound response and vaseula rbundle-specific generation of jasmonates in tomato amplification in wound signalling. The Plant Journal,2003,33(3):577-589.
    [184]Stotz HU, Pittendrigh BR, Kroymann J et al. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol,2000,124:1007-1017
    [185]T. A. Bruce, L. J. Wadhams, and C. M. Woodcock. Insect host location: a volatile situation. Trends in Plant Science.2005,10:269-274
    [186]Takabayashi J, Dicke M. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci,1996,1:109-113
    [187]Takabayshi J, Dicke M, Posthumas MA. Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol,1994,20:1329-1354
    [188]Thipyapong P, Steffens JC. Tomato polyphenol oxidase-differential response of the polyphenol oxidase promoter to injuries and wound signal. Plant Physiol,1997,115:409-418
    [189]Thomas Koch, Thomas Krumm, Verena Jung et al. Differential induction of plant volatile biosynthesis in the Lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiology,1999,121:153-162
    [190]Tingle FC, Michell ER. Effect of oviposition deterrents from elderberry on behavioral responses by Heliothis virescens to host plant volatiles in flight tunnel. J Chem Ecol,1991,17 (8):1621-1631
    [191]Tomlin ES, Antonejevic E, Alfaro RI et al. Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol,2000,20:1087-1095
    [192]Truman W, Bennett MH, Kubigsteltig I et al. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. PNAS,2007,104,1075-1080
    [193]Tumlinson JH, Lait CG. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Archives of Insect Biochemistry and Physiology,2005,58:54-68
    [194]Turlings TCJ, Benrey B. Effects of plant metabolites on the behavior and development of parasitic wasps. EcoScience,1998,5:321-333
    [195]Turlings TCJ, Loughrin JH, McCall PJ et al. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA,1995,92:4169-4174
    [196]Turlings TCJ, Mc Call PJ, Alborn HT et al. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol,1993,19: 411-425
    [197]Turlings TCJ, Tumlinson JH.Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA,1992,89:8399-8402
    [198]Underwood N, Rausher M, Cook W. Bioassay versus chemical assay: measuring the impact of induced and constitutive resistance on herbivores in the field. Oecologia,2002,131:211-219
    [199]van Dam NM, Baldwin IT. Costs of jasmonate2induced response in plants competing for limited resources. Ecol Lett,1998,1:30-33
    [200]WalzC, Giavalisco P, Sehad M, Juenger M, et al Proteomies of cureurbit phloem exudate reveals a network of defence proteins. Phytochemistry.2004,65(12):1795-1804.
    [201]White RF, Antoniw JF, Carr JP et al. The effects of aspirin and polyacrylic acid on the multiplication and spread of TMV in different cultivars of tobacco with and without the N-gene. Phytopathol,1983,107:224-232
    [202]Winz RA, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata Ⅳ insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol,2001,125:2189-2202
    [203]Zangerl AZ, Arntz AM, Berenaum MR. Physiological price of an induced chemical defense-photosynthesis, respiration, biosynthesis and growth. Oecologia,1997,109:433-441
    [204]Zeringue Jr HJ. Changes in cotton leaf chemistry induced by volatile elicitors. Phytochemistry,1987, 26:1357-1360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700